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k-resolved susceptibility function of 2H-TaSe2 from angle-resolved photoemission
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The connection between the Fermi surface and charge-density-wave (CDW) order is revisited in 2H-TaSe2.
Using angle-resolved photoemission spectroscopy, ab initio band-structure calculations, and an accurate tight-
binding model, we develop the empirical k-resolved susceptibility function, which we use to highlight states that
contribute to the susceptibility for a particular q vector. We show that although the Fermi surface is involved in the
peaks in the susceptibility associated with CDW order, it is not through conventional Fermi surface nesting, but
rather through finite energy transitions from states located far from the Fermi level. Comparison with monolayer
TaSe2 illustrates the different mechanisms that are involved in the absence of bilayer splitting.
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I. INTRODUCTION

The question of whether nesting instabilities of the Fermi
surface (FS) can drive charge-density-wave (CDW) formation
in real materials has been the topic of numerous experimental
and theoretical investigations for many years.1–3 In cases of
apparently well-nested FSs, subsequent inspection of the real
part of the generalized susceptibility, which is the relevant
quantity in assessing instabilities in the electronic system, and
its imaginary counterpart (which is not) can rule against FS
nesting being the primary driving force.4 In concert with
instabilities in the electronic system, lattice effects (through
the softening of phonon modes associated with the CDW)
must also be considered on an equal footing.5

The analysis of the electronic susceptibility of a material
is central in determining whether an electronic instability that
may be due to FS nesting is capable of driving some associated
ordering phenomena. Typically, the q landscape of the real and
imaginary parts of the susceptibility is compared, and a peak
that survives in both parts is taken as evidence that FS nesting
may play a role in emergent phenomena that occurs at that
wave vector. However, the susceptibility function represents
an integral over the Brillouin zone (BZ), i.e., over all k states.
Consequently, one of the deficiencies of this approach is that
some of the most important information that is available in the
susceptibility is integrated out, that is to say, which electrons
actually contribute to the instability. In order to illustrate
the importance of the k dependence of the susceptibility, we
introduce it here on a prototypical system, 2H -TaSe2, and
demonstrate, from an experimental perspective, the additional
insight that is available from this kind of analysis.

Of the many CDW materials, the transition metal dichal-
chogenides are among the most well known and well
studied.1,6 Indeed, it is surprising that after the many
experimental7–13 and theoretical4,14–17 investigations, 2H -
TaSe2 still courts controversy as to whether the FS is responsi-
ble for its CDW. Below T0 = 122 K, an incommensurate CDW
transition with a wave vector q = (1 − δ) 2

3�M develops,
with δ ∼ 0.02, which experiences a lock-in to a commen-
surate structure (δ = 0) below 90 K.18 The isoelectronic
and isostructural compound 2H -NbSe2 also hosts a similar

incommensurate CDW at T0 = 33.5 K.18 Experimentally, the
topology of the FS of TaSe2 and NbSe2 are quantitatively
different,10–12 which immediately raises difficulties with the
conventional FS nesting model. In particular, state-of-the-
art band-structure results firmly rule out the FS nesting
model,4 whereas some recent high-resolution angle-resolved
photoemission (ARPES) measurements contradict the theory,
suggesting a primary role for the FS via its experimental
autocorrelation map.13,19

Here, we address this controversy directly through comple-
mentary ARPES measurements and ab initio band-structure
calculations. Through careful band and k-resolved calculations
of the experimental susceptibility, at energies near and far away
from the Fermi level (EF), we show that FS nesting is too weak
to drive CDW order. Instead, peaks in the susceptibility that are
often associated with the CDW originate through finite energy
transitions from bands nested away from EF. We show that
this concept explains both the temperature dependent ARPES
spectral function,13,19 as well as why the material has courted
controversy for so long. Although FS nesting can be ruled
out, the Fermi wave vector kF does play a role, both directly
and (more importantly) indirectly, in determining the peaks in
the susceptibility. We suggest that similar careful inspection of
the k-resolved susceptibility function in other materials will be
capable of discriminating between different models of charge,
spin, or superconducting order.

II. ELECTRONIC STRUCTURE

A. Ab initio calculations

The electronic structure has been calculated for 2H -
TaSe2 using the full-potential linear augmented plane-wave
(FLAPW) ELK code within the local density approximation
(LDA),20 including spin-orbit coupling self-consistently, and
using the experimental structural parameters.21 Relaxation
of the unit cell was not found to significantly affect the
band structure, particularly near EF. The band structure of
TaSe2 is shown in Fig. 1(a), and is in close agreement with
previous electronic structure calculations.4,17 Two Ta d bands,
split by the double TaSe2 layer, cross EF and form the FS
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FIG. 1. (Color online) (a) LDA band structure of 2H -TaSe2

including, and neglecting, spin-orbit coupling (SOC). The TBLDA

model is shown through kz = 0 in gray. (b) The FS of 2H -TaSe2,
including SOC. The left part shows the raw LDA FS, and in the
right EF has been shifted by −50 meV. Symmetry points in brackets
indicate those at kz = 0. The vertical dotted lines are the slices used
in Fig. 4(c).

shown on the left of Fig. 1(b). A slight shift downwards
in EF by ∼50 meV recovers the more familiar FS that has
previously been suggested by experiment.12,13,19 This shifted
FS, shown on the right side of Fig. 1(b), is topologically
similar to experiment, and consists of �- and K-centered hole
“barrel” sheets, from the first band, and M-centered electron
“dogbone” sheets from the second. In the following, we refer
to the topology of this more familiar, shifted FS. Note that the
downwards shift in EF leads to a reduction in the band filling
of these sheets to 1.80 electrons (from 2). As pointed out by
Refs. 4 and 22, relativistic effects are not negligible for the
heavy Ta ion. Through time-reversal symmetry,23 the scalar
relativistic bands are degenerate across the entire top face
(ALHA) of the BZ. However, with the inclusion of relativistic
effects (in the form of spin-orbit coupling) this restriction is
lifted, and the degeneracy is broken. This has important, and
nontrivial, effects on the FS, allowing the barrel and dogbone
FS sheets to be fully disconnected everywhere (except along
AL) in the zone, which ultimately leads to a much more
two-dimensional (2D) dogbone FS (which, in turn, ought to
enhance the propensity for nesting).

B. Tight-binding model

In order to parametrize the experimental E(k) relation, a
simple 2D tight-binding (TB) model is constructed:

Ej (k) = E0,j +
∑

R

t|R|,j cos(k · R), (1)

where R are the hexagonal 2D lattice vectors
a = (

√
3a/2, ± a/2), t|R| are the TB hopping parameters, and

j is the band index of the two bands that form the FS (E0 is an
energy offset).15 In this model, a total of 15 nearest neighbors
were required to satisfactorily describe a constant kz slice
of the LDA band structure. Note that a large number of t|R|
are used in this work in order to accurately describe both the
theoretical and experimental E(k), and we attach no specific
meaning to the individual parameters. Before fitting the TB
model to the experimental data, we first check its suitability by
assessing how well it is able to describe the theoretical LDA
band structure. The results of fitting the TB model to the kz = 0
plane of the LDA band structure (TBLDA), shown in Fig. 1(a),
agree with the LDA result to within 5 meV rms in energy.
These TBLDA parameters are only used here to illustrate the
capability of the 15-term TB model in fully capturing the
band dispersion of TaSe2, and its excellent agreement with
the ab initio result demonstrates the anticipated accuracy of
the model in describing the experimental dispersion relation.
For the remainder of the text, the TBLDA parameters are
discarded. Below, we instead carefully fit the experimental
data to the TB model, yielding TBexp, which we use for all
subsequent analysis. Although the model does not explicitly
include spin-orbit coupling, the nondegeneracy of the
parameters of the two bands allow for its effects to be fully
captured implicitly.

C. Angle-resolved photoemission measurements

Single crystals of 2H -TaSe2 were grown by the chemi-
cal vapor transport technique using iodine as the transport
agent.21,24 Samples were cleaved in ultrahigh vacuum and
oriented with reference to low-energy electron diffraction
patterns. Angle-resolved photoemission measurements were
performed at Beamline I4, MAX-lab, Lund University, Swe-
den at 100 K with a photon energy of 50 eV and total
instrument resolution of 9 meV. At this temperature, TaSe2

is in the incommensurate CDW phase, and experiences almost
no change in its electronic structure compared with the normal
state.9,13 The Fermi level was referenced to a gold foil in
electrical contact with the sample. The experimental dispersion
relation near EF is determined through the 2D curvature of the
constant-energy ARPES intensity map25 I = I (px,py):

C(px,py) =
(
a0 + I 2

x

)
Iyy − 2IxIyIxy + (

a0 + I 2
y

)
Ixx

2
(
a0 + I 2

x + I 2
y

) 3
2

, (2)

where Ix = ∂I/∂px , Ixx = ∂2I/∂p2
x , and Ixy = ∂2I/∂px∂py

are the partial derivatives of I , and a0 is an arbitrary
constant, optimized to maximize the contrast of C(px,py).
Analysis of the extrema of this function has recently been
shown to accurately locate both band dispersions and FS
crossings in ARPES measurements.25 Here, we find it provides
significantly enhanced contrast compared to analysis of the
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first and/or second derivatives by themselves, as well as being
capable of capturing dispersion parallel to either direction.

The TB model has been fitted26 to the detected loci to
provide a parametrized description of the experimental E(k)
for E � EF, which we refer to as TBexp.27 The energy range
of the fit is restricted to −260 to +40 meV in order to avoid
including the flat portions of the bottom of the bands in the
fit; note that these states are still included in the subsequent
analysis. Experimentally, the bottom of the lower Ta d band
is found to be −340 meV, and so most of the band dispersion
is included. In addition to the TB amplitudes t|R|,j and offsets
E0,j , four other adjustable parameters are varied in the fit,
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FIG. 2. (Color online) (a) ARPES intensity map at EF compared
with the FS of the shifted (by −50 meV) LDA calculation (light
dashed lines) and of the TB fit to the data (dark solid lines). The
detected band loci are also shown as white crosses. (b) Energy-
momentum cut through kx = 0.754 Å−1.

including the lattice parameter, origin in px and py (projected
� point), and azimuthal alignment θ .

The results of the fitted TBexp model are shown in Fig. 2
alongside the ARPES spectra and the shifted LDA result
(recall that the raw calculation yields a topologically different
FS). The fit is in excellent agreement with the data, in both
constant energy slices [shown near EF in Fig. 2(a)] and
constant momentum slices [an example is shown in Fig. 2(b)].
The occupied area of the TB model is 1.92, which is in
closer agreement with the nominal electron count of 2 than
the shifted LDA calculation. This quantity is based on a
2D cut through the three-dimensional (3D) band structure,
and is therefore not restricted to obey the Luttinger electron
count, but nevertheless, it is satisfyingly close. The FS of the
TBexp model is close to previous ARPES measurements,12,13,19

although the � and K barrels of our FS are slightly smaller
and larger, respectively, than Refs. 13 and 19. Since this
discrepancy cannot be reproduced by shifts in EF (these sheets
are of the same band), it may reflect a slightly different k⊥
associated with the two different measurements. Nevertheless,
the following analysis of the data is not affected by changes in
kF of these sheets, lending more weight to the argument that
FS nesting is weak in TaSe2.

III. NONINTERACTING SUSCEPTIBILITY

A. Ab initio susceptibility

The role of nesting in the LDA has been theoretically in-
vestigated via calculations of the noninteracting susceptibility,

χ0(q,ω) =
∑

k

f (εk) − f (εk+q)

εk − εk+q − ω − iδ
, (3)

for wave vector q and frequency ω → 0, in which f (εk) is the
Fermi occupancy of state εk.4,28 The imaginary part (Im χ0),
which gathers transitions in a narrow window of energies near
the FS and can be directly associated with FS nesting, is shown
for TaSe2 in Fig. 3(a) and exhibits some weak peaks close to,
but offset from, qCDW. The most overwhelming feature is not
at this wave vector, however, but at q = K , in which dogbone
nesting dominates. Im χ0, while indicating FS nesting, is not
responsible for CDW order, which instead depends on the real
part Re χ0. Re χ0 involves transitions over a bandwidth-size
window of energies, and for TaSe2 is dominated by interband
transitions between the two Ta d bands. The intensity at K

is completely suppressed, and instead Re χ0 peaks at qCDW,
reflecting the electronic instability that eventually develops
into the CDW. These results, and their interpretation, are very
similar to previous LDA calculations of χ0(q,ω) of TaSe2 and
NbSe2.4,29 As we will show below, from both an experimental
and theoretical perspective, this peak in Re χ0 has little to do
with conventional FS nesting, and is rather associated with
“nesting” between the two bands over energies far from EF.

B. Tight-binding susceptibility

In Fig. 3(b), the noninteracting susceptibility χ0,tb(q,ω) of
the experimental tight-binding model TBexp is shown along the
same path as the ab initio result. This susceptibility, calculated
from the experimental band structure, represents an accurate
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FIG. 3. (Color online) Real and imaginary parts of the nonin-
teracting susceptibility χ0(q,ω) for (a) the 3D ab initio ELK band
structure and (b) the 2D TBexp model bands. The commensurate
CDW wave vector qCDW = 2/3�M is indicated by the dashed line,
and q∗ = 0.56�M indicates the maximum in the TBexp susceptibility.
Note that the real axis is vertically offset for clarity.

reflection of the experimental susceptibility function. Here, a
temperature of 8 meV is used to fill the states (comparable with

the experiment), although in practice this has little influence
on the overall structure of the susceptibility. This result,
which is based on a 2D slice of the electronic structure,
is of course cruder than the full 3D calculation shown in
Fig. 3(a); nevertheless, the two results are very similar to one
another. In Re χ0,tb, the function exhibits a peak near qCDW,
which is predominantly due to interband transitions. However,
the wave vector of this feature is somewhat offset from
qCDW, rather developing at q∗ = 0.56 �M . Correspondingly,
although Im χ0,tb exhibits a weak peak at q∗, it is neither very
intense nor significantly stronger than other local peaks else-
where in the BZ, for example, at q = K , despite the reduced
dimensionality of this 2D model. In fact, this suppression of the
susceptibility peak is observed in other ARPES models,12,19

which consistently suggest a slightly lower q (∼0.6 �M)
than the CDW wave vector. This suggests that, ultimately,
electron-phonon coupling likely decides which wave vector is
chosen for the ordering.5,30 In all models investigated here,
the susceptibility peak is relatively broad and is certainly
compatible with the CDW wave vector.

C. k-resolved susceptibility

Unlike typical calculations of the electronic susceptibility,
we now explicitly resolve the k dependence of the suscep-
tibility function, enabling us to directly assess which states
contribute to χ0,tb(q,ω):

χ0,tb(q,k) = f (εk) − f (εk+q)

εk − εk+q − ω − iδ
. (4)

Here, the integral over the BZ has been dropped with respect
to Eq. (3). For a given value of q, this function separates the
contribution of each individual k point to the susceptibility,
allowing the direct visualization in k space of which states
are connected by that particular wave vector. For example, for
conventional FS nesting this function will have high intensity
only in a narrow region of k space near the FS, and will be
weak elsewhere. Integration of this function over k recovers
the usual susceptibility function [i.e., that shown in Fig. 3(b)].

In Figs. 4(a) and 4(b), Re χ0,tb(q∗,k) is shown of the exper-
imental TB model (TBexp) for q = q∗. Here, the magnitude of

FIG. 4. (Color online) Real part of the k-resolved susceptibility function of the TBexp model for q = q∗, showing (a) intraband (dogbone →
dogbone and barrel → barrel) transitions and (b) interband (dogbone ↔ barrel) transitions. The height of the surface is the TBexp band energy,
whereas the color [the same color scale is used in both (a) and (b)] denotes the magnitude of the k-resolved susceptibility. The FS of each band
is shown by the gray lines. (c) Slice of the TBexp bands through the vertical lines of Fig. 1(b). The dotted lines all have the same length of q∗.
Vertical dashed lines indicate the maxima of the k-resolved susceptibility for this slice.
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Re χ0,tb(q∗,k) is shown as a color intensity on top of the energy
surface of the TBexp bands. In this presentation, “hot spots”
indicate states that are connected to other states of different
occupancy by the wave vector q∗, and their intensity reflects
their proximity in energy. For reference, the TBexp FS is also
shown in Figs. 4(a) and 4(b) as gray contours.

The intraband contributions [Fig. 4(a)] of both dogbone
(left) and barrel (right) bands are weak, and only supply
intensity near their respective FSs. It is noted that even though
this function has intensity only near the two FSs, the structure
is “smeared” over a relatively large energy range. Overall,
states at least 80 meV away from EF contribute significantly
to the intraband χ0,tb(q,ω), which is not compatible with
the conventional FS nesting model. On the other hand, the
interband transitions [Fig. 4(b)] show strong intensity over the
entire k range of the bands between the two FSs, irrespective of
their energies (which differ by as much as 300 meV in this part
of k space). This part of the BZ is precisely that in which the
two bands have different occupancies, and therefore in which
transitions are available [through the numerator of Eq. (3)].
Similar results are obtained near q∗ (including at qCDW) from
the ab initio unshifted LDA results, despite the different FS
topology, as well as from other TB parametrizations of the
energy bands.19 The involvement of such a large region of k

space in contributing to the susceptibility function, at its peak
in q, is compelling and direct experimental evidence against
conventional FS nesting.

IV. DISCUSSION

Despite our conclusion that FS nesting is not relevant in
deciding the peak in the susceptibility of 2H -TaSe2, it is
evident from Fig. 4(b) that there is a reasonable contribution
from interband transitions near the FS, and it is prudent to ask
why this is, given that both Im χ0,tb and the ab initio Im χ0

clearly rule FS nesting out. In Fig. 4(c), two slices of the TBexp

energy bands through ky = 0.55 �K and ky = 0.62 �K are
shown, corresponding to a vertical slice in Fig. 1(b) through
both the K barrels and dogbones. The dotted lines in Fig. 4(c)
all have the same length in k space, viz., q∗, and connect
unoccupied barrel band states to occupied dogbone band states
and vice versa. These transitions give rise to the hot spots in
Fig. 4(b) between the K barrel FS and dogbone FS as well
as at the saddle point along �K . The most intense features
in Re χ0,tb are shown by vertical dotted lines, and lie in close
proximity to the indicated transitions. While a transition at the
FS is present, particularly for ky = 0.55 �K , there is a large
number of finite energy transitions at the same wave vector.
The similar magnitude, but opposite, Fermi velocities of the
two bands ensure that this is true over a large energy range.
For ky = 0.62 �K , the q∗ vector does not connect to pieces
of FS, and instead the FS of each band is connected to a finite
energy away from the FS of the other band. This explains
why intensity at the FS is visible in Fig. 4(b), but very weak
in Im χ0,tb. Although some transitions are available at the FS,
there are many more at finite energy which overwhelm the
low-energy transitions. This concept has similarities, although
is more general, to the idea of “hidden nesting,”3 and has been
used to explain finite energy transitions in one-dimensional
(1D) materials in which FS nesting is “hidden” by band

hybridization effects. We note that although this explanation
was mentioned by Ref. 4, who also categorically ruled out
FS nesting, reports of FS nesting-driven CDW order in the
dichalcogenides still pervade the literature.

This explanation of the susceptibility also provides a natural
explanation for why the FS has been implicated in previous
studies. To illustrate this, we consider two bands that have
equal and opposite velocities near EF, similar to the case for
TaSe2 in Fig. 4(c), and which can be idealized in one dimension
as two linear bands of slope ±a and with Fermi crossings
separated by k2 − k1. As demonstrated by Johannes et al., χ (q)
can be expanded via χ (q) = ∫ EF

−∞ dx
∫ ∞
EF

dy F (x,y)/(x − y),
where F (x,y) = ∫

δ(εk − x)δ(εk+q − y)dk.29 The variables x

and y relate to states below and above EF. In the idealized 1D
model, contributions to χ (q) are satisfied for q = (x + y)/a +
(k2 − k1), and are weighted by the energy separation x − y.
The integrals over x and y, however, are symmetric about EF,
and this function must peak at q = (k2 − k1), regardless of
whether or not states near EF contribute. Over the full energy
window, corresponding to Re χ (q), the function peaks at this
wave vector, not due to FS transitions but rather due to finite
energy transitions (or deep energy nesting). More generally,
in 2D systems this effect is spread out by dispersion over the
second momentum axis, which serves to relax the above ideal-
ized arguments. Nevertheless, it is not coincidental that the FS
has the same (albeit weak) nesting vector, but a consequence
of the expansion of the transitions about this energy.

This interpretation is consistent with the temperature
dependence of the ARPES spectral function, which becomes
gapped (by ∼35 meV) in the commensurate CDW phase below
90 K.7,11,13,31 The gapping of the FS occurs most strongly on
the K barrels, which completely disappear, as well as on the
long sections of the M dogbone FS (e.g., the dogbone crossings
along the KM direction). These are precisely the parts of the
FS that were implicated in Fig. 4(c) as being involved in the
finite energy deep nesting.

To summarize, we have experimentally shown that the
electronic instability at the FS is not sufficient to drive CDW
order in 2H -TaSe2. Instead, mechanisms that do not rely on
details of the FS are more likely candidates for driving CDW
order. For example, recent models include the wave vector
dependence of the electron-phonon coupling,5,30 the con-
densation of preformed excitons,16 or strong electron-lattice
coupling.32 The importance of analyzing the k dependence of
the susceptibility function, at a suitable peak in q space, is
clearly reflected in our ability to confidently identify which

electronic states contribute to the susceptibility at the ordering
wave vector. For example, previous experimental studies,
which were based on either the autocorrelation,13 or a TB fit,19

of the ARPES FS (rather than analyzing a large energy range),
concluded that FS nesting was important in driving the CDW of
TaSe2. In contrast, the analysis of the k dependence enables us
to firmly rule this out, despite the similarity of our k-integrated
function to that of Ref. 19, bringing a much-needed consensus
between ARPES experiment and theory.

V. MONOLAYER TaSe2

Finally, we consider the situation in the absence of bilayer
splitting through calculations of monolayer TaSe2. In the
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FIG. 5. (Color online) Electronic structure and susceptibility of monolayer 2H -TaSe2: (a) Fermi surface, (b) noninteracting susceptibility
χ0(q,ω), and (c) real part of the k-resolved susceptibility for q = 2

3 �M .

monolayer, the interband transitions that were identified in
the previous discussion of bulk TaSe2 are not available, and
instead just a single band contributes to the near-EF electronic
structure. Moreover, this system is truly 2D, containing no
out-of-plane dispersion, and is therefore more fragile against
instabilities in its FS.

Theoretically, the monolayer is modeled as a single TaSe2

layer (with the same crystal parameters as the bulk) separated
by a vacuum layer of ∼20 Å, and the ab initio electronic
structure is calculated using the FLAPW ELK code. No attempt
has been made to relax the structural parameters. The FS
of monolayer TaSe2 is shown in Fig. 5(a), and consists of
a rounded hexagon centered at � and a rounded triangle at
K , similar in topology to previous results on monolayer TaSe2

(Ref. 17) and monolayer NbSe2.5 In Fig. 5(b), the susceptibility
of this band structure is shown (and is in good agreement with
previous calculations).17 The real part exhibits a strong peak
centered close to 2

3�M , although, similar to the bulk, the peak
in the imaginary part remains broad and smaller than at q = K .
In (relaxed) monolayer NbSe2, the peak in the susceptibility
was found to shift to 1

2�M .5

The k-resolved susceptibility is shown in Fig. 5(c) for
q = 2

3�M . In the absence of interband transitions, the peak
in the susceptibility of the monolayer is associated with the
saddle points of the band structure, which connect to the
vicinity of the K FS sheet. This situation is reminiscent,
although quantitatively different, to the saddle point nesting
model, which was based on a single NbSe2 band.14 Indeed, a
more recent ARPES study postulated that both the saddle band
and the K FS may be involved.11 The peaks in both bulk and
monolayer susceptibilities involve states near the saddle band
region and near the K FS barrels, and it is this q vector that is
most relevant in determining the susceptibility peak. However,
the k dependence of the susceptibility is quite different in the
monolayer, being restricted to narrow strips near the saddle

band region. These results demonstrate the sensitivity of the
k-resolved susceptibility to changes in the active states at a
particular q vector, and illustrate its value in assessing the
origin of instabilities in the electronic subsystem.

VI. CONCLUSION

The connection between the FS and the CDW has been
revisited in 2H -TaSe2 through ARPES measurements. After
developing an accurate tight-binding model of the experi-
mental electronic structure, the experimental susceptibility
was calculated, and compared with ab initio calculations.
Through careful analysis of the empirical k-resolved electronic
susceptibility function, finite energy transitions have been
shown to dominate the susceptibility both at its peak and at the
CDW wave vector. This approach directly illustrates which

states are involved in features of the electronic susceptibility.
While the conventional FS nesting model is considered too
weak to drive the CDW, the FS is indirectly involved in
determining the peak in the susceptibility, although the final
choice of ordering vector likely depends on the lattice. Finally,
comparison with theoretical calculations of 2D monolayer
TaSe2 illustrate the different electron states that are involved
in the absence of bilayer splitting.
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