
Operating Systems
Lecture #9: Concurrent Processes

Written by David Goodwin
based on the lecture series of Dr. Dayou Li

and the book Understanding Operating Systems 4thed.
by I.M.Flynn and A.McIver McHoes (2006)

Department of Computer Science and Technology,
University of Bedfordshire.

Operating Systems, 2013

15th April 2013



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

Configurations

Programming

Threads

Operating Systems

Outline

1 Introduction

2 Configurations

3 Programming

4 Threads



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

3Introduction

Configurations

Programming

Threads

Operating Systems

Introduction



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

4Introduction

Configurations

Programming

Threads

Operating Systems

What is parallel processing?

� Parallel processing (also called multiprocessing)
� situation in which two or more procesors operate in unison
� i.e. two or more CPUs are executing instructions

simultaneously
� each CPU can have a RUNNING process at the same time
� Process manager must coordinate each processor
� Process manager must synchronise the interaction among

CPUs

� enhance throughput and increase computing power



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

5Introduction

Configurations

Programming

Threads

Operating Systems

What is parallel processing?

� Example: Information Retrieval System
� Processor 1

� accepts a query
� checks for errors
� passes request to Processor 2

� Processor 2
� searches database for required information

� Processor 3
� retrieves data from database (if kept off-line in secondary

storage)
� data placed where Processor 2 can get it

� Processor 2
� passes information to Processor 4

� Processor 4
� routes the response back to the originator of the request



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

6Introduction

Configurations

Programming

Threads

Operating Systems

Benefits

� Increased reliability
� more than one CPU
� if one fails, others can absorb the load

� failing processor must inform other processors
� OS must re-structure its resource allocation strategies

� faster processing
� instructions processed two or more at a time

� allocate CPU to each job
� allocate CPU to each working set
� subdivide individual instructions, called concurrent

programming

� Challenges:
� How to connect the processors in configurations?
� How to orchestrate their interaction?



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

7Configurations

Programming

Threads

Operating Systems

Configurations



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

8Configurations

Programming

Threads

Operating Systems

Master/Slave configuration

� Master/Slave configuration is asymmetric
� Essentially a single processor with additional “slaves”
� Master processor responsible for managing entire system

� maintains status of processes, storage management, schedules
work for slave processors, executes all control programs.

� suited for environments with front-end interactive users, and
back-end batch job mode



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

9Configurations

Programming

Threads

Operating Systems

Master/Slave configuration

� Advantage:
� Simplicity

� Disadvantage:
� Reliability no higher than for single processor (if master fails

the whole system fails)
� Poor use of resources (if matser is busy, slave must wait until

master becomes free until it can be assigned more work)
� Increases the number of interrupts (slaves must interrupt the

master every time they need OS intervention e.g. IO
requests), creating long queues at the master processor



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

10Configurations

Programming

Threads

Operating Systems

Loosely Coupled configuration

� Loosely Coupled system features several complete computing
systems

� each has its own memory, IO devices, CPU, and OS
� each processor controls its own resources
� each processor can communicate and cooperate with others

� job assigned to one processor, and will remain there until
finished

� job scheduling based on several requiremenyts and policies
(new jobs may be assigned to the processor with lightest
load)



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

11Configurations

Programming

Threads

Operating Systems

Loosely Coupled configuration

� Advantage:
� Isn’t prone to catastrophic system failures (when a processor

fails, others can continue work independently)

� Disadvantage:
� Difficult to detect when a processor has failed



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

12Configurations

Programming

Threads

Operating Systems

Symmetric configuration

� Symmetric configuration best implimented if processors are
the same type

� Processor scheduling is decentralised
� Single copy of OS and a globqal table listing each process

and its status (stored in a common area of memory)
� Each processor uses the same scheduling algorithm
� If interrupted, processor updates process list and finds

another to run (processors are kept busy)
� Any given job can be executed on several processors
� Presents a need for process synchronisation



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

13Configurations

Programming

Threads

Operating Systems

Symmetric configuration

� Advantage:
� Reliable
� Uses resources effectively
� Balance loads well
� Can degrade gracefully in the event of a failure

� Disadvantage:
� Processors must be well synchronised to avoid problems of

races and deadlocks



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

Configurations

14Programming

Threads

Operating Systems

Programming



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

Configurations

15Programming

Threads

Operating Systems

Concurrent Programming Applications

� Multiprocessing can refer to one job using several processors

� This requires a programming language and computer system
that can support it, called concurrent processing system

� Most programming languages are serial - instructions
executed one at a time

� To resolve and arithmetic expression, every operation is done
in sequence



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

Configurations

16Programming

Threads

Operating Systems

Concurrent Programming Applications

� Example:
� A = 3 ∗B ∗ C + 4/(D + E) ∗ ∗(F −G)

step Operation Result
1 (F −G) Store difference in T1

2 (D + E) Store sum in T2

3 (T1) ∗ ∗(T2) Store power in T1

4 4/(T1) Store quotient in T2

5 3 ∗B Store product in T1

6 (T1) ∗ C Store product in T1

7 (T1) + (T2) Store sum in A



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

Configurations

17Programming

Threads

Operating Systems

Concurrent Programming Applications

� Arithmetic expressions can be processed differently if we use a
language that allows concurrent processing

� Define COBEGIN and COEND to indicate to the compiler
which instructions can be processed concurrently

� COBEGIN
T1 = 3 ∗ B
T2 = D + E
T3 = F − G
COEND

� COBEGIN
T4 = T1 ∗ C
T5 = T2 ∗ ∗T3
COEND

� A = T4 + 4/T5

step proc. Operation Result
1 1 3 ∗ B Store difference in T1

2 (D + E) Store sum in T2

3 (F − G) Store difference in T3

2 1 (T1) ∗ C Store product in T4

2 (T2) ∗ ∗(T3) Store power in T5

3 1 4/(T5) Store quotient in T1

4 1 (T4) + (T1) Store sum in A



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

Configurations

18Programming

Threads

Operating Systems

Concurrent Programming Applications

� Increased computational speed
� increased complexity of programming language
� increased complexity of hardware (machinary and

communication among machines)
� programmer must explicitly state which instructions are to be

executed in parallel, called explicit parallelism
� solution: automatic detection by the compiler of instructions

that can be performed in parallel, called implicit parallelism



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

Configurations

19Programming

Threads

Operating Systems

Case 1: Array Operations

� To perform an array operation within a loop in three steps,
the instruction might say:

� for(j=1;j<=3;j++)
a(j)=b(j)+c(j);

� If we use three processors, the instruction can be performed
in a single step:

� processor#1 performs: a(1)=b(1)+c(1)
processor#2 performs: a(2)=b(2)+c(2)
processor#3 performs: a(3)=b(3)+c(3)



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

Configurations

20Programming

Threads

Operating Systems

Case 2: Matrix Multiplication

� To perform C = A ∗B where A and B represent two
matricies:

� A =

1 2 3
4 5 6
7 8 9

, B =

1 2 3
4 5 6
7 8 9


� Several elements of a row of A are multiplied by the

corresponding elements of the column in B.

� Serially, the answer can be computed in 45 steps (5× 9)

� With three processors the answer takes only 27 steps,
multiplying in parallel (3× 9)



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

Configurations

Programming

21Threads

Operating Systems

Threads



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

Configurations

Programming

22Threads

Operating Systems

Threads & Concurrent Programming

� We have considered cooperation and synchronisation of
traditional processes (known as heavyweight processes):

� require space in main memory where they reside during
execution

� may require other resources such as data files or IO devices
� pass through several states: ready, running, waiting, delayed,

blocked

� this requires an overhead from swapping between main
memory and secondary storage

� To minimise overhead time, impliment the use of threads
� defined as a smaller unit within a process, that can be

scheduled and executed (uses CPU)
� each has its own processor registers, program counter, stack

and staus, but shares the data area and resources allocated
to its process



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

Configurations

Programming

23Threads

Operating Systems

Threads States

� The same operations are performed on both traditional
processes and threads.

� The OS must be able to support:
� Creating new threads
� Setting up a thread so it is ready to execute
� Delaying, or putting to sleep, threads for a specific amount of

time
� Blocking, or suspending, threads that are waiting for IO to

complete
� Setting threads to wait state until specific event
� Scheduling threads for execution
� Synchronising thread execution using semaphores, events, or

conditional variables
� Terminating a thread and releasing its resources

� This is done by the OS tracking critical information for each
thread



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

Configurations

Programming

24Threads

Operating Systems

Thread Control Block

� Just as processes are represented by Process Contol Blocks
(PCBs), threads are represented by Thread Contol Blocks
(TCBs):

� Thread ID: unique identifier assigned by OS
� Thread State: changes as the thread progresses though

execution
� CPU information: how far the thread has executed, which

instruction is being performed, what data is begin used
� Thread Priority: used by Thread Scheduler to determine

which thread should be selected for the ready queue
� Pointer: to the process that created the thread
� Pointers: to other threads created by this thread


	Introduction
	Configurations
	Programming
	Threads

