Solid State NMR Characterisation of Zinc and Bismuth in Borosilicate Glasses

The Structure of Automotive Obscuration Enamels

Joanna Higgs

Contents

- Background Automotive Enamels
 - Structure of Glasses
 - -NMR
- Model Glasses Aim
 - NMR results
 - Further Work

Background

Automotive Obscuration Enamels

Functions

- shield glue from UV light
- hide silver connections
- control of crystallisation to aid manufacturing
- aesthetic design

New Product

- must pass strict industry acid tests
- low firing temp. < 600 C
- control of thermal expansion

Background

Glass Structure

- Amorphous solid without long range periodic atomic arrangement.
- Structural units
 - depend on the composition
 - affect the physical properties.
- Formed of oxides
 - network formers e.g. SiO_2 and B_2O_3
 - network modifiers e.g. Na₂O
 - Intermediates

Borosilicate Glasses

- Zinc and bismuth added for physical properties
 - NMR literature: alkali borosilicates without these additions
- Effects of zinc and bismuth on the structure
- Commercial samples: no compositional trends
- Zinc and bismuth substitute boron in the compositions
 - do they also substitute it in the glass network?

Solid State NMR

- NMR: local structure
- Magic Angle Spinning: 54.74 \rightarrow narrow spectra

- Using 4 \rightarrow 30 kHz

- NMR Isotropic Chemical Shift δ
- NMR on Quadrupolar nuclei: $I > 1/_2$
 - Looking at ¹¹B and ²³Na: spin ³/₂
 - Also 29 Si: spin $^{1}/_{2}$

Borosilicate Glasses

Compositions:

- Base Glass
 63% Si, 16% Na, 21% B
- B + Zn or Bi = 21 mol%
- Si + Na ~ constant for all samples
- Some contain more Zn and Bi than commercial glasses

NMR Experiments:

Basic: single pulse ¹¹B, ²³Na, ²⁹Si

To improve resolution:

- ¹¹B Multiple Quantum Magic Angle Spinning (MQMAS)
- ¹¹B Double Rotation (DOR)

Zinc

Bismuth

¹¹B – MQMAS

Multiple Quantum Magic Angle Spinning

¹¹B – DOR

B₀

- More quantitive and sensitive than MQMAS
- Difficult to spin
- Eliminates line broadening

* denote spinning sidebands

Increase in electron density \rightarrow network becomes less connected ¹²

Nuclei less shielded \rightarrow less bridging oxygens \rightarrow less connected ¹³

Conclusions

- Roles of zinc and bismuth:
 - Bi and Zn not replacing B in the network
 - Network is less connected with higher Bi / Zn content
 - Bi and Zn acting as network modifiers
- Zinc and bismuth not acting identically
- Further work: zinc and bismuth together

Zinc-Bismuth Glasses

15

Acknowledgments

- Industrial Supervisors
 - Peter Bishop, Jon Booth, Hong Zheng
- University of Warwick Supervisors
 - Mark E. Smith, John V. Hanna
- Warwick NMR Group
 - Nathan Barrow, Andy Howes
- Funding from EPSRC

JMCX

Johnson Matthey

Engineering and Physical Sciences Research Council

Thank you for listening