Principles of Modern Communications Internetworks

based on 2011 lecture series by Dr. S. Waharte. Department of Computer Science and Technology, University of Bedfordshire.

VI

1912

17th January 2013

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical II addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Labe Switching (MPLS)

1 TCP/IP concepts

2 Hierarchical IP addresses

3 Router operation

4 IPv4 and IPv6

5 TCP and UDP

6 TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

Modern Communications

David Goodwin University of Bedfordshire

3

TCP/IP concepts

Hierarchical | addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

TCP/IP CONCEPTS

Perspective

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Labe Switching (MPLS)

- Single switched and wireless networks
 - Operate at Layers 1 and 2 (physical and data link)
 - Standards come almost entirely from OSI
- Internets
 - Operate at layers 3 and 4 (internet and transport)
 - Standards come predominantly from the Internet Engineering Task Force (IETF)
 - Called TCP/IP standards
 - Publications are requests for comments (RFCs)

Major TCP/IP Standards

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Multiprotocol Labe Switching (MPLS)

	5 Application	User Applications		Super	visory Appli	cations	
		НТТР	SMTP	Many Others	DNS	Dynamic Routing Protocols	Many Others
(ТСР					
	4 Transport		Т	СР		UD	Р
	4 Transport 3 Internet		T IP	СР		UD ICMP	P ARP
	3 Internet		IP			ICMP	
			IP	CP		ICMP	

• TCP/IP has core internet and transport standards: IP, TCP, and UDP.

Major TCP/IP Standards

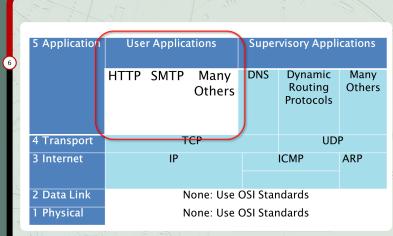
Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses

Router operation


IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Labe Switching (MPLS)

• TCP/IP also has many application standards.

5-

Major TCP/IP Standards

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Multiprotocol Label Switching (MPLS)

2							
	5 Application	Use	r Applica	tions	Supe	rvisory Appli	cations
)							
1		HTTP	SMTP	Many	DNS	Dynamic	Many
				Others		Routing	Others
						Protocols	
				. (
	4 Transport		тс	_P		UDF	,
	3 Internet		IP			ICMP	ARP
11/2	2 Data Link	None: Use OSI Standards					
	1 Physical		None: Use OSI Standards				

• TCP/IP also has many supervisory standards at the internet, transport, and application layers.

IP, TCP, and UDP

3 (Internet)

Modern Communications

David Goodwin University of Bedfordshire

8

IP

91

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

1 1. 4.	Protocol	Layer	Connection- Oriented/ Connectionless	Reliable/ Unreliable	Lightweight/ Heavyweight
	ТСР	4 (Transport)	Connection- oriented	Reliable	Heavyweight
	UDP	4 (Transport)	Connectionless	Unreliable	Lightweight

Connectionless

Unreliable

Lightweight

Modern Communications

David Goodwin University of Bedfordshire

9

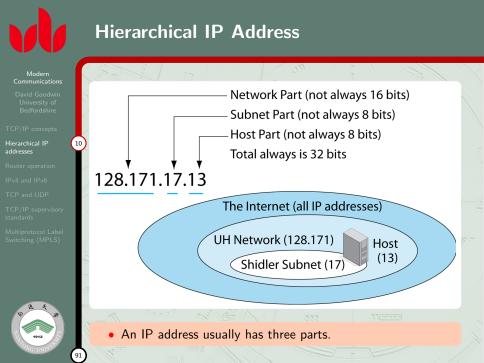
TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP


TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

HIERARCHICAL IP ADDRESSES

Hierarchical IP Address

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IP addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

- The network part is given to a firm, ISP, or other entity by a registered number provider.
 - The firm divides its address space into subnets.
 - On each subnet, the host part indicates a particular host.

Hierarchical IP Address

Modern Communications

David Goodwin University of Bedfordshire

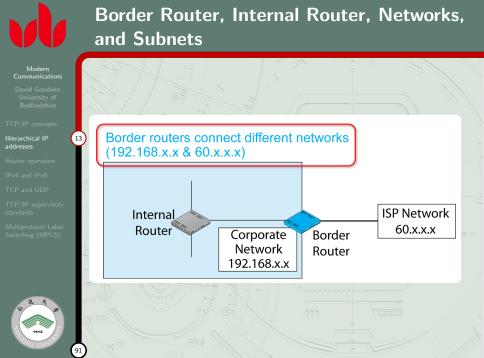
TCP/IP concepts

12

Hierarchical II addresses

Router operation

IPv4 and IPv6


TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

 In an IP address, how long are the network, subnet, and host parts?

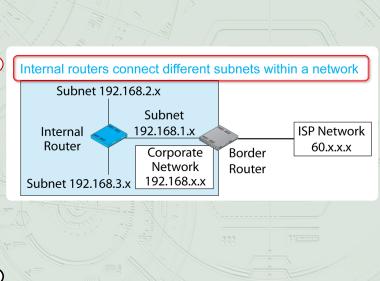
Border Router, Internal Router, Networks, and Subnets

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IP addresses

Router operation


IPv4 and IPv6

TCP and UDF

TCP/IP supervisor standards

Multiprotocol Labe Switching (MPLS)

IP Network and Subnet Masks

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical II addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

The Problem

- There is no way to tell by looking at an IP address the sizes of the network, subnet, and host parts individually—only that their total is 32 bits.
- The solution: masks.

IP Network and Subnet Masks

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IP addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

Masks

- In spray painting, you often use a mask.
- The mask allows part of the paint through but stops the rest from going through.
- Network and subnet masks do something similar.

IP Network and Subnet Masks

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IP addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

The solution: masks

- A mask is a series of initial ones followed by series of final zeros, for a total of 32 bits.
- Example 1: Sixteen 1s followed by Sixteen 0s
 - 11111111 1111111 00000000 00000000
 - Eight 1s is 255 in dotted decimal notation.
 - Eight 0s is 0 in dotted decimal notation.
 - In dotted decimal notation, 255.255.0.0.
 - In prefix notation, /16.

IP Network and Subnet Masks

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

18

Hierarchical IP addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

• The solution: masks

- A mask is a series of initial ones followed by series of final zeros, for a total of 32 bits.
- Example 2: Twenty-four 1s followed by eight 0s
 - 11111111 1111111 11111111 00000000
 - Eight 1s is 255 in dotted decimal notation.
 - Eight 0s is 0 in dotted decimal notation.
 - In dotted decimal notation, 255.255.255.0.
 - In prefix notation, /24.

IP Network and Subnet Masks

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

19

Hierarchical II addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

• The solution: masks

- Your turn.
- Draw the 32 bits of the mask /14. Do not do it in dotted decimal notation. Write the bits in groups of eight. Here's a start:
- 11111111 11

IP Network and Subnet Masks

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IP addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Multiprotocol Labe Switching (MPLS)

• Masks are applied to 32-bit	IP addresses.
-------------------------------	---------------

IP Address bit	1	0	1	0
Mask bit	1	1	0	0
Result bit	1	0	0	0

If the mask bit = 0, the result is always 0.

If the mask bit = 1, the result is always the IP address bit in that position.

IP Network and Subnet Masks

Modern Communications

David Goodwin University of Bedfordshire

21

91

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Labe Switching (MPLS)

Network Mask	Dotted D	ecimal N	otation	
Destination IP Address	128	171	17	13
Network Mask	255	255	0	0
Bits in network part, followed by zeros	128	171	0	0

IP Network and Subnet Masks

Modern Communications

David Goodwin University of Bedfordshire

22

91

TCP/IP concepts

Hierarchical II addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Labe Switching (MPLS)

1	A Marken Contraction	N De V

	Subnet Mask	Dotted D	ecimal N	otation	
	Destination IP Address	128	171	17	13
	Subnet Mask	255	255	255	0
- All	Bits in network part, followed by zeros	128	171	17	0

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical II addresses

Router operation

ID. A and ID. 6

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

ROUTER OPERATION

Router Operation

Modern Communications

David Goodwin University of Bedfordshire

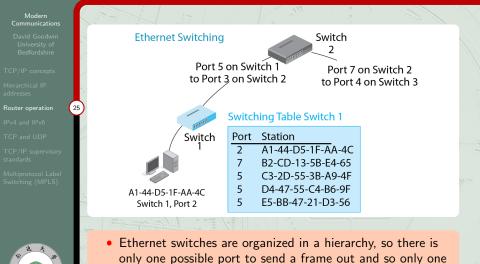
TCP/IP concepts

Hierarchical IP addresses

Router operation

IDv/ and IDv6

TCP and UDP


TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

- We have talked about routers since Lecture 1.
- Now we will finally see what they do.
- We will see what happens after a packet addressed to a particular IP address arrives.
 - But we will first recap how Ethernet switches handle arriving frames.

Ethernet Switching versus IP Routing

row per address.

Ethernet Switching versus IP Routing

Modern Communications

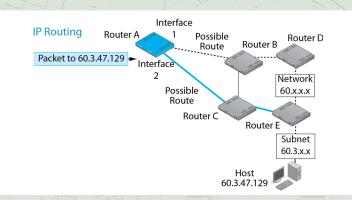
David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical II addresses

Router operation

26


IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Multiprotocol Labe Switching (MPLS)

• Routers are arranged in meshes with multiple alternative routes between hosts.

• So a router may send a packet out more than one interface (port) and still get the packet to its destination host.

Ethernet Switching versus IP Routing

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Multiprotocol Labe Switching (MPLS)

oute	IP Address Range			
1	603 x x	1	R	
2		1	B	
3	60.3.47.x	2	С	
4	10.5.3.x	4	Q	
5	128.171.17.	x 3	Local	
6	10.4.3.x	2	С	
	1 2 3 4 5	oute Range 1 60.3.x.x 2 128.171.x.x 3 60.3.47.x 4 10.5.3.x 5 128.171.17:	oute Range Interface 1 60.3.x.x 1 2 128.171.x.x 1 3 60.3.47.x 2 4 10.5.3.x 4 5 128.171.17.x 3	oute Range Interface Route 1 60.3.x.x 1 B 2 128.171.x.x 1 B 3 60.3.47.x 2 C 4 10.5.3.x 4 Q 5 128.171.17.x 3 Local

• So in routing tables, multiple rows may give conflicting information about what to do with a packet.

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

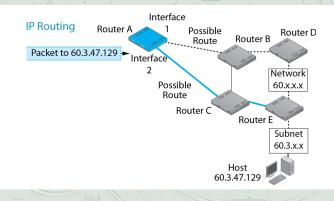
TCP/IP concepts

Hierarchical IF addresses

Router operation

28

IPv4 and IPv6


TCP and UDF

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

Routing

• Processing an individual packet and passing it on its way is called routing.

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

29

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Labe Switching (MPLS)

The Routing Table

• Each router has a routing table that it uses to make routing decisions.

Routing Table Rows

 Each row represents a route for a range of IP addresses—often packets going to the same network or subnet.

F	loute	IP Address Range	ا Interface
	1	60.3.x.x	1
	2	128.171.x.x	1
	3	60.3.47.x	2
	4	10.5.3.x	4
	5	128.171.17.	x 3
	6	10.4.3.x	2

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

30

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

- Ethernet switching table rows are rules for handling individual Ethernet MAC addresses.
- Router routing table rows are rules for handling ranges of IP addresses.

Routing Table Columns

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I<mark>F</mark> addresses

Router operation

31

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Multiprotocol Labe Switching (MPLS)

1		
	Column	Meaning
	Row Number	Designates the row in the routing table
)	Destination	Range of IP addresses governed by the row
	Mask	Mask for the row
	Metric	Quality of the route listed in this row
11	Interface	The interface (port) to use to send the packet out
1	Next–Hop Router	The device (router or destination host) on the interface subnet to receive the packet

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IP addresses

Router operation

32

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Labe Switching (MPLS)

• A Routing Decision

- Whenever a packet arrives, the router looks at its IP address, then...
- Step 1: Finds All Row Matches
- Step 2: Finds the Best-Match Row
- Step 3: Sends the Packet Back out According to Directions in the Best-Match Row

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IP addresses

Router operation

33

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

• Step 1: Finding All Row Matches

- The router looks at the destination IP address in an arriving packet.
- It matches this IP address against each row.
 - It begins with the first row.
 - It looks at every subsequent row.
 - It stops only after it looks at the last row.

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

34

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Multiprotocol Labe Switching (MPLS)

- Step 1: Finding All Row Matches
 - Each row is a rule for routing packets within a range of IP addresses. The IP address range is indicated by a destination and a mask.

Row	Destination Network or Subnet	Mask
1	128.171.0.0	/16
2	172.30.33.0	/24
3	60.168.6.0	/24

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

35

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

- Step 1: Finding All Row Matches
 - Each row is a rule for routing packets within a range of IP addresses.
 - The router has the IP address of an arriving packet.
 - It applies the mask in a row to the arriving IP address.
 - If the result is equal to the value in the destination column, then the IP address of the packet is in the row's range. The row is a match.

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

36

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

- Example 1: A Destination IP Address that Is NOT in the Range of the Row
 - Dest. IP Address of Packet 60. 43. 7. 8
 - Apply the (Network) Mask 255.255. 0. 0
 - Result of Masking 60. 43. 0. 0
 - Destination Column Value 128.171. 0. 0
 - Does Destination Match the Masking Result? No
 - Conclusion: Not a Match

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

- Example 2: A Destination IP Address that IS in the Range of the Row
 - Dest. IP Address of Packet 128.171. 17. 13
 - Apply the (Network) Mask 255.255. 0. 0
 - Result of Masking 128.171. 0. 0
 - Destination Column Value 128.171. 0. 0
 - Does Destination Match the Masking Result? Yes
 - Conclusion: Is a Match

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

38

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

Step 1: Finding All Row Matches

- The router does this to ALL rows because there may be multiple matches.
- Question 1: If there are 127,976 rows and the only rows that match are the second and seventh rows, what row will the router examine first?
- Question 2: If there are 127,976 rows and the only rows that match are the second and seventh rows, how many rows will the router have to check to see if they match?

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

39

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

• A Routing Decision

- Whenever a packet arrives, the router looks at its IP address, then...
- Step 1: Finds All Row Matches
- Step 2: Finds the Best-Match Row
- Step 3: Sends the Packet Back out According to Directions in the Best-Match Row

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

40

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Multiprotocol Label Switching (MPLS)

• To find the best-match row, the router uses the mask column and perhaps the metric column.

Row	Mask	Metric (Cost)
1	/16	47
2	/24	0
3	/24	12

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IP addresses

Router operation

41

IPv/Land IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

Step 2: Find the Best-Match Row

- The router examines the matching rows it found in Step 1 to find the best-match row.
- Basic Rule: it selects the row with the longest match (Initial 1s in the row mask).
 - Row 99 matches, mask is /16 (255.255.0.0)
 - Row 78 matches, mask is /24 (255.255.255.0)
 - Select Row 78 as the best-match row.

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IP addresses

Router operation

IPv4 and IPvo

TCP and UDP

TCP/IP supervisory standards

- Step 2: Find the Best-Match Row
 - Basic Rule: it selects the row with the longest match (Initial 1s in the row mask).
 - Tie Breaker: if there is a tie for longest match, select among the tie rows based on metric.
 - There is a tie for longest length of match.
 - Row 668 has match length /16, cost metric = 20.
 - Row 790 has match length /16, cost metric = 16.
 - Router selects 790, which has the best cost.

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IP addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

Step 2: Find the Best-Match Row

- Basic Rule: it selects the row with the longest match (Initial 1s in the row mask).
- Tie Breaker: if there is a tie on longest match, select among the tie rows based on metric.
 - There is a tie for longest length of match.
 - Row 668 has match /16, speed metric = 20.
 - Row 790 has a match /16, speed metric = 16.
 - Router selects 668, which has the best speed.

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IP addresses

Router operation

44

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

- Step 2: Find the Best-Match Row
 - The following rows are matches.
 - Row / Mask / Metric
 - 220 /24 / speed metric = 40
 - 345 /18 / speed metric = 50
 - 682 /8 /speed metric = 40
 - Question: What is the best-match row? Why?

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

45

IPv/Land IPv6

TCP and UDP

TCP/IP supervisory standards

- Step 2: Find the Best-Match Row
 - The following rows match.
 - 107 / 12 / speed metric = 30
 - 220 / 14 / speed metric = 100
 - 345 / 18 / speed metric = 50
 - 682 / 18 / speed metric = 40
 - Question: What is the best-match row? Why?

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IP addresses

Router operation

46

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

• A Routing Decision

- Whenever a packet arrives, the router looks at its IP address, then...
- Step 1: Finds All Row Matches
- Step 2: Finds the Best-Match Row
- Step 3: Sends the Packet Back out According to Directions in the Best-Match Row

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

IPv/Land IPv6

TCP and UDF

TCP/IP supervisor standards

Multiprotocol Labe Switching (MPLS)

- Step 3: Send the Packet Back out
 - Send the packet out the router interface (port) designated in the best-match row.
 - Send the packet to the router in the next-hop router column.

Router Port = Interface

Row	Interface	Next-Hop Router
1	2	G
2	1	Local
3	2	Н
		333

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

48

ID. A and ID. 6

TCP and UDP

TCP/IP supervisor standards

Multiprotocol Labe Switching (MPLS)

• Step 3: Send the Packet Back out

- If the address says Local, the destination host is out that interface.
 - Sends the packet to the destination IP address in a frame.

Row	Interface	Next-Hop Router
1	2	G
2	1	Local
3	2	Н
	La Martin	333 11100000

The Routing Process

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

49

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

• A Routing Decision

- Whenever a packet arrives, the router looks at its IP address, then...
- Step 1: Finds All Row Matches
- Step 2: Finds the Best-Match Row
- Step 3: Sends the Packet Back out According to Directions in the Best-Match Row

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IP addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

• The Problem

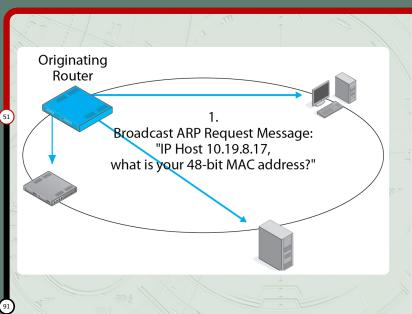
- The router wants to send the packet to a next-hop router or to the destination host.
- The router knows the destination IP address of the NHR or destination host.
- But it must send the packet in a frame suitable for that subnet.
- The router does not know the destination device's data link layer address.
- It must learn it using the address resolution protocol (ARP).

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical II addresses


Router operation

IPv4 and IPv6

TCP and UDP

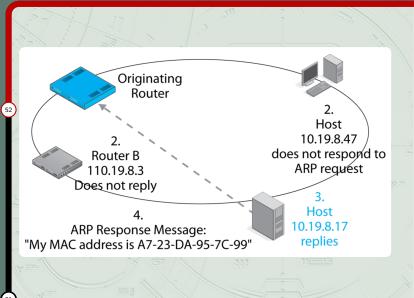
TCP/IP supervisor standards

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses


Router operation

IPv4 and IPv6

TCP and UDF

TCP/IP superviso standards

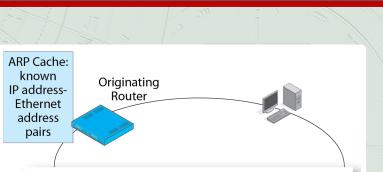
Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical II addresses

Router operation


IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Multiprotocol Labe Switching (MPLS)

5. Originating router replaces IP-Ethernet address pair in ARP cache. Uses this address to send future frames to Host 10.19.8.17 without using ARP.

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

IPv4 and IPv6

IPv4 and IPv6 Packets

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Bit 0	IP Version 4 Packet			et Bit	3′
Version (4 bits) Value is 4 (0100)	Header Length (4 bits)	Diff-Serv (8 bits)	Total Length (16 bits) Length in octets		
Identification (16 bits) Unique value in each original IP packet		Flags (3 bits)	Fragment Offset (13 bit: Octets from start of original IP fragment's data field	s)	
Time to Live (8 bits)Protocol (8 bits) 1=ICMP, 6=TCP, 17=UDP		Header Checksum , (16 bits)			

- IPv4 is the dominant version of IP today. The version number in its header is 4 (0100).
- The header length and total length field tell the size of the packet.
- The Diff-Serv field can be used for quality of service labeling.

IPv4 and IPv6 Packets

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical II addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Multiprotocol Labe Switching (MPLS)

Bit 0 IP Versi			4 Packe	et Bit 3
Version (4 bits) Value is 4 (0100)	Header Diff-Serv Length (8 bits) (4 bits)		Total Length (16 bits) Length in octets	
Identification (16 bits) Unique value in each original IP packet		Flags (3 bits)	Fragment Offset (13 bits) Octets from start of original IP fragment's data field	
Time to Live Protocol (8 bits) (8 bits) 1=ICMP, 6=TCP, 17=UDP				

• The second row is used for reassembling fragmented IP packets, but IP fragmentation is quite rare, so we will not look at these fields.

IPv4 and IPv6 Packets

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDF

TCP/IP supervisor standards

Multiprotocol Labe Switching (MPLS)

Bit 0		IP Version	4 Packe	et 🛛	Bit 31
Version (4 bits) Value is 4 (0100)	Header Length (4 bits)	Diff-Serv (8 bits)	Total Length (16 bits) Length in octets		
Unique	Identification (16 bits) Unique value in each original IP packet		Flags (3 bits)	Fragment Offset (13 Octets from start of original IP fragment' data field	
Time to (8 bits)					

• The sender sets the time-to-live value (usually 64 to 128). Each router along the way decreases the value by one. A router decreasing the value to zero discards the packet. It may send an ICMP error message.

IPv4 and IPv6 Packets

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Bit 0	IP Version 4 Packet Bit				
Version (4 bits) Value is 4 (0100)	Header Length (4 bits)	Diff-Serv (8 bits)	Total Length (16 bits) Length in octets		
Identification (16 bits) Unique value in each original IP packet		Flags (3 bits)	Fragment Offset (13 bits) Octets from start of original IP fragment's		
				uata nela	
Time to Live Protocol (8 bits) (8 bits) 1=ICMP, 6=TCP, 17=UDP		Header Checksum P, (16 bits)			

- The protocol field describes the message in the data field (1=ICMP, 6=TCP, 17=UDP, etc).
- The header checksum is used to find errors in the header. If a packet has an error, the router drops it.
- There is no retransmission at the internet layer, so the internet layer is still unreliable.

IPv4 and IPv6 Packets

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical II addresses

Router operation

IPv4 and IPv6

TCP and UDF

TCP/IP supervisor standards

^{Bit 0} Source IP	IP Version 4 Packet Address (32 bits)	Bit		
Destination IP Address (32 bits)				
Options (if a	ny)	Padding		
Data Field				

- The source and destination IP addresses are 32 bits long, as you would expect.
- Options can be added, but these are rare.

IPv4 and IPv6 Packets

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Bit 0	IP Version 6 Packet Bit 3					
Version (4 bits) Value is 6 (0110)	Diff-Serv (8 bits)	Flow Label (20 bits) Marks a packet as part of a specific flow				
Payload Length (16 bits) Next Header (8 bits) Name of next header (8 bits)						
Source IP Address (128 bits) Destination IP Address (128 bits)						
Next Header or Payload (Data Field)						

- IP Version 6 is the emerging version of the Internet protocol.
- Has 128-bit addresses for an almost unlimited number of IP addresses.
- Needed because of rapid growth in Asia. Also needed because of the exploding number of mobile devices.

IPv4 and IPv6 Packets

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

- IP Version 4
 - 32-bit addresses
 - 232 possible addresses
 - 4,294,967,296 (about 4 billion)
 - Running out of these
- IP Version 6
 - 128-bit addresses
 - 2128 possible addresses
 - 340,282,366,920,938,000,000,000,000,000,000,000
 addresses

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Multiprotocol Label Switching (MPLS)

TCP AND UDP

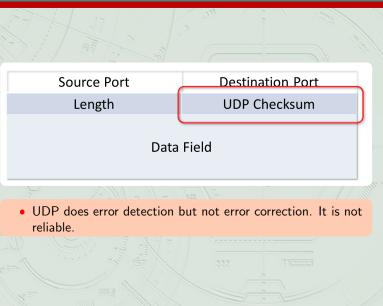
UDP

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses


Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP superviso standards

UDP

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

- Length field gives the length of the data field in octets.
 - The length field is 16 bits long.
 - So the maximum size of the data field is 65,536 octets.
 - UDP does not do fragmentation like TCP.
 - So the entire application message must fit in a single UDP datagram (message).

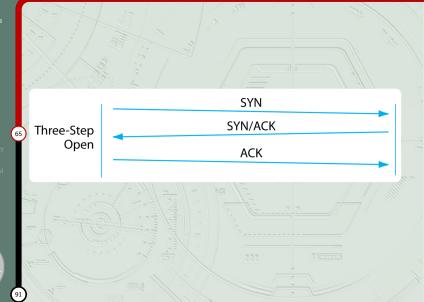
TCP Session Openings and Closings

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical II addresses


Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

TCP Session Openings and Closings

Modern Communications

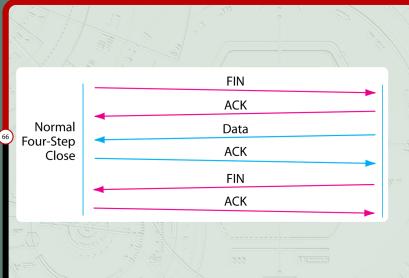
David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6


TCP and UDP

TCP/IP superviso standards

Multiprotocol Label Switching (MPLS)

91

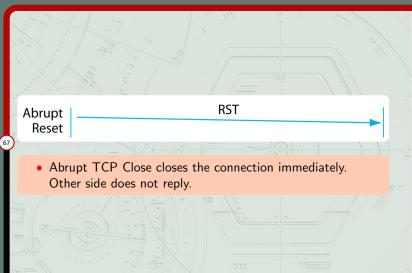
TCP Session Openings and Closings

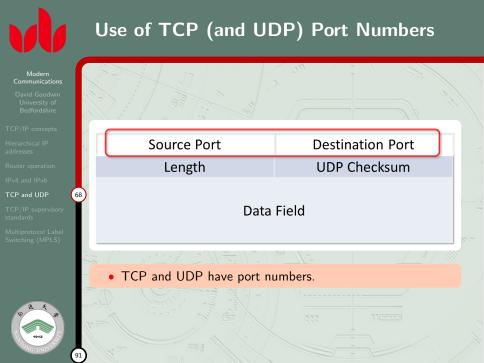
Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical II addresses


Router operation


IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Use of TCP (and UDP) Port Numbers

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical IF addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Multiprotocol Label Switching (MPLS)

Sockets

- IP address, colon, port number
- 128.171.17.13:80
- Designates a particular application or connection (port number) on a particular host (IP address).

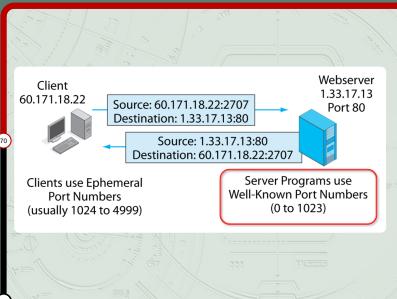
Use of TCP (and UDP) Port Numbers

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses


Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP superviso standards

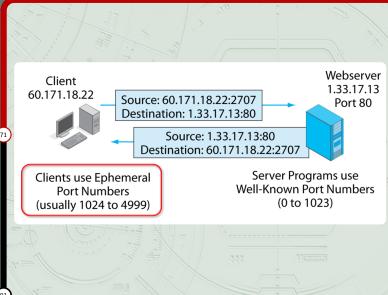
Use of TCP (and UDP) Port Numbers

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses


Router operatior

IPv4 and IPv6

TCP and UDP

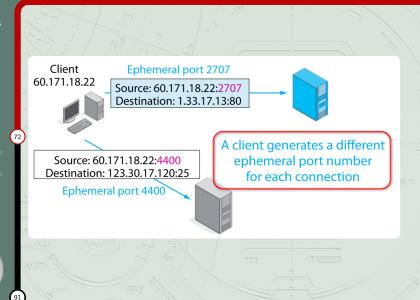
TCP/IP supervisor standards

Use of TCP (and UDP) Port Numbers

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts


Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervise standards

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

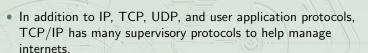
TCP/IP SUPERVISORY STANDARDS

TCP/IP Supervisory Protocols

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

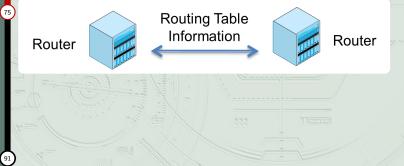

Hierarchical IF addresses

Router operation

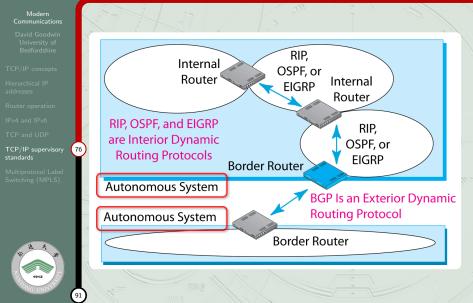
IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards


TCP/IP Supervisory Protocols

Modern Communications


- David Goodwin University of Bedfordshire
- TCP/IP concepts
- Hierarchical IF addresses
- Router operation
- IPv4 and IPv6
- TCP and UDF
- TCP/IP supervisory standards
- Multiprotocol Label Switching (MPLS)

• Dynamic routing protocols allow routers to share routing table information. Dynamic routing protocols are the ways routers normally get the information in their routing tables.

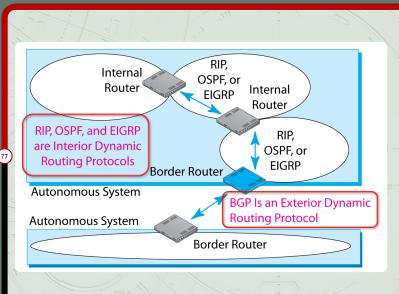
Dynamic Routing Protocols

Dynamic Routing Protocols

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical | addresses


Router operation

IPv4 and IPv6

TCP and UD

TCP/IP supervisory standards

Dynamic Routing Protocols

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards 78

Dynamic Routing Protocol	Interior or Exterior Routing Protocol?	Remarks
RIP (Routing Information Protocol)	Interior	Only for small autonomous systems with low needs for security
OSPF (Open Shortest Path First)	Interior	For large autonomous systems that only use TCP/IP
ElGRP (Enhanced Interior Gateway Routing Protocol)	Interior	Proprietary Cisco Systems protocol. Not limited to TCP/IP routing. Also handles IPX/SPX, SNA, and so forth.

Dynamic Routing Protocols

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical II addresses

Router operation

IPv4 and IPv6

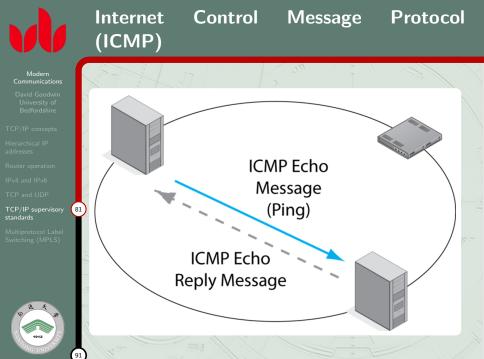
TCP and UDF

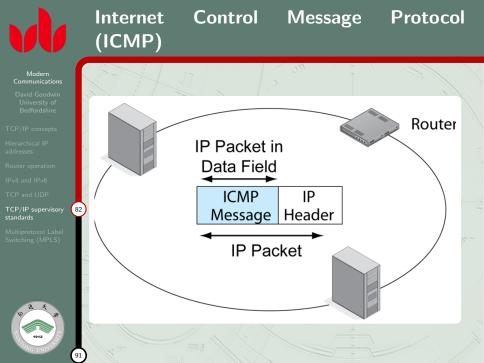
TCP/IP supervisory standards

79

Dynamic Routing Protocol	Interior or Exterior Routing Protocol?	Remarks
BGP (Border Gateway Protocol)	Exterior	Organization cannot choose what exterior routing protocol it will use

TCP/IP Supervisory Protocols


Modern Communications


- David Goodwin University of Bedfordshire
- TCP/IP concepts
- Hierarchical IF addresses
- Router operation
- IPv4 and IPv6
- TCP and UDP
- TCP/IP supervisory standards
- Multiprotocol Label Switching (MPLS)

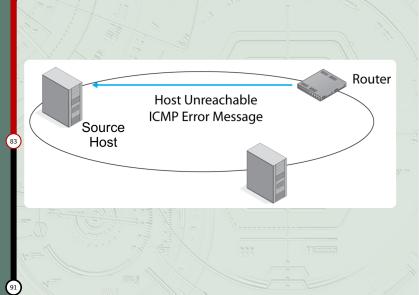
Internet Control Message Protocol (ICMP)

- A general protocol for sending control information between routers and hosts
 - Error messages
 - Pings (Echo messages)
 - And so on
 - Supplements IP packet forwarding with supervisory information
 - IP is RFC 791; ICMP is RFC 792

Internet Control Message Protocol (ICMP)

David Goodwin University of Bedfordshire

TCP/IP concepts


Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDF

TCP/IP supervisory standards

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisory standards

Multiprotocol Label Switching (MPLS)

MULTIPROTOCOL LABEL SWITCHING (MPLS)

Multiprotocol Label Switching

Modern Communications

- David Goodwin University of Bedfordshire
- TCP/IP concepts
- Hierarchical IF addresses
- Router operation
- IPv4 and IPv6
- TCP and UDP
- TCP/IP supervisory standards
- Multiprotocol Label Switching (MPLS)

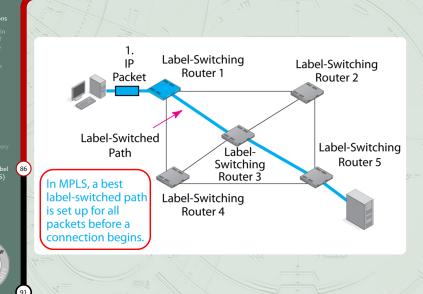
85

- The issue
 - Routers traditionally look at packets in isolation, going through the three steps we saw earlier.
 - Even if the next packet is going to the same destination IP address, the router will go through all three steps.
 This is expensive.
 - MPLS addresses this issue.
 - The best route for a range of IP addresses is identified before sending data.

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts


Hierarchical addresses

Router operation

IPv4 and IPv6

TCP and UDF

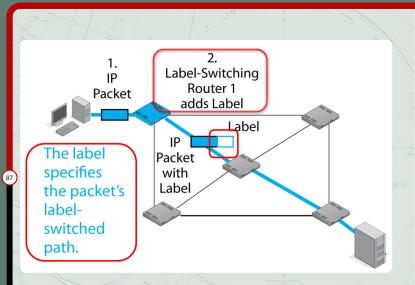
TCP/IP supervisor standards

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical addresses


Router operation

IPv4 and IPv6

TCP and UDF

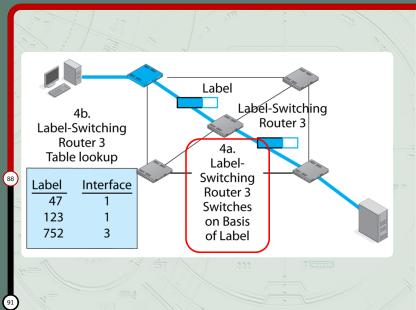
TCP/IP supervise standards

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical | addresses


Router operation

IPv4 and IPv6

TCP and UDP

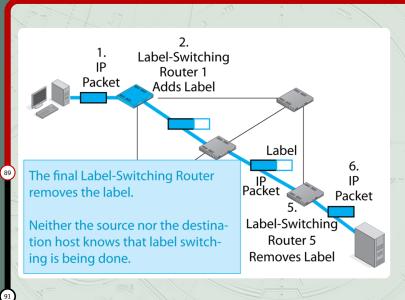
TCP/IP supervise standards

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical I addresses


Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Modern Communications

David Goodwin University of Bedfordshire

TCP/IP concepts

Hierarchical addresses

Router operation

IPv4 and IPv6

TCP and UDP

TCP/IP supervisor standards

Multiprotocol Label Switching (MPLS) 90

MPLS reduces forwarding costs and permits traffic engineering, including quality of service and traffic load balancing.

Multiprotocol Label Switching (MPLS)

Modern Communications

- David Goodwin University of Bedfordshire
- TCP/IP concepts
- Hierarchical IF addresses
- Router operation
- IPv4 and IPv6
- TCP and UDP
- TCP/IP supervisory standards
- Multiprotocol Label Switching (MPLS)

- Implementing MPLS is difficult.
- Many individual ISPs and corporations to it.
- Some individual ISPs have "peering" arrangements with other individual ISPs to do it.
- There is no general way to move MPLS out to all ISPs and organizations.