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What is parallel processing?

� Parallel processing (also called multiprocessing)
� situation in which two or more procesors operate in unison
� i.e. two or more CPUs are executing instructions

simultaneously
� each CPU can have a RUNNING process at the same time
� Process manager must coordinate each processor
� Process manager must synchronise the interaction among

CPUs

� enhance throughput and increase computing power
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What is parallel processing?

� Example: Information Retrieval System
� Processor 1

� accepts a query
� checks for errors
� passes request to Processor 2

� Processor 2
� searches database for required information

� Processor 3
� retrieves data from database (if kept off-line in secondary

storage)
� data placed where Processor 2 can get it

� Processor 2
� passes information to Processor 4

� Processor 4
� routes the response back to the originator of the request
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Benefits

� Increased reliability
� more than one CPU
� if one fails, others can absorb the load

� failing processor must inform other processors
� OS must re-structure its resource allocation strategies

� faster processing
� instructions processed two or more at a time

� allocate CPU to each job
� allocate CPU to each working set
� subdivide individual instructions, called concurrent

programming

� Challenges:
� How to connect the processors in configurations?
� How to orchestrate their interaction?
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Master/Slave configuration

� Master/Slave configuration is asymmetric
� Essentially a single processor with additional “slaves”
� Master processor responsible for managing entire system

� maintains status of processes, storage management, schedules
work for slave processors, executes all control programs.

� suited for environments with front-end interactive users, and
back-end batch job mode
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Master/Slave configuration

� Advantage:
� Simplicity

� Disadvantage:
� Reliability no higher than for single processor (if master fails

the whole system fails)
� Poor use of resources (if matser is busy, slave must wait until

master becomes free until it can be assigned more work)
� Increases the number of interrupts (slaves must interrupt the

master every time they need OS intervention e.g. IO
requests), creating long queues at the master processor
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Loosely Coupled configuration

� Loosely Coupled system features several complete computing
systems

� each has its own memory, IO devices, CPU, and OS
� each processor controls its own resources
� each processor can communicate and cooperate with others

� job assigned to one processor, and will remain there until
finished

� job scheduling based on several requiremenyts and policies
(new jobs may be assigned to the processor with lightest
load)
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Loosely Coupled configuration

� Advantage:
� Isn’t prone to catastrophic system failures (when a processor

fails, others can continue work independently)

� Disadvantage:
� Difficult to detect when a processor has failed
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Symmetric configuration

� Symmetric configuration best implimented if processors are
the same type

� Processor scheduling is decentralised
� Single copy of OS and a globqal table listing each process

and its status (stored in a common area of memory)
� Each processor uses the same scheduling algorithm
� If interrupted, processor updates process list and finds

another to run (processors are kept busy)
� Any given job can be executed on several processors
� Presents a need for process synchronisation
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Symmetric configuration

� Advantage:
� Reliable
� Uses resources effectively
� Balance loads well
� Can degrade gracefully in the event of a failure

� Disadvantage:
� Processors must be well synchronised to avoid problems of

races and deadlocks
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Concurrent Programming Applications

� Multiprocessing can refer to one job using several processors

� This requires a programming language and computer system
that can support it, called concurrent processing system

� Most programming languages are serial - instructions
executed one at a time

� To resolve and arithmetic expression, every operation is done
in sequence
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Concurrent Programming Applications

� Example:
� A = 3 ∗B ∗ C + 4/(D + E) ∗ ∗(F −G)

step Operation Result
1 (F −G) Store difference in T1

2 (D + E) Store sum in T2

3 (T1) ∗ ∗(T2) Store power in T1

4 4/(T1) Store quotient in T2

5 3 ∗B Store product in T1

6 (T1) ∗ C Store product in T1

7 (T1) + (T2) Store sum in A
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Concurrent Programming Applications

� Arithmetic expressions can be processed differently if we use a
language that allows concurrent processing

� Define COBEGIN and COEND to indicate to the compiler
which instructions can be processed concurrently

� COBEGIN
T1 = 3 ∗ B
T2 = D + E
T3 = F − G
COEND

� COBEGIN
T4 = T1 ∗ C
T5 = T2 ∗ ∗T3
COEND

� A = T4 + 4/T5

step proc. Operation Result
1 1 3 ∗ B Store difference in T1

2 (D + E) Store sum in T2

3 (F − G) Store difference in T3

2 1 (T1) ∗ C Store product in T4

2 (T2) ∗ ∗(T3) Store power in T5

3 1 4/(T5) Store quotient in T1

4 1 (T4) + (T1) Store sum in A
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Concurrent Programming Applications

� Increased computational speed
� increased complexity of programming language
� increased complexity of hardware (machinary and

communication among machines)
� programmer must explicitly state which instructions are to be

executed in parallel, called explicit parallelism
� solution: automatic detection by the compiler of instructions

that can be performed in parallel, called implicit parallelism



24

Lecture #9
Concurrent Processes

David Goodwin
University of
Bedfordshire

Introduction

Configurations

19Programming

Threads

Operating Systems

Case 1: Array Operations

� To perform an array operation within a loop in three steps,
the instruction might say:

� for(j=1;j<=3;j++)
a(j)=b(j)+c(j);

� If we use three processors, the instruction can be performed
in a single step:

� processor#1 performs: a(1)=b(1)+c(1)
processor#2 performs: a(2)=b(2)+c(2)
processor#3 performs: a(3)=b(3)+c(3)
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Case 2: Matrix Multiplication

� To perform C = A ∗B where A and B represent two
matricies:

� A =

1 2 3
4 5 6
7 8 9

, B =

1 2 3
4 5 6
7 8 9


� Several elements of a row of A are multiplied by the

corresponding elements of the column in B.

� Serially, the answer can be computed in 45 steps (5× 9)

� With three processors the answer takes only 27 steps,
multiplying in parallel (3× 9)
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Threads & Concurrent Programming

� We have considered cooperation and synchronisation of
traditional processes (known as heavyweight processes):

� require space in main memory where they reside during
execution

� may require other resources such as data files or IO devices
� pass through several states: ready, running, waiting, delayed,

blocked

� this requires an overhead from swapping between main
memory and secondary storage

� To minimise overhead time, impliment the use of threads
� defined as a smaller unit within a process, that can be

scheduled and executed (uses CPU)
� each has its own processor registers, program counter, stack

and staus, but shares the data area and resources allocated
to its process
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Threads States

� The same operations are performed on both traditional
processes and threads.

� The OS must be able to support:
� Creating new threads
� Setting up a thread so it is ready to execute
� Delaying, or putting to sleep, threads for a specific amount of

time
� Blocking, or suspending, threads that are waiting for IO to

complete
� Setting threads to wait state until specific event
� Scheduling threads for execution
� Synchronising thread execution using semaphores, events, or

conditional variables
� Terminating a thread and releasing its resources

� This is done by the OS tracking critical information for each
thread
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Thread Control Block

� Just as processes are represented by Process Contol Blocks
(PCBs), threads are represented by Thread Contol Blocks
(TCBs):

� Thread ID: unique identifier assigned by OS
� Thread State: changes as the thread progresses though

execution
� CPU information: how far the thread has executed, which

instruction is being performed, what data is begin used
� Thread Priority: used by Thread Scheduler to determine

which thread should be selected for the ready queue
� Pointer: to the process that created the thread
� Pointers: to other threads created by this thread
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