

Physica B 259-261 (1999) 10-11

PHYSICA 🛛

Transport and thermodynamic properties of CeCu_xAg_{1-x}Al₃

D. Werner^{a,*}, E. Bauer^a, J.M. Martin^b, M.R. Lees^b

^aInstitut für Experimentalphysik, Technische Universität Wien, Wiedner Hauptstr. 8, A-1040 Wien, Austria ^bDepartment of Physics, University of Warwick, CV4 7AL, UK

Abstract

Measurements of the specific heat, resistivity, and magnetoresistance of $\text{CeCu}_x \text{Ag}_{1-x} \text{Al}_3$ classify this series of alloys as Kondo lattices with a magnetically ordered ground state. Though isoelectronic substitutions are performed, significant changes of the electronic density of states occur, causing a strong concentration-dependent variation of the antiferromagnetic ordering temperature. \bigcirc 1999 Elsevier Science B.V. All rights reserved.

Keywords: BaAl₄ structure; Kondo lattice; Antiferromagnetic order; Crystal field splitting; CeCu_xAg_{1-x}Al₃

Ce compounds with the BaAl₄ structure or its ordered variants attracted much interest because of superconductivity at ambient condition like in CeCu₂Si₂ [1] or at hydrostatic pressure like in CePd₂Si₂ or CeNi₂Ge₂ [2]. Previous investigations [3,4] on the BaAl₄-type compounds CeCuAl₃ and CeCuGa₃ revealed both Kondo interaction and antiferromagnetic order below $T_{\rm N} = 2.8$ and 1.9 K, respectively, as well as strong crystal field splitting. An isoelectronic Cu/Ag substitution preserves the BaAl₄ structure in a wide concentration range but leads to an increase of the unit cell volume. The resulting negative chemical pressure is expected to stabilize the magnetic order due to a more local state of the cerium ion. In this paper we report about crystallographic, resistivity, magnetoresistance, and specific heat results of $CeCu_xAg_{1-x}Al_3$ which indicate that even isoelectronic substitutions cause large changes of the electronic structure.

A number of alloys of $\text{CeCu}_x\text{Ag}_{1-x}\text{Al}_3$ were prepared by high-frequency melting. X-ray powder diffraction proved phase purity and revealed for both lattice parameters *a* and *c*, a continuous increase with decreasing *x*; the lattice parameter *a* ranges from 4.26 Å (x = 1) to 4.30 Å (x = 0.35), and c from 10.66 Å to 10.87 Å. For x < 0.35, diffractometry suggests a change of the crystal structure.

The electrical resistivity of this series is characterized by minima in $\rho(T)$ and a steep decrease below the respective ordering temperatures. A strong curvature in the paramagnetic state hints at crystal field effects.

Specific heat measurements of this series are presented in Fig. 1. λ -like anomalies trace the transition into the antiferromagnetic ground state. The transition temperatures initially decrease with rising Ag content, but beyond x = 0.5, T_N starts to rise again attaining eventually $T_{\rm N} = 4$ K for x = 0.1. The jump of the heat capacity Δc_{mag} in the vicinity of T_{N} appears to be reduced with respect to an unperturbed crystal field ground state doublet ($\Delta c_{\text{mag}} \approx 12.5 \text{ J/molK}$). We attribute this observation, in part, to the Kondo reduction of the ordered magnetic moments. The relatively broad peak featured for compounds with $x \ge 0.35$ indicates a less sharp phase transition due to short-range order effects or material inhomogeneities. An empirical ansatz, which has been discussed in Ref. [5-7], in the scope of the resonance level model of Schotte and Schotte [8], as well as the mean field theory, allows to calculate $c_{mag}(T)$ as a function of the Kondo temperature $T_{\rm K}$ and the exchange constant J. By fitting $c_{mag}(T)$ of the present alloys, reasonable values for J and $T_{\rm K}$ were obtained, e.g. $T_{\rm K} = 8.0$ K and J =12.8 K for CeCuAl₃. Values of $T_{\rm K}$ thus obtained are indicated in Fig. 3, revealing a slight increase with rising

^{*} Corresponding author. Tel.: + 43-1-58801-5546; fax: + 43-1-5863191; e-mail: werner@xphys.tuwien.ac.at.

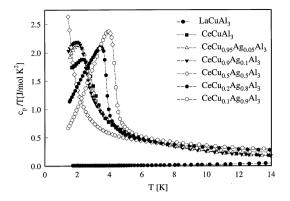


Fig. 1. Temperature-dependent specific heat c_p of various alloys of CeCu_xAg_{1-x}Al₃ plotted as $c_p(T)/T$ versus T.

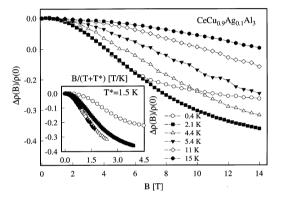


Fig. 2. Magnetoresistance $\Delta \rho / \rho$ of CeCu_{0.9}Ag_{0.1}Al₃ at various temperatures. The inset demonstrates scaling behaviour of $\Delta \rho / \rho$ for the paramagnetic temperature range.

values of *x*. The magnetic entropy observed from a comparison of the data with the appropriate La-based alloys reveals a lifting of the ground state degeneracy into three doublets with the first level roughly 30 K and the uppermost level about 100 K above the ground state doublet, in agreement with previous results [9].

Magnetoresistance measurements were performed in a temperature range down to 300 mK and in fields up to 14 T. Large negative magnetoresistance values were deduced for the whole series. As an example, $\Delta\rho/\rho$ is shown in Fig. 2 for CeCu_{0.9}Ag_{0.1}Al₃. In the paramagnetic temperature range the overall shape of $\Delta\rho/\rho(B)$ is characterized by a typical Kondo-like behaviour. The decrease of $\Delta\rho/\rho$ as the field rises is therefore a consequence of a field-induced suppression of the Kondo effect. Below the respective ordering temperatures, $\Delta\rho/\rho$ behaves different: initially it decreases strongly, but levels off at fields above 6 T. Usually, this behaviour is a typical sign of a magnetically ordered ground state in presence of the

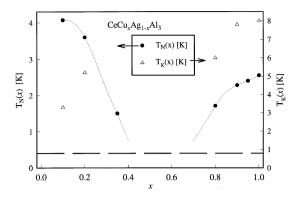


Fig. 3. Concentration dependence of the Néel temperature T_N (circles) and the Kondo temperature T_K (triangles) as derived from specific heat.

Kondo effect. In order to demonstrate that the physical behaviour is dominated by a single energy scale, i.e. $k_{\rm B}T_{\rm K}$, the field ramps were rescaled by a method proposed in Ref. [10]. The result for CeCu_{0.9}Ag_{0.1}Al₃ displayed as an inset in Fig. 2 shows that the curves in the paramagnetic regime coincide, whereas the curves within the ordered state deviate significantly. Fig. 3 shows a phase diagram of CeCu_xAg_{1-x}Al₃ deduced from specific heat and $\Delta \rho / \rho$ measurements. The circles give the Néel temperatures resulting from the specific heat measurements which are limited to 1.5 K. The dotted line serves as a guide for the eyes whereas the dashed line indicates that according to $\Delta \rho / \rho$ measurements all alloys adopt a magnetically ordered state above 0.5 K. The triangles are the respective Kondo temperatures $T_{\rm K}$, derived also from specific heat data.

In conclusion, $CeCu_xAg_{1-x}Al_3$ represent a typical series of magnetically ordered Kondo alloys. The various properties observed match well with predictions of standard models of this subject.

References

- [1] F. Steglich et al., J. Phys. Chem. Solids 50 (1989) 225.
- [2] S.R. Julian et al., J. Magn. Magn. Mater. 177–181 (1998) 265.
- [3] E. Bauer et al., Z. Phys. B 67 (1987) 205.
- [4] J.M. Martin et al., J. Magn. Magn. Mater. 159 (1996) 223.
- [5] C.D. Bredl et al., Z. Phys. B 29 (1978) 327.
- [6] A. Braghta, Ph.D. Thesis, University of Strasbourgh, 1989.
- [7] M.J. Besnus et al., J. Magn. Magn. Mater. 104–107 (1992) 1385.
- [8] K.D. Schotte et al., Phys. Lett. 55 A (1975) 38.
- [9] S.A. Mentik, Thesis, Leiden, 1994.
- [10] P. Schlottmann, Z. Phys. B 51 (1983) 223.