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Adiabatic physics of an exchange-coupled spin-dimer system: Magnetocaloric effect, zero-point
fluctuations, and possible two-dimensional universal behavior
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We present the magnetic and thermal properties of the bosonic-superfluid phase in a spin-dimer network using
both quasistatic and rapidly changing pulsed magnetic fields. The entropy derived from a heat-capacity study
reveals that the pulsed-field measurements are strongly adiabatic in nature and are responsible for the onset of
a significant magnetocaloric effect (MCE). In contrast to previous predictions we show that the MCE is not just
confined to the critical regions, but occurs for all fields greater than zero at sufficiently low temperatures. We
explain the MCE using a model of the thermal occupation of exchange-coupled dimer spin states and highlight
that failure to take this effect into account inevitably leads to incorrect interpretations of experimental results.
In addition, the heat capacity in our material is suggestive of an extraordinary contribution from zero-point
fluctuations and appears to indicate universal behavior with different critical exponents at the two field-induced
critical points. The data at the upper critical point, combined with the layered structure of the system, are
consistent with a two-dimensional nature of spin excitations in the system.
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I. INTRODUCTION

Cooperative phenomena [1–4] found in materials exhibiting
a quantum critical point (QCP) (that is, a zero-temperature
phase transition [5]) continue to excite great interest. Notably,
spin-gapped antiferromagnetic (AF) insulators (such as XY -
like spin s = 1 chains [6–8] and exchange-coupled s = 1/2
dimers [4,9,10]) provide examples of magnetic systems whose
low-energy physics may be described in terms of a Bose-
Einstein condensate (BEC) that forms between two QCPs that
are reached by sweeping magnetic field [4]. The first QCP
involves the closing of a spin gap where spin-1 bosons begin
to condense from a nonmagnetic vacuum, while the second
involves a transition to a state where the number of bosons
saturates. In many magnetic BEC materials, the large energy
scale of the interactions means that the QCPs are most readily
reached using pulsed magnetic fields, while in certain cases the
field-range accessible by current technologies can limit studies
to the first QCP alone (e.g., TlCuCl3 [4]). These considerations
necessitate a detailed experimental understanding of how these
systems respond to rapid changes in magnetic field, which has
so far been lacking.

While previous studies suggest that a strong magnetocaloric
effect (MCE) [11,12] (a change in sample temperature T

on sweeping magnetic field B) is expected to occur at the
closing of the spin gap in pulsed fields [4], we present
experimental evidence supported by a general thermodynamic
model that shows that a continuous and strong MCE in fact
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occurs for all B > 0. With this insight, our results imply
that a naive acceptance of the apparent sample temperature
in pulsed-field measurements may lead to the results on
BEC systems being interpreted erroneously [13,14]. We
demonstrate this by exploiting the low-field QCPs of an or-
ganic spin-dimer network, Cu(pyz)(gly)ClO4 (pyz = pyrazine;
gly = glycinate) [15], to measure both pulsed-field and qua-
sistatic magnetometry across the full phase diagram of the ma-
terial. From this, we reveal an apparent discrepancy between
the results of these measurements. The entropy (Smag) derived
from heat capacity indicates this discrepancy is resolved if
the pulsed-field measurements are taken to be approximately
adiabatic. This assumption leads to the prediction of a strong
MCE in the pulsed-field experiments, which we confirm
via direct measurements. The heat capacity further suggests
that zero-point fluctuations also contribute to Smag and the
MCE at low fields in Cu(pyz)(gly)ClO4. This evidence for
quantum phenomena went unreported in a previous magnetic
study [15]. Finally, we find that the heat capacity exhibits
different critical exponents at each QCP. Our analysis of the
exponent at the upper QCP, the exchange pathways implied
by the crystal structure and the results of simulations of the
heat capacity are all consistent with a system that closely
approximates a two-dimensional (2D) spin-dimer network,
in contrast to the three-dimensional magnetic description
previously suggested for this material [15]. However, from
the experimental thermodynamic evidence presented here we
cannot rule out the presence of an XY -symmetry breaking
perturbation (such as a Dzyaloshinskii-Moriya interaction).
Such a term would induce a crossover into a different univer-
sality class and require a different interpretation of the critical
exponents.

2469-9950/2017/95(2)/024404(12) 024404-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.024404


J. BRAMBLEBY et al. PHYSICAL REVIEW B 95, 024404 (2017)

II. EXPERIMENTAL DETAILS

A. Synthesis

Single crystal samples of Cu(pyz)(gly)ClO4 were prepared
according to the procedure established in Ref. [15] (and the
supporting information therein).

B. Dynamic susceptibility

Ac susceptibility. Ac-susceptibility measurements were
performed with a Quantum Design Magnetic Property Mea-
surement System (MPMS) using an 8.76 mg sample. The
sample is placed inside a gelatin capsule and held in position
with a small amount of Vaseline to prevent the material from
moving during a measurement. The magnetic moment of
the sample (M) is measured in response to a sinusoidally
oscillating field of amplitude Bac = 0.1 mT, held at a fixed
frequency (fac). The component of the magnetic moment,
which varies in-phase (M ′) and out-of-phase (M ′′) with the ac
field, is recorded for quasistatic fields in the range 0 � B � 5 T
applied using a superconducting magnet. Measurements were
repeated for fac = 3, 33, and 99 Hz. The in-phase (χ ′) and
out-of-phase (χ ′′) components of the ac molar susceptibility
can be derived from the measurement using χi = Mi/nBac,
where n is the number of moles of the sample.

Quasistatic proximity detector oscillator technique. The
details of the experiment have been previously reported [15]
and are included here to offer new physical insight in the
interpretation of analogous pulsed-field measurements below.
The sample is wrapped in a Cu coil and used as the inductive
part of an LCR circuit [16]. A (MHz) radio-frequency oscilla-
tory current is applied to the sample coil which is inductively
coupled to a proximity detector oscillator (PDO). The high-
frequency output from the PDO is amplified and mixed down
by a two-stage heterodyne process to reduce the noise on the
measurement. With the sample submerged in liquid helium, a
quasistatic field is applied with a superconducting magnet and
the resonant frequency of the LCR circuit (ω) is recorded as a
function of applied field. For this magnetic insulating sample,
the change in ω is given by [17]

�ω = −a�χ − b�R0, (1)

where a,b � 0 are constants, χ is the susceptibility (dM/dB),
and R0 is the combined magnetoresistance of the sensor coil
and a coax cable feeding the ac field to the sample. The sus-
ceptibility is determined by eliminating the magnetoresistance
term with a background measurement of an empty coil.

Pulsed-field proximity detector oscillator technique. A
single crystal sample is loaded into a 1.3 mm diameter
polychlorotrifluoroethene (PCTFE) ampoule and secured with
a small amount of vacuum grease. The ampoule is wrapped
in a 5-turn Cu coil and used as the inductive part of an
LCR circuit as described for the quasistatic measurement.
The sample ampoule is immersed in cryogens and a capacitor
driven short-pulse magnet at the National High Magnetic
Field Laboratory (NHMFL), Los Alamos, provides the applied
field [B–t profile shown in Fig. 1(a)]. The magnetoresistive
contribution to the change in resonant frequency can be
modeled using a quadratic function. This is subtracted from

FIG. 1. Magnetic-field profiles for (a) the capacitor driven short-
pulse magnet and (b) motor/generator driven long-pulse magnet at
the National High Magnetic Field Laboratory, Los Alamos.

the measurement of the circuit’s resonant frequency [Eq. (1)]
to extract the sample χ .

Pulsed-field extraction magnetometry. Pulsed-field mea-
surements of M for B � 10 T were measured with a capacitor-
bank powered, short-pulse magnet. Here the sample is placed
into a PCTFE ampoule of diameter 1.3 mm and sealed with
vacuum grease to prevent the sample from moving. The
filled ampoule is lowered into a 1.5 mm bore, 1500-turn
compensated-coil susceptometer, which is 1.5 mm in length
and made from high-purity Cu wire. With the sample at the
center of the coil, the voltage induced in the coil as the field is
pulsed is proportional to the rate of change of M . Numerically
integrating this measurement yields the magnetization of the
loaded coil. By subtracting the magnetization of an empty
coil, measured under the same thermal conditions, the M of
the sample is deduced [18].

In all the pulsed-field measurements (magnetometry and
magnetocaloric effect) the value of the magnetic field is found
from integrating the voltage induced in a 10-turn coil placed
at field center. The field is calibrated in each case against
the copper de Haas–van Alphen oscillations (the belly orbit)
induced in the signal coil of the extraction magnetometer.

C. Magnetocaloric effect

Measurements of the magnetocaloric effect (MCE) are
performed with the 60 T long-pulse magnet (and the 65
T short-pulse magnet) at NHMFL [Fig. 2(a)]. A digital
lock-in provides a constant amplitude current by feeding
the 30 kHz (60 kHz) frequency, 1 V (2 V) amplitude ac
voltage output through a 5 k� (1 k�) resistor prior to a 1:60
turn step-up transformer. A 10.2 � shunt resistor following
the transformer monitors the current to ensure a constant
amplitude is maintained. The ac current is then passed through
a CernoxTM resistor (attached to the sample) via twisted pair
contacts that run approximately parallel to the applied field.
The voltage drop across the CernoxTM is extracted with a
second pair of contacts also wound as a twisted pair. Both the
current monitor and thermometer voltages are amplified (by
100 and 1000 times, respectively) using a Stanford Research
Systems low noise preamplifier and recorded as a function of
time during the pulse with the lock-in amplifier set to record
at the same frequency as the output.

The CernoxTM is mounted directly on the sample with
vacuum grease, which is in turn attached to insulating cigarette
paper with a further application of grease. To promote adiabatic
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FIG. 2. (a) Schematic experimental setup for the measurement of
the MCE effect. A CernoxTM thermometer (T) is attached to the sample
(S) with vacuum grease. The probe is lowered into a dual-walled 3He
cryostat and centered in the magnet coils. The 3He level is tuned with
a heater (H) so that a sapphire cold-finger, on to which the sample is
mounted, extends into the liquid.

conditions, the paper is glued to a sapphire cold finger with
GE varnish so that the sample is positioned ≈10 mm above the
bottom of a He cryostat. In this configuration, the cold finger
extends into liquid He that collects in the cryostat tail, while
the sample itself is in gas. The liquid-He level is tuned prior
to the field sweeps by pulsing a heater close to the sample,
ensuring the sample was out of the liquid.

During each field pulse (B–t profiles shown in Fig. 1), the
in-phase and out-of-phase components of the thermometer ac
current and voltage are recorded and the phase of the signal is
defined to minimize the out-of-phase component of the current
monitor. The ratio of the in-phase voltage to the in-phase
current amplitude is used as the measure of the resistance
of the CernoxTM.

The magnetoresistance (R) of the CernoxTM is calibrated
with no sample in place using the same pulse patterns starting
from initial temperatures in the range 0.45 � T � 10 K. The
B dependence of R is modeled with the invertible empirical
relation

R = exp
(
a1 + a2

T a3

)
, (2)

where the coefficients ai are represented as polynomials in B:

ai =
4∑

j=0

cijB
j . (3)

Here a3 is constrained to be linear in B in order to uniquely
determine a complete set of coefficients for a1,2. Within this
model, the thermometer T can be deduced from a measurement
of R(B). The error in T extracted from this method is 1%–3%
for the T ,B range of interest.

III. RESULTS AND DISCUSSION

A. Arrangement of dimers

In Cu(pyz)(gly)ClO4, the Heisenberg s = 1/2 Cu2+ ions
form dimers where pyz molecules mediate an AF intradimer
exchange (J ) [15]. An interdimer exchange (J ′) is provided
by gly groups that ligate each dimer to four neighbors to form
a corrugated sheet as shown in Fig. 3(a). The dimer centers are
coplanar and individual layers stack along the [101̄] direction.
Each plane is displaced relative to the sheet below along the
[101] vector. Perchlorate anions (ClO−

4 ) connect the Cu2+

ions between each adjacent layer. In Fig. 3(b) the one-third
filled spheres for the O atoms denote a partial site occupation
of three equally likely positions and the Cl-O bond lengths
range from 1.395 to 1.448 Å at 298 K. The stacking of dimer
layers results in Cu · · · O-Cl-O· · · Cu pathways that provide
the interlayer exchange J ′′. The total distance along these
nonlinear pathways is ≈8.3 Å, while the linear interplanar
nearest-neighbor Cu-Cu distance is 6.6206(9) Å. A full
description of the structural refinement from x-ray diffraction
is available from Ref. [15].

The longer axis of the distorted CuN2O4 octahedra is the
Cu-O coordination bond to two separate ClO−

4 ions above and
below the sheets. This axial elongation of the coordination
environment constrains the dx2−y2 orbital of the unpaired
Cu2+ electron to lie predominately within the pyz-gly planes.
The resulting low spin density expected between the layers
therefore suggests that the dominant exchange pathways will
be between coplanar Cu2+ ions.

FIG. 3. (a) Cu(pyz)(gly)ClO4 (pyz = pyrazine, gly = glycinate, structure measured at T = 298 K taken from Ref. [15]) consists of
corrugated sheets of dimers. Arrows mark the intradimer (J ) and interdimer (J ′) spin-exchange pathways. H atoms and the ClO−

4 ions on sites
between sheets are omitted for clarity. (b) Cu2+ ions in adjacent planes are linked with ClO−

4 anions (mediating an interlayer exchange J ′′).
The gly groups and H atoms are omitted. (c) Schematic energy-level diagram for each dimer.
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B. Mapping phase boundaries using magnetometry
and heat capacity

Antiferromagnetically coupled s = 1/2 dimers (with total
spin S) have a singlet (S = 0) ground state, a triplet of
excited states, and a gap between the two that can be closed
by a magnetic field [see the schematic in Fig. 3(c)]. For
dimer networks with uniaxial symmetry, a Matsubara-Matsuda
transformation of the spin Hamiltonian maps the lowest lying
states in nonzero applied field onto a hard-core boson picture
where each dimer is represented by the S = 0 or Sz = +1
(triplon) state [4,19,20]. A finite J ′ permits triplons to hop to
neighboring sites [19] giving the excitations a dispersion

E(k) = J + 2J ′ cos kx cos ky − gμBB, (4)

where k = (kx,ky) is the dimensionless triplon wave vector.
The excited states have a bandwidth � = 4J ′, hence the spin
gap closes over a range of B bounded by two QCPs that obey
the relation gμBBc1,2 = J ∓ 2|J ′|.

For the temperature range across which Cu(pyz)(gly)ClO4

has been studied, no low-energy symmetry-breaking pertur-
bations have so far been detected. It is known that such
perturbations (e.g., a Dzyaloshinskii-Moriya interaction) begin
to modify the universal behavior only at temperatures less
than the energy scale of the perturbation [4]. Above this
temperature and below the thermodynamic limit the system
can be described within the boson description. For the analysis
that follows we assume that our material maps onto the boson
model described by Eq. (4). While we cannot absolutely rule
out the presence of an XY -symmetry breaking perturbation, as
will be seen, the simulations of the thermodynamic properties
arising from the boson model agree extremely well with the
experimental data.

The positions of the QCPs in Cu(pyz)(gly)ClO4 are de-
termined from measurements performed isothermally in the
quasistatic fields supplied by a superconducting magnet. Pub-
lished [15] susceptibility (χ = dM/dB; M = magnetization)
measurements employing the proximity-detector oscillator
(PDO) technique show sharp kinks at the field-induced phase
transitions for helium-bath temperatures (T0) below 1.2 K
[see Fig. 4(a)]. These data, plus quasistatic heat capacity and
muon-spin rotation (μ+SR) measurements [15], map out a
dome in the B-T plane enclosing the BEC phase, as shown
in Fig. 5(a) by triangles, pentagons, and circles. The QCP
positions gμBBc1/kB = 2.5(1) K and gμBBc2/kB = 9.0(2)
K [15], together imply that J/kB = 5.8(3) K and |J ′|/kB =
1.6(1) K. However, measurements of dM/dB using both a
PDO susceptometer and an extraction magnetometer repeated
in rapidly changing pulsed magnetic fields [pulse height 10
T, rise time ≈10 ms, Fig. 1(a)] show kinks, analogous to the
quasistatic measurements, but which persist for T0 values in
excess of 1.8 K [see Figs. 4(b) and 4(c)]. When mapped onto
the phase diagram in Fig. 5(a), these points appear to form
a dome that is extended by comparison with the results of
quasistatic experiments.

On first viewing, the apparently extended dome measured
using pulsed fields in our material resembles that obtained
from pulsed-field ultrasound and magnetometry measurements
on Sr3Cr2O8, a dimer system where critical fields vs T0 are
reported to map out a magnon liquid state that extends above

FIG. 4. (a) dM/dB vs quasistatic magnetic field for
Cu(pyz)(gly)ClO4 from PDO experiments [15]. The asymmetry of
dM/dB points to the influence of zero-point fluctuations at Bc1. This
is discussed following the heat capacity analysis below. (b) PDO
susceptometer and (c) extraction magnetometer measurements of
dM/dB (this work) in pulsed fields. Data are labeled by helium-bath
temperature T0.

a low-temperature ordered phase (akin to a BEC) [13,14].
However, in our system (and by extension related materials) we
will present heat-capacity measurements that strongly suggest
that the apparent extension of the low-temperature dome in
pulsed-field experiments should instead be attributed to a MCE
brought about by approximately adiabatic rapid field sweeps,
removing the need to invoke a separate magnetic phase to
explain the results.

The B = 0 heat capacity [15] of Cu(pyz)(gly)ClO4 (Cmeas)
shown in Fig. 6(a) exhibits a broad maximum due to a
contribution from the Cu2+ ions (Cmag) superimposed on a

FIG. 5. (a) B-T phase diagram of Cu(pyz)(gly)ClO4. Quasistatic
measurements [heat capacity (HC); PDO and μ+SR] map out a dome
enclosing a BEC bounded by a low-field disordered and high-field
saturated phase [15]. Diamonds and stars mark peaks in dM/dB from
pulsed fields [Figs. 4(b) and 4(c)] plotted vs T0. Lines are experimental
isentropes (0.2 J K−1 mol−1 intervals) derived from heat capacity.
Colormap = (∂Smag/∂B)T (arb. units). (b) The same data when the
pulsed-field measurements are assumed adiabatic and the sample
temperature is inferred from the isentropes. As in Ref. [15], the field
axis in both cases is scaled by the experimental g factor divided by
that measured normal to the (110) plane, so that results from different
measurements in which the field is applied along different directions
can be compared.
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FIG. 6. (a) Cmeas/T vs T for Cu(pyz)(gly)ClO4 at zero field (circles) [15]. Data for 15 � T � 50 K are modeled by one Debye and one
Einstein mode (line) [21]. The inset shows that the zero-field entropy change per Cu2+ is consistent with Rln2, i.e., Rln4 per dimer, as required
for AF s = 1/2 dimers. (b) Cmag vs T (this work) for 0 � μ0H � 8 T (labels of B̃/J = gμBB/J are shown in brackets to aid comparison
with the simulations). (c) Calculated isentropes for an ideal s = 1/2 paramagnet. (d) Experimental isentropes for Cu(pyz)(gly)ClO4. (See
Appendix A.) (e) Simulated heat capacity for a system of exchange-coupled dimers with a two-dimensional dispersion and J ′ = 0.28J .

sloping background from lattice vibrations (Clatt). Assuming
Clatt(T ) to be independent of B, we subtract it from the data
collected at each value of applied field [21]. The resultant
Cmag(T ) data are shown in Fig. 6(b) and exhibit two distinct
features: a λ peak at TBEC (for BC1 � B � BC2) marking the
BEC phase; and B-dependent broad maxima at temperatures
above TBEC.

The magnetic entropy (Smag) of Cu(pyz)(gly)ClO4 is found
by integrating (Cmag/T )|B (constant B) for T � 10 K, taking
Cmag = 0 at T = 0. By compiling Smag(T )|B curves, the
experimental entropy in the B-T plane can be determined
(see Appendix A). Isentropes (lines of constant entropy)
indicate the path that will be taken across a phase diagram
on sweeping magnetic field adiabatically. For example, in the
case of a paramagnetic (PM) ensemble of spins the partition
function and Smag are functions of B/T , which remains
constant in an adiabatic field sweep [23]; hence the isentropes
are straight lines as shown in Fig. 6(c). The isentropes of
Cu(gly)(pyz)ClO4 shown Fig. 6(d) thus describe how the
sample temperature evolves in an adiabatic field sweep. Two
local minima in the isentropes at low temperatures mark the
field positions of the QCPs. Here the competition of magnetic
phases leads to a locally high entropy so the isentropes drive
the sample temperature lower to maintain constant Smag. For
B > BC2 the isentropes become linearly dependent on field
since the Zeeman energy dominates spin-exchange couplings
and Smag ≈ Smag(B/T ).

The discrepancy between the results of pulsed and qua-
sistatic magnetometry is then resolved if the sample tem-
perature is assumed constant in quasistatic measurements,
while pulsed-field experiments are assumed to be close to
adiabatic, such that the sample temperature is inferred by
following an isentrope [reproduced in Fig. 5(a)]. With this
correction, the features in the pulsed-field data map directly
onto the small dome that encloses the BEC phase as measured
under quasistatic conditions [see Fig. 5(b)]. This agreement

in the positions of features observed across the different
measurement techniques therefore: (i) strongly supports the
adiabatic nature of the pulsed-field data, (ii) implies that a
significant MCE (|�T |/T0 � 0.37) occurs during the field
pulses, and (iii) shows that the pulsed-field measurements
are sensitive to the same low-temperature phase measured in
quasistatic experiments.

We note that data from ac-susceptibility measurements (not
shown) in quasistatic B � 5 T with various ac frequencies
� 99 Hz all agree with those from PDO measurements in
quasistatic fields. This indicates that isothermal and adiabatic
conditions are dictated by the applied field sweep rate rather
than the ac-field modulation frequency (≈20 MHz in PDO
experiments).

C. Measuring the magnetocaloric effect

The MCE was investigated directly by attaching a calibrated
CernoxTM resistor to a single-crystal sample and monitoring
its temperature (TCer) during pulsed-field sweeps using a four-
wire resistance technique. The magnetic field-sweep rate was
varied using the B–t profiles (shown in Fig. 1) of the capacitor-
driven short-pulse (SP) and motor/generator-driven long-pulse
(LP) magnets at the National High Magnetic Field Laboratory,
Los Alamos. The SP and LP MCE measurements will likely
have a different degree of adiabaticity to each other (and to the
SP magnetometry experiments). Nevertheless, the isentropes
derived from the heat capacity data suggest that any experiment
which departs from ideal isothermal conditions should exhibit
an MCE as the field is swept.

The temperatures traced out with SP down sweeps shown
in Fig. 7(a) resemble the isentropes of Fig. 6(d). A kink in
TCer close to 2 T denotes a phase transition and a linear
thermal response above 5.5 T signifies a switch to the saturated
(spin-polarized) state. The low-field kink in TCer coincides with
a change in sign of � = T −1(∂T /∂B) (for Smag ≈ const.) and
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FIG. 7. (a) TCer vs applied field from SP downsweeps. Arrows
mark critical fields (see text). (b) LP measurements of the MCE
(lines) superimposed on the B-T phase diagram. Labels denote the
field pattern used as in Fig. 1(b). (c) The same B-T phase diagram with
critical fields from MCE measurements (triangles) plotted against T0.

is located by finding a peak in d�/dB [24]. This enables the
lower critical field to be determined independent of linear
background contributions to TCer. The upper boundary is
defined by the point where TCer(B) departs from a linear fit
to the data for B � 7 T (dashed lines). See Appendix B for
more details on how these features are determined.

The measured temperature shift (�TCer) is found to be
maximized when dB/dt is limited to ≈100 T s−1 with the
LP magnet. The MCE data in Fig. 7(b) clearly show the
development of a double minimum in TCer on reducing T0 and
sweeping past the two QCPs. Critical fields were determined
from peaks in d�/dB and are plotted against T0 as triangles
in Fig. 7(c). The peaks follow an apparent extended dome,
similar to that mapped out from pulsed-field magnetometry,
thus supporting the conclusion that a MCE occurs in these
measurements and gives rise to the observed phase transitions,
even when T0 exceeds the top of the BEC phase. It is this
observation that we discuss in the next section.

D. Explaining the magnetocaloric effect by simulating
the entropy of exchange-coupled dimers

We explain the MCE in the dimer system with a model
considering the thermal occupation of bands of triplon states
in an applied magnetic field. The heat capacity of indepen-
dent dimers is deduced from the partition function and the
interdimer interactions are accounted for by considering a
two-dimensional dispersion of the triplon states. The full
details of how the simulations are performed can be found
in Appendix C, while the dimensionality of the real system is
discussed in the following section.

With J ′ = 0.28J [as expected for Cu(pyz)(gly)ClO4 from
the positions of the critical fields], broad maxima in the simu-
lated heat capacity [Fig. 6(e)] share features with the measured
data [Fig. 6(b)]. While the simulation cannot replicate the λ

peaks bounding the BEC phase in the real system, the broad

FIG. 8. (a) Simulated isentropes in the B̃-T plane (B̃ = gμBB)
for coupled dimers with a two-dimensional dispersion (J ′ = 0.28J ).
(b) Experimentally determined isentropes for Cu(pyz)(gly)ClO4.
Colormap = (∂S/∂B̃)T (arb. units); yellow dots show Bc1,2; hatched
region marks a region below the minimum accessible T in the C(T )
measurements.

features of both data sets may be explained as Schottky anoma-
lies resulting from the field splitting of dimer spin states. For
B̃ � J (B̃ = gμBB), a peak in Cmag(T ) [Fig. 6(e), yellow line]
results from the depopulation of closely spaced triplon levels
to a singlet state. This maximum is suppressed in height when
B̃ is raised (orange) as the gap between the Sz = +1 and S = 0
levels decreases. For B̃ ≈ J (red) a low-temperature shoulder
develops below the main Schottky anomaly due to thermal
depopulation within the two lowest-lying spin states. The
high-temperature maximum seen at this value of B̃ is sensitive
to the occupation of excited states relative to these low-lying
levels. For B̃ � 1.5J , the temperature of the broad peak tends
towards a linear dependence on B̃ (pink, purple). This behavior
(analogous to a PM spin system) occurs in dimers for B̃ > B̃c2

where the zero-field splitting of levels becomes decreasingly
relevant to the occupation of the spin states.

Reconstructing the entropy from the simulated heat ca-
pacity [Fig. 8(a)], we predict that areas of large |(∂S/∂B̃)T |,
and hence a strong MCE, occur in adiabatic field sweeps
at temperatures above each QCP (yellow dots), as observed
in the real material [Fig. 8(b)]. Comparing the isentropes
(lines) against the measured data, we note that for kBT0 ≈ J

no cooling is expected on sweeping B adiabatically. As T0

is lowered, cooling is immediately induced for B > 0 and
not just at Bc1 as has been previously suggested [4]. We
also confirm that an analogous effect occurs on approaching
Bc2 from the high-field side, a field regime that remains
untested in many inorganic BEC systems where BC2 can
be inaccessibly large [4]. For B̃ > B̃c2, the isentropes are
linear and have a smaller gradient at lower temperatures, as
in PM systems. It is thus clear that a MCE in adiabatic or
quasiadiabatic measurements of spin-gapped materials must
be carefully considered at all fields when interpreting the
sample temperature.

The effects of correlations in the real system (e.g., field-
induced symmetry breaking at Bc1) leads to differences
between the experimental data and the calculations [Fig. 8(a)
and 8(b)]. These include the minima in the measured isentropes
at Bc1,2 when kBT � J . Furthermore, we find the sample
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FIG. 9. Cmag vs T for Cu(pyz)(gly)ClO4 (points) plotted on a
logarithmic scale. Data are labeled by B (and B̃/J = gμBB/J )
for (a) B̃/J � 0.8; (b) B̃/J � 1.1. Data at 1.50 and 5.75 T are
modeled by Cmag ∝ T n for T � 0.52 K (solid lines). (c) Cmag(B)
for Cu(pyz)(gly)ClO4 (points) from constant T cuts through C(T )|B
data. Lines = linear interpolation of the points, smoothed over a 0.3
T window.

cooling from the MCE persists to higher temperatures in the
measured data than in the simulations. This difference is not
reconciled when an interlayer triplon dispersion is included
in the calculation (see Appendix C), suggesting there are
additional contributions to Smag not accounted for by our
simple thermodynamic model.

E. Determining dimensionality and the effect
of zero-point fluctuations

Evidence that zero-point fluctuations influence Cmag(T ) and
the MCE in Cu(pyz)(gly)ClO4 is found by plotting the heat
capacity as a function of T on a logarithmic scale as shown
in Figs. 9(a) and 9(b). Here it can be seen that Cmag ∝ T n

only when the applied field is close to either of the two critical
fields, which occur when B ≈ 1.5 and 5.8 T in the heat capacity
measurements [15] (B̃/J = 0.4 and 1.5). A universal power
law is expected of BEC systems when B = Bc1,2 where the
critical exponent n = d/2 reflects the dimensionality (d) of
the system [4,25]. Considering only the Cmag(T ) data below
40% of the maximum ordering temperature (where it is known
that the most reliable exponents are obtained [26]), the traces
at B̃/J = 0.4 and 1.5 yield n = 2.13(2) and 0.99(2) at Bc1

and Bc2, respectively. The value of the critical exponent
at Bc2 (the exponent at Bc1 is discussed below) implies
that Cu(pyz)(gly)ClO4 has strong correlations only within
the dimer layers, which is in contrast to the suggestion of
three-dimensional magnetic behavior previously given for this
system [15], but confirms the expectations resulting from the
discussion of the structure in Sec. III A.

Ideal two-dimensional AF s = 1/2 dimer systems are
predicted [9,10] to exhibit a low-temperature Berezinskii-

Kosterlitz-Thouless (BKT) phase [27,28]. However, crossing
a BKT phase boundary is not expected to yield any signatures
in probes such as heat capacity [9] or magnetometry [10].
Our measurements do map out a low-temperature ordered
phase in Cu(pyz)(gly)ClO4, which therefore suggests that
the interlayer interactions in our material, while small, are
finite. Further evidence of the anisotropy comes from a
comparison of the experimental and simulated heat capacity
using a three-dimensional dispersion (Appendix C), which also
indicates that the interlayer interaction is very much smaller
than the interdimer interaction within the layers, corroborating
the quasi-two-dimensional nature of the triplon excitations in
this material.

Isothermal cuts through the Cmag(T )|B data [Fig. 9(c)]
show that maxima in Cmag(B) bounding the BEC phase are
smaller at Bc1 than at Bc2. This asymmetry (also evident in
dM/dB, Fig. 4) resembles the published [29] heat capacity
of the s = 1 BEC system NiCl2-4SC(NH2)2 (DTN). In that
material, the reduced size of the peak at BC1 is attributed to
its proximity to the disordered zero-field state and the large
ratio for Bc2/Bc1 ≈ 6. In the low-field disordered phase of this
system zero-point fluctuations renormalize the effective mass
of bosonic excitations, while this is not expected to occur close
to the saturated (spin-polarized) state where M is a conserved
quantity [29]. The asymmetry we observe in Fig. 9(c) therefore
suggests the renormalization effects of zero-point fluctuations
are also strong at Bc1 in Cmag(B) in Cu(pyz)(gly)ClO4.

It is possible that the zero-point fluctuations at Bc1 could
also affect the temperature range over which universal behavior
can be observed at each QCP. This might account for the
different exponents we find at Bc1 and Bc2 when considering
Cmag(T ) over the same temperature window [30,31] and
justifies the use of the critical exponent at Bc2 in determining
the dimensionality of the system.

As mentioned previously, it is possible that an undetected
symmetry-breaking perturbation is significant in our experi-
mental temperature regime. In particular, it is predicted that a
Dzyaloshinskii-Moriya interaction could emerge in our mate-
rial at sufficiently low temperatures [15]. Such a term would
induce a crossover from the BEC (XY ) to Ising universality
class. If the energy scale of this potential perturbation is indeed
of the order of 400 mK or above, then it would necessitate a
different interpretation of the universal behavior we observe
in our measurements. In contrast to the n = d/2 behavior
expected for the XY model, the exponent of the heat capacity
close to the critical magnetic field for Ising systems is known
to be n = d [30]. Thus, neither of our measured exponents are
characteristic of a 3D Ising system. The exponent observed
at Bc1 could be consistent with our expectation of two-
dimensional behavior in this system. However, within this
scheme the fact that the exponent changes to 0.99(2) at Bc2 is
perplexing and would require further explanation.

IV. SUMMARY

Cu(pyz)(gly)ClO4 is found to be a quasi-two-dimensional
s = 1/2 exchange-coupled dimer system whose two magnetic
field induced QCPs are within the range of both pulsed and
quasistatic laboratory fields. The molecular building blocks
from which the material is constructed allow for systematic
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chemical tuning of the structure. These features, together
with the reported role played by zero-point fluctuations in the
magnetic properties, suggest that a continued examination of
this system would shed further light on the BEC in quantum
magnets.

The above analysis of the magnetometry and heat-capacity
data shows that a substantial MCE can be induced in systems
with level crossings or strong correlations when studied
with pulsed magnetic fields. This necessitates a careful
consideration of the experimental sample temperature to
avoid incorrect interpretation of results. On the other hand,
because the cooling in adiabatic magnetic-field sweeps allows
lower sample temperatures to be achieved, it is possible that
exploiting the MCE may be advantageous in future studies of
emergent phenomena near QCPs.
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APPENDIX A: ENTROPY IN THE B-T PLANE

1. Entropy of a spin-1/2 paramagnet

For a paramagnetic (PM) Heisenberg spin (s) in an applied
magnetic (B) field, the single-particle Hamiltonian (H) is
governed by a Zeeman term (see, e.g., Ref. [34]): H =
gμBB · s, where g is the isotropic g factor, such that the
partition function (Z) for spin s = 1/2 particles at temperature
T is given by

Z = 2 cosh

(
gμBB

2kBT

)
. (A1)

The magnetic entropy (Smag) is then determined from

Smag

kB

= −T
∂ lnZ
∂T

+ lnZ, (A2)

yielding

Smag

kB

= −gμBB

2kBT
tanh

(
gμBB

2kBT

)
+ ln

[
2 cosh

(
gμBB

2kBT

)]
.

(A3)
Here Smag is a function of the ratio B/T so the sample

temperature is constrained to have a linear dependence on
an applied field in an adiabatic field sweep as shown in
Fig. 6(c). This result is appropriate for PM spin ensembles

as well as strongly correlated systems when the energy scale
of the magnetic field dominates the intrinsic spin-exchange
interactions within the system. For Cu(pyz)(gly)ClO4 this
corresponds to fields in excess of the upper critical field Bc2

[Fig. 6(d)].

2. Entropy of Cu(pyz)(gly)ClO4

The published [15] heat capacity of Cu(pyz)(gly)ClO4

was recorded for 17 constant fields in the range 0 � B �
9 T. For each measurement of the heat capacity at constant
B [Cmeas(T )|B], the magnetic contribution to the data was
determined as described in Ref. [21] and Smag(T )|B was
deduced from

Smag(T )|B =
∫ T

0

Cmag(T ′)|B
T ′ dT ′, (A4)

for T � 10 K assuming Cmag = 0 at T = 0. The field depen-
dence of Smag was inferred from constant T cuts through Smag

in the B-T plane. These data were linearly interpolated to
an interval of �B = 0.25 T and smoothed with a low-pass
digital filter through the application of a five-point moving-
window average function in MATLAB [35]. The interpolated
data were subsequently differentiated and smoothed (as above)
to determine the form of (∂Smag/∂B)T vs B. These data were
used to construct the colormap plot in Fig. 5(a).

APPENDIX B: EXTRACTING CRITICAL FIELDS FROM
MAGNETOCALORIC EFFECT DATA

Short pulse magnet. Minima in the CernoxTM temperature
(TCer), found on sweeping the field through critical regions of
the B-T phase diagram of Cu(pyz)(gly)ClO4, coincide with a
change in sign of � = T −1(∂T /∂B) [24]. A rapid change in
�, induced by the condensation of triplons generates a peak in
d�/dB [Fig. 10(a)]. This is used as a measure of the lower-
critical field. The transition to a spin-polarized phase is more
subtle in d�/dB. To determine the upper critical field, a linear
fit is made to the TCer(B) data above 7 T. The departure between
the line and the measured data is approximately ±0.3% within
the fitted range. The critical field BC2 is determined from the
point when the linear fit departs by more than 0.3% from the
measured TCer.

Long-pulse magnet. Critical fields were extracted from
peaks in d�/dB [Figs. 10(b)–10(d) for pulse patterns A, B,
and C of Fig. 1(b), respectively]. We found that limiting the
magnetic field sweep rate with the long-pulse magnet increased
the sensitivity to changes in the sample temperature relative to
the short-pulse experiments. Hence, both the upper and lower
critical fields were able to be determined from peaks in d�/dB.
The location of these features in the MCE measurements were
checked for consistency against d�/dB curves found from the
isentropes derived from the experimental heat capacity and a
similar starting temperature [Figs. 10(e)–10(g)].

APPENDIX C: SIMULATING THE ENTROPY OF
A SPIN-DIMER SYSTEM

1. Independent AF s = 1/2 dimers

For AF s = 1/2 dimers, the energy of the singlet (Es) and
triplet (Et) dimer states are Es = 0; Et = J,J ± B̃, where
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FIG. 10. (a) Peaks in d�/dB (arrows) from measurements of the CernoxTM T in a short-pulse magnet mark the position of the low-field
phase transition in Cu(pyz)(gly)ClO4. Data are offset for clarity and ordered as arranged in Fig. 7(a). Measurements in the long-pulse magnet
using field patterns: (b) A, (c) B, and (d) C. These data are compared against d�/dB, as determined from the experimental isentropes [Fig. 6(d)],
in (e), (f), and (g). Data are labeled by the initial T prior to the field sweep and the curves are offset for clarity.

B̃ = gμBB, such that the singlet-triplet gap is closed when
B̃ = J . The partition function (in terms of β = 1/kBT ) is

Z = 1 + e−βJ (1 + 2 cosh βB̃), (C1)

and the energy (U = −∂ lnZ/∂β) is given by

U = e−βJ

[
J (1 + 2 cosh βB̃) − 2B̃ sinh βB̃

1 + e−βJ (1 + 2 cosh βB̃)

]
. (C2)

The heat capacity (Cmag = dU/dT ) is then

Cmag

kBβ2
= e−βJ

[
f (J,B̃)

1 + e−βJ (1 + 2 cosh βB̃)

]

−e−2βJ

[
J (1 + 2 cosh βB̃) − 2B̃ sinh βB̃

1 + e−βJ (1 + 2 cosh βB̃)

]2

, (C3)

where

f (J,B̃) = J 2(1 + 2 cosh βB̃) − 4B̃J sinh βB̃

+2B̃2 cosh βB̃. (C4)

The simulated heat capacity of independent dimers
[Fig. 11(a)] exhibits a broad peak at kBT = 0.35J when B = 0.
The temperature of this maximum is initially suppressed
as magnetic field is applied. For B̃ > 0.7J , two distinct
anomalies become apparent: (i) a low-temperature peak which
moves to T = 0 as the energy gap is closed [see the energy-
level diagram in Fig. 3(c)]; and (ii) a broader feature that
moves to progressively higher temperatures as B̃ increases.
When B̃ = J , the heat capacity exhibits a single maximum at
kBT = 0.61J .

For B̃ � J [Fig. 11(b)], a low-temperature peak in Cmag(T )
is recovered when the energy gap reopens. This feature tracks
to higher temperatures as the field is raised, catching up to and
then merging with the high-temperature Schottky anomaly at
B̃ = 1.5J . The heat capacity Cmag(T ) then exhibits a single
broad peak, whose amplitude and temperature both become
greater as B̃ increases further.

For B̃ �= J , the high-T limit of Smag approaches R ln 4
per dimer [Fig. 11(c)]. This is consistent with the change
from a populated singlet ground state at low temperatures
to the thermal population of all four spin states at higher
temperatures. If, however, B̃ = J , there is a doubly degenerate
ground state and the entropy change per dimer is consequently
only R ln 4 − R ln 2 = 1

2R ln 4.
The calculated entropy of the system of independent dimers

is plotted across the B̃-T plane in Fig. 12(a). Since the change
in Smag on cooling for B̃ = J is half of the full entropy
available, the constant entropy contours (isentropes, white

FIG. 11. Simulated heat capacity for independent dimers using
Eqs. (C3) and (C4) for (a) B̃ � J and (b) B̃ � J , where B̃ = gμBB.
(c) Calculated entropy (in units of Rln4) for independent dimers and
selected fields in the range 0 � B̃/J � 2.
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FIG. 12. (a) Calculated Smag per dimer (colormap, in units of
Rln4) across the B̃-T plane (B̃ = gμBB) for a system of independent
dimers, deduced by integrating the heat capacity data as C/T from
Fig. 11. Solid lines are constant entropy contours. Dashed lines are
the energies of the dimer spin states. (b) Entropy in the B̃-T plane,
using the heat capacity data in the restricted field ranges of B̃ � 0.9J

and B̃ � 1.1J only.

lines) exhibit a large spike at this critical field. In real systems,
small perturbations will prevent a degenerate ground state from
being perfectly realized. Consequently, the large spike in the
isentropes is unlikely to be observed. To remove this artifact
in the data, the contours in Fig. 12(b) are constructed by using
the simulated heat capacity for B̃ � 0.9J and B̃ � 1.1J only,
then interpolating Smag over the critical field B̃ = J .

2. Two-dimensional dispersion

For exchange-coupled dimers, the excited triplet states
develop a dispersion relation. This is found by considering the
geometry of the interdimer exchange interactions [Fig. 13(a)],
and is included in the simulation of the heat capacity using the
transformation J → J + 2J ′ cos kx cos ky in Eq. (C2) [here
k = (kx,ky) is the dimensionless triplon wave vector]. An
average energy is then determined from

〈U 〉 =
∑

kx

∑
ky

U (kx,ky)�kx�ky∑
kx

∑
ky

�kx�ky

, (C5)

where the discrete sampling of k states runs over 101×101
evenly spaced values spanning the band of excited states
[Fig. 13(b)]. Each ki (i = x,y) value is considered in the
range [−π,π ]. The heat capacity is found numerically from
Cmag = d〈U 〉/dT and the simulation results with J ′ = 0.28J

are discussed in the main text [Fig. 6(e)]. Isentropes for this
model are constructed following the procedure outlined in the
previous section.

3. Three-dimensional dispersion

Given the geometry of the interlayer interactions
[Fig. 13(c)], a three-dimensional dispersion for the triplon
excitations can be considered by using the transforma-
tion J → J + 2J ′ cos kx cos ky + 2J ′′ cos(ky/2) cos(kx/4 −
kz/4) in Eq. (C2). The critical fields of the system now occur
at

B̃c1,2 = J ∓ 2(J ′ + J ′′). (C6)

FIG. 13. (a) Schematic geometry of the intraplane exchange net-
work. Dimer centers (black circles) are separated by ±(a′/2)±(b′/2).
(b) The energy of the dispersive triplon states Et = J +
2J ′ cos kx cos ky , in the kx-ky plane. Solid lines are constant energy
contours. (c) Schematic of the staggered interlayer stacking of dimers.
The interlayer interactions between dimer centers act along the
vectors ±(a′/4) ∓ (c′/4) + (b′/2) and ±(a′/4) ∓ (c′/4) − (b′/2). (d)
Histograms of the proportion of states sampled as a function of the
triplon energy (Et) in the calculation of the heat capacity using the 3D
dispersion. Here the critical fields [Eq. (C6)] were fixed and interlayer
interactions strengths (J ′′/J ′) were considered in the range 0 to 1.
The dashed lines show the width of the energy bins (�Ebin = 0.14J ′)
used in the construction of the histograms. Each curve approximates
to the density of states for the triplon excitations for a particular J ′′/J ′

ratio.

We initially consider a dimer network with J ′ = 0.28J and
J ′′ = 0 and study the effects on the heat capacity when the
ratio J ′′/J ′ is raised from 0 to 1, while the critical fields of
the system remain fixed. In each calculation, the energy of the
system was found by averaging over unique combinations of
discretely sampled k states. Here each ki (i = x,y,z) value
was taken at 31 evenly spaced values from [−π,π ].

Histograms of the proportion of excited states sampled at
each energy within the triplon bands [Fig. 13(d)] show that
dispersionless triplons are the most frequently sampled states
in the simulations for all values of J ′′/J ′ considered. The
main effect of raising J ′′ is to increase the proportion of these
dispersionless states in the bands.

The simulated Cmag(T ) data for the three-dimensional
model exhibits a single broad maximum in zero field
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FIG. 14. Simulated heat capacity for a network of interacting dimers with a three-dimensional dispersion relation. Data are shown for fixed
applied fields: (a) B̃/J = 0, (b) B̃/J = 0.5, (c) B̃/J = 1, (d) B̃/J = 1.5, and (e) B̃/J = 2, where B̃ = gμBB. Colors indicate data calculated
at different interlayer interaction strengths in the range 0 � J ′′/J ′ � 1 [legend in (a)] and dashed arrows indicate the trends of features in the
data in the direction of increasing J ′′. (f) Measured heat capacity of Cu(pyz)(gly)ClO4. Colors indicate data collected at different applied fields
μ0H with the approximate value of B̃/J given in brackets.

[Fig. 14(a)]. As J ′′/J ′ is raised, the effect of decreasing the
proportion of states at the triplon-band extrema [Fig. 13(d)] is
to push this broad feature to smaller values of kBT/J . When
B̃/J = 0.5, the energy gap to the singlet state is reduced and
the height of the broad maximum is suppressed [Fig. 14(b)].
The effects of a greater interlayer interaction at this field are
qualitatively similar to the zero-field case.

For B̃/J = 1, Cmag(T ) for purely two-dimensional net-
works (J ′′ = 0) exhibits a Schottky anomaly and an additional
shoulder at lower temperatures [Fig. 14(c)]. Introducing J ′′
enhances the temperature of the Schottky anomaly peak.
As a result, the low-temperature shoulder becomes better
distinguished and starts to be resolvable as an independent peak
when the interdimer interactions reach J ′′ = J ′. For greater
values of B̃ [Figs. 14(d) and 14(e)], the general trend is for
changes in Smag to occur at slightly lower temperatures as the
value of J ′′/J ′ is enhanced, yielding Schottky anomalies in
the heat capacity that are observed at smaller values of kBT/J .

The measured heat capacity of Cu(pyz)(gly)ClO4 [repro-
duced in Fig. 14(f)] shows field-induced λ peaks bounding an
XY ordered phase. The occurrence of a long-range ordered

phase supports the conclusion that finite interlayer interactions
exist in this material. For B̃/J = 1.4 and 1.6, a shoulder in
the measured heat capacity at temperatures below the main
Schottky anomaly is evident in the data. However, this feature
is not so pronounced that it can be identified as a separate peak.
By comparing this result to the calculated Cmag(T ) traces at
similar magnetic fields [Fig. 14(c)], the occurrence of a small
shoulderlike feature in the heat capacity of the real material
suggests the data are consistent with a relatively small value
of J ′′/J ′ in the real system.

Lastly, we note the heat-capacity model for dimers with
a two-dimensional model underestimates the strength of
the MCE observed in the real material (see main text).
The effect of including J ′′ in the heat-capacity calcula-
tion does not sufficiently increase the temperature of the
Schottky anomalies across the studied field range to account
for this discrepancy. This implies that, despite the good
agreement between data and simulation, there are addi-
tional contributions to the spin entropy of Cu(pyz)(gly)ClO4

that are not accounted for by our simple thermodynamic
model.
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024404-11

https://doi.org/10.1038/nphys892
https://doi.org/10.1038/nphys892
https://doi.org/10.1038/nphys892
https://doi.org/10.1038/nphys892
https://doi.org/10.1146/annurev-conmatphys-062910-140546
https://doi.org/10.1146/annurev-conmatphys-062910-140546
https://doi.org/10.1146/annurev-conmatphys-062910-140546
https://doi.org/10.1146/annurev-conmatphys-062910-140546
https://doi.org/10.1126/science.285.5436.2110
https://doi.org/10.1126/science.285.5436.2110
https://doi.org/10.1126/science.285.5436.2110
https://doi.org/10.1126/science.285.5436.2110
https://doi.org/10.1103/RevModPhys.86.563
https://doi.org/10.1103/RevModPhys.86.563
https://doi.org/10.1103/RevModPhys.86.563
https://doi.org/10.1103/RevModPhys.86.563
https://doi.org/10.1063/1.3554314
https://doi.org/10.1063/1.3554314
https://doi.org/10.1063/1.3554314
https://doi.org/10.1063/1.3554314
https://doi.org/10.1142/S0217984914300178
https://doi.org/10.1142/S0217984914300178
https://doi.org/10.1142/S0217984914300178
https://doi.org/10.1142/S0217984914300178
https://doi.org/10.1103/PhysRevLett.96.077204
https://doi.org/10.1103/PhysRevLett.96.077204
https://doi.org/10.1103/PhysRevLett.96.077204
https://doi.org/10.1103/PhysRevLett.96.077204
https://doi.org/10.1038/nature11406
https://doi.org/10.1038/nature11406
https://doi.org/10.1038/nature11406
https://doi.org/10.1038/nature11406


J. BRAMBLEBY et al. PHYSICAL REVIEW B 95, 024404 (2017)
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