Probes: 4mm HXY probe H13694; 4mm HX H13892

Rotor: HR with zirconia cap

Samples: Pb(NO₃)₂, KBr and Sm₂Sn₂O₇

Variable temperature calibration

I started with $Pb(NO_3)_2$ on 4mm HXY probe H13694 and I measured the change of ^{207}Pb chemical shift with temperature. A very linear behaviour has been obtained however the slope of 1.05ppm/K is quite different from the slopes reported in the literature (between 0.7 and 0.775 ppm/K).

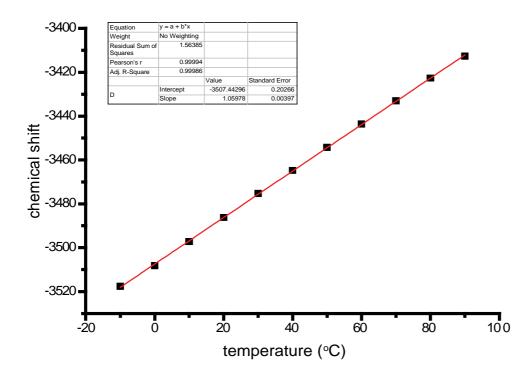


Figure 1 Chemical shift change of 207Pb Pb(NO₃)₂ with temperature

A calibration that brings the slope to a value between 0.7 and 0.775 means a temperature correction as large as 30° C (instead of 90° C temperature indicated be Bruker the real temperature is 120° C). I was not ready to accept such a big difference between the shown temperature and the real temperature and for this reason on the 4mm HXY probe H13694 I measured the changes of chemical shift with temperature in KBr and $Sm_2Sn_2O_7$ and on the 4mm HX H13892 probe I measured Pb(NO₃)₂ and $Sm_2Sn_2O_7$. The data obtained are summarized in the figure 2 and 3 bellow. I also used a regular multimeter to check the temperature on the two 4mm probes and the results are shown in the table below.

4mm HXY probe H13694		4mm HX H13892		
Temperature indicated by Bruker	Temperature measured with a multimeter	Temperature indicated by Bruker	Temperature measured with a multimeter	
10.3	6.8	10.4	6	
20.7	20.2	20.3	19.3	
50	57	49.8	55.2	
79.6	90	79.5	91	

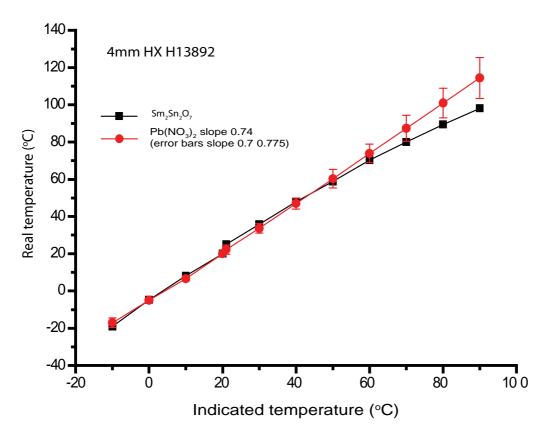
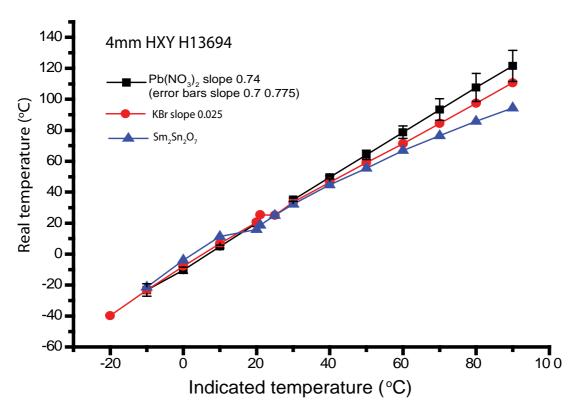
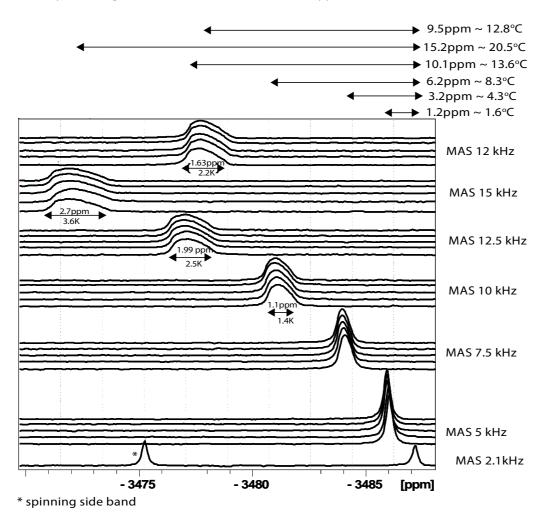


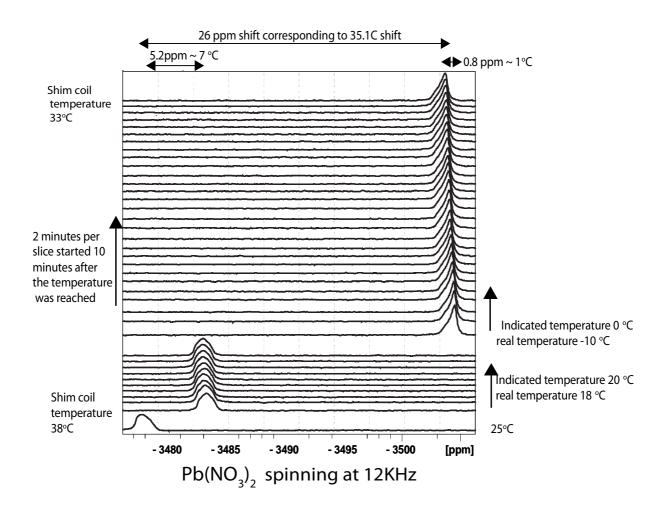
Figure 2. Temperature calibration probe 4mm HX H13892




Figure 3. Temperature calibration probe 4mm HXY H13694

Temperature change during spinning

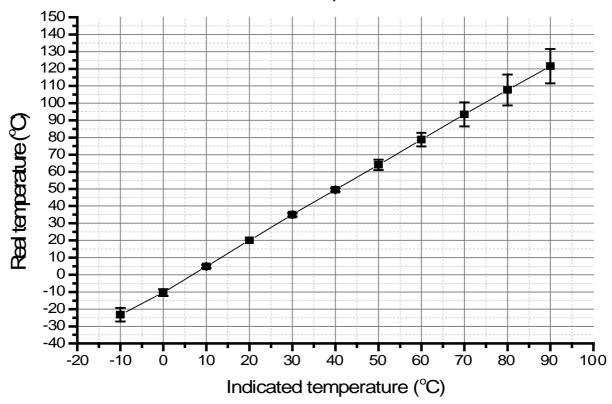
MAS (kHz)	²⁰⁷ Pb(NO ₃) ₂ shift	Change in	Line width	Temperature
	(ppm)	temperature* (°C)		gradient* (°C)
2.1			Less than	
			0.7ppm	
5	1.2	1.6	Less than	
			0.7ppm	
7.5	3.2	4.3	Less than	
			0.7ppm	
10	6.2	8.37	1.1	1.4
12.5	10.1	13.64	1.99	2.5
15	15.2	20.54	2.7	3.6
12	9.5	12.83	1.63	2.2


^{*} Change in temperature is calculated as the change in chemical shift (ppm) compared with position at 2.1 kHz divided by 0.74

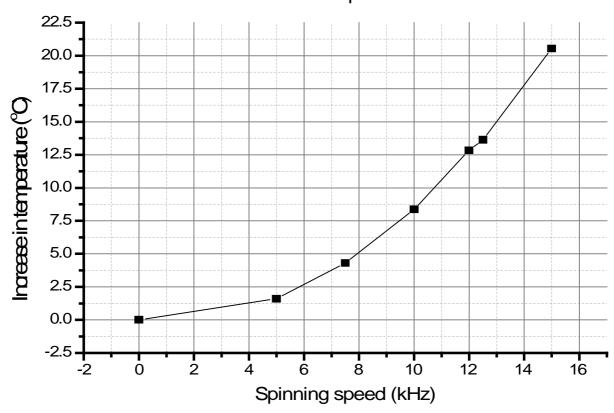
^{**}Temperature gradient is calculated as linewidth(ppm)/0.74

Temperature stability

The metal holding the probe and the shim coils changes temperature gradually and therefore there will be a temperature drift that can last several hours. I started at 25° C with the shim temperature 38° C. I dropped the temperature to 0° C (indicated by Bruker) after 1 hour the shim coil temperature dropped to 33° C and the temperature of the sample changed by 1° C.


Conclusions

The users will receive two graphs shown below, and they will be informed about the long time required by the shim-stack temperature to reach thermal equilibrium with the VT gas flow. The users who perform VT measurements below -10° C will be asked to check the temperature of the shim-stack with 'coiltemp' command and stop their experiments if the shim coil temperature goes below


-5°C.

Dinu luga 15/09/2011

4mm HXY probe H13694

