Principles of Modern Communications Basic Concepts

Lecture series based on that of Dr. S. Waharte

Department of Computer Science and Technology University of Bedfordshire

07th January 2013

ns

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Home Network

Department of Computer Science and Technology University of Bedfordshire

Teaching Schedule
 Basic Network Terminology
 Circuit Switching
 Network layers

internets
Core TCP/IP Standards
LANs versus WANs
A Small Home Network

Telecommunications

David Goodwin

Teaching Schedule

3

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire

TEACHING SCHEDULE

Introduction Schedule for today

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Home Network

- Today, we are surrounded by networks.
- This lecture introduces basic network concepts and issues.
- It has a historical context because some aspects of networking only make sense if you understand the development of internetworking.

Introduction Course Outline

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Home Network

Department of Computer Science and Technology University of Bedfordshire 103 Lecture #01 Basic Concepts Lecture #02 Standards Lecture #03 Physical Layer Propagation Lecture #04 Digital Communications Lecture #05 Amplitude/Frequency modulation Lecture #06 Data communications Lecture #07 Switched Data Networks Lecture #08 Lecture #09 Wireless Networking Lecture #10 Internetworks Lecture #11 Networked Applications Lecture #12

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/II Standards

LANs versus WANs

A Small Home Network

Department of Computer Science and Technology University of Bedfordshire

BASIC NETWORK TERMINOLOGY

Host Basic Network Terminology

- Any device attached to a network is a host
 - Devices may include, but not be limited to, large servers, small desktops, laptops, netbooks, PCs, and smartphones.

Application Basic Network Terminology

- Department of Computer Science and Technology University of Bedfordshire
- A network is a system that permits networked applications running on different hosts to work together.
 - Applications are the only things users care about.

Networked Applications

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire Applications that require a network to function1970s

E-mail, file downloading, and transfers

1990s

• The Wide Web, instant messaging

- This century
 - Web 2.0 with user-developed content, e.g., Wikipedia, YouTube
 - Social networking, e.g., Facebook
 - Streaming media

Application Messaging Basic Network Terminology

- Applications communicate by sending messages to one another.
- Messages are addressed to the receiver's address.

Access Links Basic Network Terminology

Terminal-Host Communication Terminal-Host v Client/Server

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/II Standards

LANs versus WANs

A Small Hom Network

	Application Program
Dumb Terminal	Host

• All application processing is done on the host.

Client/Server Processing Terminal-Host v Client/Server

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

- The client and server hosts share the application processing work.
 - Made possible by the emergence of PCs

Beyond Client/Server Computing

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire

Peer-to-Peer (P2P) Computing

- · Clients provide service to each other.
- Made possible by growing PC processing power.
- Cloud Computing
 - Resources are outsourced to a provider who is accessed entirely via a network.
 - Users only need a PC or other intelligent device.
 - · Company does not need to maintain servers or applications.

Transmission Speed

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire 103

Transmission Speed Mea	surements		
Normally measured in bit	s per second (bps)		
Usually not in bytes in pe	r second (Bps)		
Metric Prefixes			
Kilobits per second	kbps (lower-case k)	1,000 bps (not 1,024)	
Megabits per second	Mbps	1,000,000 bps	
Gigabits per second	Gbps	1,000,000,000 bps	
Terabits per second	Tbps	1,000,000,000,000 bps	

111

Transmission Speed Metric Prefixes

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire 103 Examples of Metric Prefixes (k, M, G)

- 56,000 bps is 56 kbps.
- 45,370 bps is 45.37 kbps.
- 34 Mbps is 34,000,000 bps.
- 4,676 bps is 4.676 kbps.
- 23,000,000 bps is 23 Mbps.

Download Time for Applications

	Application	100 kbps	1 Mbps	10 Mbps	100 Mbps
	E-Mail (250 words)	0.02 sec	0 sec	0 sec	0 sec
	Photo (2 MB)	2.7 min	16 sec	2 sec	0 sec
	MP3 Song (3 min)	2.9 min	17 sec	2 sec	0 sec
	Ltd. Quality TV (One Hour)	13 hrs	1 hr	8 min	1 min

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

18

Network layers

internets

Core TCP/II Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire

CIRCUIT SWITCHING

Circuit Switching

-			
l e	lecomm	iunica	tions

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

19

Network layers

internets

Core TCP/II Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire Circuit-switched transmission systems give reserved capacity to users

Telephone Circuits

Questions About Circuits

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

21

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire 103

Example (1)

- How does the telephone system handle circuit switching reserved capacity on Mother's Day, when there is excess traffic?
- Why is this not necessary on Father's Day?

Telephone Circuits

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

22

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

	1 6.		
Dial-Up Circuit	Leased Line Circuit		
For homes and businesses	For businesses		
Can call anyone	Point-to-point connection between two sites		
Reserved capacity for duration of a call	Always on with reserved capacity		
Low speeds for data (30 to 60 kbps)	Speeds of megabits or gigabits per second		
Inexpensive	Expensive		
Leased Line Circuit			

Telephone Modems Analog, Binary, and Digital Transmission

• If you talk louder, the signal gets stronger.

• The telephone network expects you to send analog signals.

analogous (analog) electrical signal.

Telephone Modems Analog, Binary, and Digital Transmission

Department of Computer Science and Technology University of Bedfordshire

103

Telephone Modems

Telecommunications

- David Goodwin
- Teaching Schedule
- Basic Network Terminology
- Circuit Switching

26

- Network layers
- internets
- Core TCP/IF Standards
- LANs versus WANs
- A Small Home Network

Department of Computer Science and Technology University of Bedfordshire

Example (2)

If transmission is binary, is it also digital? Explain.If transmission is digital, is it also binary? Explain.

Binary versus Digital Questions

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

27) E

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

xample (3		100 - 100 -		
 If you hat a Binary b Digital c Analog If you hat a Binary b Digital b Digital b Digital 	ive 2 states, is ? ? ;? ;? ive 8 states, is ? ?	this		25 15 10
c Analog	25	333		

Telephone Modems Analog, Binary, and Digital Transmission

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

28

Network layers

internets

Core TCP/II Standards

LANs versus WANs

A Small Hom Network

- The telephone network expects analog signals.
- A modem converts digital computer signals into analog transmission signals.
- Here, 1, 1, 0 is converted into loud, loud, soft.
- This is amplitude modulation.

Telephone Modems Analog, Binary, and Digital Transmission

- In digital signals, the signal is held constant in each clock cycle.
 - At the end of a clock cycle, it can change or stay the same.

Telephone Modems Analog, Binary, and Digital Transmission

- Here, the first two bits are 1s. There is no change.
- Clock cycles allow the modem to know that it is two 1s, rather than a single long 1.

Resistance to Errors in Digital Signaling

Telecommunications

David Goodwin

Teaching Schedule

Basic Networl Terminology

Circuit Switching

Network layers

internets

Core TCP/I Standards

LANs versus WANs

A Small Hom Vetwork

- An example of binary signaling.
- 12 volts during a clock cycle is a 0.
- +3 to +15 volts is a 0.
- This is only an example. Other systems will represent 0s and 1s differently.

Resistance to Errors in Digital Signaling

Resistance to Errors in Digital Signaling

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

33

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire

Number of states	Bits sent per clock cycle	Representation of states
2 (binary)	1	State 1=0, State 2=1
4	2	Four states can represent 00, 01, 10, and 11
8	3	Eight states can represent 000, 001, 010, 011, 100, 101, 110, 111

• Having more than two states allows you to send multiple bits per clock cycle.

Resistance to Errors in Digital Signaling

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire 103

Number of states	Bits sent per clock cycle	Representation of states
2 (binary)	1	State 1=0, State 2=1
4	2	Four states can represent 00, 01, 10, and 11
8	3	Eight states can represent 000, 001, 010, 011, 100, 101, 110, 111

• However, the voltage and other differences between the states become smaller, so there are more errors.

The Need for Packet Switching Packet Switching

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Home Network

- We have seen that circuit switching's reserved capacity is reasonably efficient for voice conversations, in which someone is almost always talking.
- But circuit switching's reserved capacity is inefficient (and therefore expensive) for data transmissions, in which there are high-speed bursts separated by long silences in which expensive reserved capacity goes unused.
- Packet switching is a more efficient way to send data.

Recap

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

42

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Home Network

- Each switch along the way forwards the packet out a port to another switch (or to the destination host).
- Individual packet switches have no knowledge of the entire path taken by the packet.
- We will see how this works in detail in later chapters.

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

43

Network layers

internets

Core TCP/II Standards

LANs versus WANs

A Small Home Network

Department of Computer Science and Technology University of Bedfordshire

NETWORK LAYERS

V

Network layers

Telecommunications

- David Goodwin
- Teaching Schedule
- Basic Network Terminology
- Circuit Switching
- Network layers
- internets
- Core TCP/IF Standards
- LANs versus WANs
- A Small Hom Network

- Networks can be described at several layers of detail.
 - By analogy, humans can be described sociologically, psychologically, in terms of musculature, and at the cell level.
- Each layer provides services to the layer above it.
 - The road provides service to the car tires.
 - The car tires provide service to the car.
 - The car provides service to the driver.
 - A commercial driver provides service to the goods being delivered.

Physical Links and Data Links

Bedfordshire

103

Physical Links and Data Links

The **ARPANET**

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

- Forerunner of the Internet
- Funded by Larry Roberts at the Advanced Research Projects Agency (ARPA)
 - Now the Defense Advanced Research Projects Agency (DARPA)
- To explore packet switching
- To give researchers access to ARPA-funded software on hosts computers in distant cities
- First four nodes began operation in 1969

The ARPANET (First 4 Nodes)

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

48

Network layers

internets

Core TCP/I Standards

LANs versus WANs

A Small Hom Network

 Packet switches were called IMPs. Each IMP could serve multiple hosts at a site.

The ARPANET (First 4 Nodes)

Telecommunications

- David Goodwin
- Teaching Schedule
- Basic Network Terminology
- Circuit Switching

Network layers

- internets
- Core TCP/IF Standards
- LANs versus WANs
- A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire 103

• Each host ran the NCP software. The NCP coordinated the host's communication with its IMP.

Network Working Group

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

- Formed by graduate students to create standards for the ARPANET
- Called their standards Requests for Comment (RFCs)
 - Did not feel that they had the authority to create standards, so they used the weaker term RFC
- The NWG evolved into todays standards body for the Internet, the Internet Engineering Task Force (IETF)
- Internet standards today are still called RFCs

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/I Standards

LANs versus WANs

A Small Home Network

Department of Computer Science and Technology University of Bedfordshire

INTERNETS

V

Birth of the Internet

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Home Network

- Bob Kahn at DARPA needed a way for researchers on one network to be able to use resources on another network.
- Packets would have to travel across multiple networks.
- Kahn and Vint Cerf came up with the idea of connecting multiple networks by devices called routers.
- (The original name was gateways.)
- Generically, networks of networks are internets.
- Kahn created the global Internet (Capital I).

V

Terminology

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire

Capitalization of Internet

- With an upper-case I, Internet means the global Internet we use every day.
- With a lower-case i, internet means any internet or the internet layer.

Internetworking

V

Two Layers of Networking

Telecommunications

- David Goodwin
- Teaching Schedule
- Basic Network Terminology
- Circuit Switching
- Network layers
- internets
- Core TCP/IF Standards
- LANs versus WANs
- A Small Home Network

- Basically, Kahn and Cerf created a second layer of networking on top of single networks.
- This required the creation of a parallel set of concepts for single networks and internets.
- Single networks and internets use similar concepts but give these concepts different names.
- It is important for you to get this clear in your head.

Two Layers in Networking

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire 103

Element	Single Networks	Internets
Emergence	First	Later
Addresses	Vary by network technology	32-bit IP addresses
Packets are called	Frames	Packets
Packet switches	Switches	Routers
End-to-end paths	Data links	Routes

 Internetworking required adding a second layer of networking, duplicating concepts but with different names.

Packets and Frames

University of

Bedfordshire

103

Packets and Frames

Switched Network X Switched Network Y Wireless Packe Network Z Frame Y Router 2 Packet Destination Host IP address=123.56.8.23 Wireless network address=1000110010

- In an internet, a single packetgoes all the way from the source host to the destination host.
- In each single network along the way, the packet is carried in a different frame.

Packets and Frames

Wireless

Network Z

Packet

Packet Frame 7

Destination Host IP address=123.56.8.23

Packets and Frames

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire 103

• Physical links connect adjacent devices, as noted earlier.

Example (5)

• How many physical links are there between the two hosts?

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/I Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire 103

• A data link is the path of a frame through a single network, as noted earlier.

Example (6)

There is one data link per network. How many data links are in the figure?

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/I Standards

LANs versus WANs

A Small Hom Network

Physical Links, Data Links, and Routes Questions

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/II Standards

LANs versus WANs

A Small Hom Vetwork

Department of Computer Science and Technology University of Bedfordshire

Example (8)

- Host P transmits a packet to Host Q.
- There are seven networks between the hosts.
 - How many packets will there be along the way?How many frames will there be along the way?
 - B How many routes will there be along the way?
 - How many data links will there be along the way?

• Packet organisation and forwarding

V

The Internet and Transport Layers

A Small Home Network

- Transport Layer
 - End-to-End (host-to-host)
 - Packet assembly and disassembly
 - Error correction, packet sequencing, congestion control

Networking Layers

- 10						
l el	eco	mm	ıun	ICa	itic	ns

David Goodwin

Teaching Schedule

Basic Networł Terminology

Circuit Switching

Network layers

internets

Core TCP/II Standards

LANs versus WANs

68

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire 103

Number	Name	Broad Purpose	Specific Purpose
5	Application	Communication between applications	Same
4	Transport		
3	Internet		
2	Data Link		
1	Physical		

111

V

Networking Layers

Telecommunications

David Goodwin

Teaching Schedule

Basic Networl Terminology

Circuit Switching

Network layers

internets

Core TCP/II Standards

LANs versus WANs

A Small Horr Vetwork

	Layer	Name	Broad Purpose	Specific Purpose		
	5	Application				
69		Transport	Internet Transmission	Application message fragmentation, error correction, congestion reduction, etc.		
1 11	3	Internet		Transmission of packet across an internet. Packet formats, router operation.		
-	2	Data Link				
-	1	Physical				
103						

111

Networking Layers

lelecommunications						
		Lavor	Namo			
		Layer	Maine			
		5	Applicatio			
		4	Turners			
	2	4	Transport			
internets	70	3	Internet			
		2	Data Link			
		_				
	1.0					
	2-	1	Physical			
			,			
	1.00					
		4	Van' · ·			
Department of						

Department of	
Computer Science	and
Technology	
University of	
Bedfordshire	- (

03

Layer	Name	Broad Purpose	Specific Purpose	
5	Application			
4	Transport			
3	Internet			
2	Data Link	Single–network transmission (switched or wireless)	Connection across a single network. Frame formats and switch operation.	
1	Physical		Physical connections between adjacent devices	
	A. C. S.			

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IP Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire

CORE TCP/IP Standards

Core TCP/IP Standards

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IP Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire 103

Layer		Stand	dards		
Application	HTTP	SM	ITP	etc.	
Transport	Transmission Control Protocol (TCP)		User Datagram Protocol (UDP)		
Internet	Inte	ernet Pr	otocol	(IP)	

• The TCP/IP Standards Govern the Internet and Many Corporate Internets.
Core TCP/IP Standards

-			
e	ecor	unic	ations

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IP Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire 103 IP

- Internet layer protocolUnreliable best-effort internet layer operation
 - No guarantee that packets will be delivered.
 - No guarantee that if packets arrive, they will be in order.

Core TCP/IP Standards

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IP Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire

TCP

- Transport layer protocol
- TCP messages are called segments
- Provides transport layer functionality to fix problems
- Error correction, and so on

• UDP

- The other transport layer protocol
- Messages are called datagrams
- Unreliable, so used when reliability is not desired

The Internet Evolves

Telecommunications

- David Goodwin
- Teaching Schedule
- Basic Network Terminology
- Circuit Switching
- Network layers
- internets
- Core TCP/IP Standards
- LANs versus WANs
- A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire 103

• 1977

- First experimental connection of three networks
- (Two wireless and the ARPANET)
- 1970s
 - Internet opened to outside network for e-mail exchanges

The Internet Evolves

Telecommunications

- David Goodwin
- Teaching Schedule
- Basic Network Terminology
- Circuit Switching
- Network layers
- internets
- Core TCP/IP Standards
- LANs versus WANs
- A Small Hom Network

- TCP/IP standards evolved in the 1970s.
 Hosts could run either TCP/IP or NCP standards.
- 1983
 - All hosts were required to run TCP/IP.
- NSFNET
 - In the 1980s, the NSFNET funded by NSF was the core of the Internet.
 - NSF had an Acceptable Use Policy barring commercial activity such as e-commerce.

The Internet Evolves

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IP Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire

1995

- NSFNET replaced by commercial ISPs.
- No longer was e-commerce forbidden.
- The e-commerce revolution began.
- The World Wide Web became popular just before that.

The Internet Today

The Internet Today

Telecommunications

David Goodwin

Teaching Schedule

Basic Networl Terminology

Circuit Switching

Network layers

internets

Core TCP/IP Standards

LANs versus WANs

A Small Hom Network

- ISPs collectively comprise the Internet backbone.
- They interconnect at Network Access Points (NAPs) to exchange packets.

The Internet Today

David Goodwin

Teaching Schedule

Basic Networl Terminology

Circuit Switching

Network layers

internets

Core TCP/IP Standards

LANs versus WANs

A Small Horr Network

Internet Supervisory Protocols Beyond packet delivery

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IP Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire IP, TCP, and UDP are standards for delivery packets.
TCP/IP also has supervisory protocols.

- To handle things beyond packet delivery.
- Managing IP addresses.
- Error handling, and so on.
- We will look at two supervisory protocols in this chapter.
- We will look at many more in Chapter 10.

Dynamic Host Configuration Protocol

Telecommunications

- David Goodwin
- Teaching Schedule
- Basic Network Terminology
- Circuit Switching
- Network layers
- internets
- Core TCP/IP Standards
- LANs versus WANs
- A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire 103

The Situation

- A client PC boots up.
- It realizes that it does not have an IP address.
- This would be like not having a telephone number.
- The client PC calls a Dynamic Host Configuration Protocol Server.
- The DHCP server gives the client PC an IP address to use temporarily (and other configuration information).

Dynamic Host Configuration Protocol

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IP Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire 103

• DHCP Request message:

- My network address is F102A
- Please give me a 32-bit IP address

• Your 32-bit IP address is ...

. . .

- · Here is additional configuration information
- The IP address of your default router;
- The IP addresses ofyour DNS servers:

The Domain Name System (DNS)

The Domain Name System (DNS)

The Domain Name System (DNS)

The Domain Name System (DNS)

- The originating host can now send packets to the target host.
 - No DNS lookup is needed for the rest of the communication between the originating host and the target host.

DHCP versus **DNS** Question

Telecommunications

- David Goodwin
- Teaching Schedule
- Basic Network Terminology
- Circuit Switching
- Network layers
- internets
- Core TCP/IP Standards
- LANs versus WANs

88

A Small Home Network

Department of Computer Science and Technology University of Bedfordshire

- Both DHCP and DNS send you an IP address.
- In DHCP, for what device is this the IP address?

Example (10)

• In DNS, for what device is this the IP address?

Telecommunications

David Goodwin

Teaching Schedule

Basic Networł Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Hom Network

Department of Computer Science and Technology University of Bedfordshire

LANS VERSUS WANS

ecomm	unica	tions

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

90

A Small Hom Network

Category	Local Area Networks	Wide Area Networks
Abbreviation	LANs	WANs
Definition	On customer premises (apartment, office, building, campus, etc.)	Between sites within a corporation or between corporations

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

91

A Small Hom Network

Category	Local Area Networks	Wide Area Networks
Implementation	Self	Carrier with rights of way
Ability to choose technology	High	Low
Need to manage the technology after installation	High	Low

Telecommunications

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

92

A Small Home Network

Category	Local Area Networks	Wide Area Networks
Cost per bit transmitted	Low	High
Therefore typical transmission speed	Usually 100 Mbps to 10 Gbps	Usually about 256 kbps to 50 Mbps

- Longer transmission distances means a higher cost per bit transmitted.
- As unit price increases, the number of units demanded falls. (You can't afford to buy as much.)

Telecommunications

David Goodwin

Teaching Schedule

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

93

A Small Home Network

Department of Computer Science and Technology University of Bedfordshire

Category	Local Area Networks	Wide Area Networks		
Can use switched or wireless network technology?	Yes	Yes		
Can use internet (routed) technology?	Yes	Yes		

• Both LANs and WANs can be either single switched (or wireless) networks or internets.

Telecommunications

David Goodwin

Teaching Schedule

Basic Networl Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Home Network

Department of Computer Science and Technology University of Bedfordshire

A SMALL HOME NETWORK

Unshielded Twisted Pair (UTP) Wiring

Telecommunications 8-Pin RJ-45 Connector UTP Cord A Small Home 96 Network **Industry Standard Pen UTP** Cord **4** Twisted Pairs Department of Computer Science and University of Bedfordshire 103

A Smo Telecommunications David Goodwin Teaching Schedule Basic Network

Basic Network Terminology

Circuit Switching

Network layers

internets

Core TCP/II Standards

LANs versus WANs

A Small Home Network

Department of Computer Science and Technology University of Bedfordshire

DHCP

DHCP

David Goodwir

Teaching Schedule

Basic Networl Terminology

Circuit Switching

Network layers

internets

Core TCP/IF Standards

LANs versus WANs

A Small Home Network

- Your access router has a DHCP server.
- It gives each device in the home a different IP address.

Network Address Translation (NAT)

The Next Lecture

Telecommunications

- David Goodwin
- Teaching Schedule
- Basic Network Terminology
- Circuit Switching
- Network layers
- internets
- Core TCP/IF Standards
- LANs versus WANs

103

A Small Home Network

- Lecture 1 introduced the critical concept of standards.
- Lecture 2 looks at standards in more depth.
 - It will look at major characteristics of standards, such as the syntax of messages.
 - It will focus on the data link, internet, transport, and application layers, which work by sending structured messages.