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1.  Introduction

Materials in which magnetic rare-earth ions occupy a pyro-
chlore lattice—a network of corner-sharing tetrahedra—have 
proved rewarding systems in which to study unusual types 
of magnetic matter. The diverse magnetic states observed in 
this class of materials include spin ices [1, 2], spin liquids 
[3, 4], fractionalised order [5], and complex long-range order 
[6, 7]. In general terms, the common origin of these states 
is the low connectivity of the tetrahedral building-blocks of 
the pyrochlore lattice (figure 1). Depending on the interplay 
of single-ion physics and magnetic interactions, there can be 

too few constraints to enforce a unique ground state, an effect 
called frustration [8]. The presence of many states of similarly 
low energy suppresses conventional magnetic order below the 
Curie–Weiss temperature θCW that defines the net strength of 
magnetic interactions. A canonical model that remains dis
ordered at all temperatures contains only antiferromagnetic 
nearest-neighbour interactions on the pyrochlore lattice, 
yielding a classical spin-liquid ground state [9, 10]. In most 
real materials, however, long-range magnetic order occurs 
at a measurable temperature TN, partially relieving this frus-
tration. Even in these cases, however, materials often show 
a ‘cooperative paramagnet’ regime over a wide temperature 
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range θ< �T TN CW, where frustration has the dominant effect 
on the magnetic properties [8].

The dipolar pyrochlore antiferromagnet Gd2Sn2O7 pro-
vides a canonical example of frustration and its relief through 
long-range order. The crystal structure is cubic (space group 
Fd m3̄ ) with 16 magnetic Gd3+ ions in the conventional unit 
cell [11]. The cubic lattice parameter =a 10.44 Å   at 1.1 K, 
and the lattice connectivity is shown in figure 1. The large 
magnitude of the Gd3+ spin (S  =  7/2) implies that quantum 
effects are minimal. It is known that there are three main terms 
in the spin Hamiltonian. First, an antiferromagnetic nearest-
neighbour exchange interaction ≈−J 0.31  K is indicated by 
the negative value of the Curie–Weiss constant θ ≈−9.6CW  K 
[12]. Second, the large value of S implies that the long-range 
magnetic dipolar interaction is significant, with strength at 
the nearest-neighbour distance of 0.05 K. Third, a single-ion 
anisotropy term ∆≈ 0.14 K has been indicated by electron–
spin resonance measurements [13, 14], and is explained by 
an admixture of excited states with ≠L 0 into the ground-
state multiplet. Theoretical studies of the dipolar Heisenberg 
model indicate that a degeneracy of ground states exists at the 
mean-field level [15]; however, Palmer and Chalker showed 
that inclusion of higher-order terms in a free-energy expan-
sion stablises a four-sublattice ground state with magnetic 
propagation vector =k 0 0 0( ) [16]. This structure, which we 
will call the ‘Palmer–Chalker state’, is shown in figure 1. In 
Gd2Sn2O7, a first-order transition to an ordered state occurs 
at =T 1.0N  K ( θ≈ 10CW / ) [17], and neutron-diffraction meas-
urements have shown that this is indeed the Palmer–Chalker 
state [18, 19]. Recently, debate has focussed on the possible 
presence of spin fluctuations at temperatures much lower 

than TN [14, 20–22]. Much less attention has been given to 
the paramagnetic phase; however, it is known to be strongly 
correlated, with approximately 60% of the total magnetic 
entropy associated with the development of short-range cor-
relations above TN [17].

Here, we use neutron-scattering experiments on a poly-
crystalline sample of Gd2Sn2O7 to investigate its coopera-
tive paramagnetic phase at 1.1 K. Our paper is structured as 
follows. In section 2, we summarise our experimental pro-
cedures, which employed neutron polarisation analysis to 
isolate the magnetic scattering [23]. In section 3, we intro-
duce the two methods we use to analyse our experimental 
data. First, we employ reverse Monte Carlo refinement, which 
is data-driven and ‘model independent’ in the sense that it 
does not involve a spin Hamiltonian. Second, we perform 
extensive Monte Carlo simulations to investigate possible 
models of exchange interactions in Gd2Sn2O7 [18]. In sec-
tion 4, we explain our main results, which are as follows. We 
find that our diffuse-scattering data are highly sensitive to 
weak further-neighbour exchange interactions, and are com-
patible with either antiferromagnetic next-nearest-neighbour 
interactions J2 or ferromagnetic ‘cross-hexagon’ interac-
tions J3b that connect third neighbours across hexagonal 
loops (figure 1); in either case, the further-neighbour inter-
actions are  ∼0.5% of the nearest-neighbour exchange J1. We 
calculate that single-crystal diffuse-scattering patterns for 
Gd2Sn2O7 show prominent rods of diffuse scattering along 
[111] reciprocal-space directions. We explain these rods 
in terms of strong antiferromagnetic correlations along the 
subset of 110⟨ ⟩ directions that connect a given spin with its 
nearest neighbours. Finally, we demonstrate that the spin 
correlations in Gd2Sn2O7 are highly anisotropic, and corre-
lations parallel to one type of third-neighbour separation are 
particularly sensitive to the incipient long-range order. We 
conclude in section 5 with suggestions for future work.

2.  Experimental

Neutron-scattering data were collected on the same poly-
crystalline sample of Gd2Sn2O7 measured previously [19]; 
the sample mass was 0.57 g. We measured at a temperature 
of 1.1 K, which is in the correlated paramagnetic regime 
just above TN. Measurements were performed using the 
D7 diffractometer at the Institut Laue-Langevin, Grenoble, 
France [24]. The incident neutron wavelength was 4.8 Å, 

allowing a reciprocal-space range 
−

Q0.15 2.5 Å
1⩽ ⩽    to be 

observed. The technique of xyz neutron polarisation anal-
ysis [23] was used to isolate the magnetic scattering of 
interest from the nuclear and spin-incoherent contributions. 
The data were corrected for detector and polarisation effi-
ciency using measurements of standard samples (vanadium 
and amorphous silica, respectively), and were placed on an 
absolute intensity scale (with units of barn sr−1 Gd−1) by 
normalising to the incoherent scattering from a vanadium 
standard.

Figure 1.  Arrangement of Gd3+ ions (black circles) in Gd2Sn2O7. 
The tetrahedra of the pyrochlore lattice are shown in grey. Magnetic 
interaction pathways from an arbitrarily-chosen central atom (large 
red circle) are shown as red arrows and labelled with their exchange 
interaction (J1, J2, J3a, and J3b). A spin arrangement observed in 
Gd2Sn2O7 below its magnetic ordering temperature (‘Palmer–
Chalker state’) is shown by blue arrows on a single tetrahedron; 
the complete structure is obtained by repeating this arrangement 
on all tetrahedra with the same orientation. The lattice parameter 

 =a 10.44 Å.
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3.  Analysis

3.1. Theory

An important advantage of neutron scattering is that it directly 
measures the spin-pair correlation function, which can allow 
the underlying magnetic interactions to be inferred. In our 
measurement, the energies of the scattered neutrons are not 
analysed, and the incident neutron energy (41 K) is much 
larger than the sample temperature and the energy-scale of 
magnetic interactions ( θ| | ≈ 9.6CW  K [12]). Under these con-
ditions, the measurement integrates over energy transfer 
(‘quasistatic approximation’) and is sensitive to the instanta-
neous spin-pair correlations. The dependence of the neutron-
scattering intensity on scattering vector Q is given by [25]

∑µ= ⋅ ⋅⊥ ⊥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

I C f Q
N

Q S S Q r
1

exp i ,
i j

i j ij
2

,

( ) [ ( )] ( )� (1)

where f(Q) is the Gd3+ magnetic form factor [26], 
µ = +g S S 1( )  is length of the Gd3+ magnetic moment, 

( / )γ= =C r 2 0.07265n e
2  barn is a constant; = −r r rij j i is 

the vector connecting atoms i and j; Ŝ is a spin-7/2 operator 
divided by its magnitude +S S 1( ) , which in the classical 
approximation is replaced by a vector of unit length; and 
= − ⋅⊥S S S Q Qˆ ( ˆ ˆ ) ˆ  is the component of normalised spin 

perpendicular to Q. Since our measurement was performed 
on a powder sample, we spherically average (1) to obtain 
the dependence of the intensity on the length of the scat-
tering vector = | |Q Q . An analytic expression for the powder-
averaged intensity is given by [27, 28]
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in which

= ⋅ − ⋅ ⋅A S S S r S rij i j i ij j ij
ˆ ˆ ( ˆ ˆ )( ˆ ˆ )� (3)

= ⋅ ⋅ − ⋅B S r S r S S3 ,ij i ij j ij i j( ˆ ˆ )( ˆ ˆ ) ˆ ˆ� (4)

are spin-correlation coefficients, and = | − |r r rij j i . Importantly, 
the presence of the vectors rij in the spin-correlation coeffi-
cients shows that diffuse-scattering data are still sensitive to 
magnetic anisotropy after powder averaging [27].

3.2.  Model-independent analysis

We analyse the magnetic diffuse-scattering data for Gd2Sn2O7 
using two approaches. First, we employ reverse Monte 
Carlo (RMC) refinement [29, 30], as implemented in the 
SPINVERT program [28], which uses the Metropolis algo-
rithm to fit spin configurations directly to the experimental 
diffuse-scattering data. The ‘cost function’ minimised during 
the refinement is given by

∑χ
σ

=
−

=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟W

I sI

i

N
i i

i

2

1

expt calc 2
d

� (5)

where Ii
expt is the magnetic neutron-scattering intensity mea-

sured experimentally at point i, Ii
calc is the intensity calculated 

from (2), σi is the experimental uncertainty, Nd is the number 
of data points, W is an empirical weighting factor, and s is a 
refined overall intensity scale factor. Refinements were ini-
tialised from random spin arrangements and were run for 
500 proposed moves per spin; no further reduction in χ2 was 
observed after this time. A proposed move involved making 
the replacement

δ
δ| |

+
| + |

S
S

S s
S s

,→� (6)

where S is a randomly-chosen spin vector, s is a unit vector 
drawn at random from the uniform spherical distribution, and 
δ = 0.2. Refinements were performed using spin configura-
tions of size × ×6 6 6 conventional cubic unit cells (3456 
spins), and 80 separate simulations were averaged to generate 
the results shown below. The RMC approach does not include 
a model of the magnetic interactions, but instead yields spin 
configurations compatible with three constraints: the exper
imental diffuse-scattering data, the pyrochlore lattice occu-
pied by the Gd3+ ions, and the fixed length of the Gd3+ spins 
[28, 30]. Because refinements are initialised from random 
spin arrangements, the refined spin configurations will be as 
disordered as possible, provided that the constraints above 
are satisfied [31]. For this reason, comparison of results from 
RMC refinement with predictions of interaction models can 
allow deficiencies in the interaction models to be identified 
and improved models to be built [32].

3.3.  Model-dependent analysis

We then compare the RMC results with the predictions of the 
spin Hamiltonian previously applied to Gd2Sn2O7 [14, 18], 
which contains exchange interactions, a single-ion anisotropy 
term, and the long-range magnetic dipolar interaction. We used 
classical Monte Carlo modelling to simulate the Hamiltonian

ˆ ˆ ( ˆ ˆ )

ˆ ˆ ( ˆ ˆ )( ˆ ˆ )

∑ ∑

∑

= − ⋅ +∆ ⋅

+
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′ ′
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H J
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r
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S S S r S r

1

2

2

3
.

i j
ij i j

i
i i

i j

i j i ij j ij

ij

,

2

1
3

,
3

�

(7)

Here, the Si
ˆ  are classical vectors of unit length, ziˆ  is the local-

111⟨ ⟩ axis connecting the position of spin i to the centres of 
the two tetrahedra that share this spin, ′Jij is the exchange 
interaction between spin vectors i and j, ∆′ is the single-ion 
anisotropy constant, and ′D  is the magnitude of the dipolar 
interaction at the nearest-neighbour distance r1. The prime 
superscripts for ′Jij, ∆′, and ′D  indicate that they relate to 
the classical unit vectors Si

ˆ , whereas parameters that relate 
to spin-7/2 quantum operators are denoted as unprimed Jij, 
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∆, and D. To compare our classical parameters with quantum 
parameters reported in the literature, we assume the relations

= +′J J S S 1 ,ij ij ( )� (8)

∆ = ∆′ S ,2� (9)

=′D DS ,2� (10)

where S  =  7/2 is the spin quantum number. Since the spin 
quantum number does not enter into the classical simula-
tions, these relations are necessarily approximate; however, 
they yield reasonable results in practice. Throughout, we take 

µ µ π= =D g r k4 0.0496 K0 B
2

1
3

B( ) /   , which is determined by 
the value of the lattice parameter ( =a 10.44 Å   at 1.1 K, from 
Rietveld refinement). We also fix ∆ = 0.14 K, as determined 
from electron–spin resonance measurements of the crystal-field 
levels [13, 14]; this term favours spin alignment perpendicular 
to the local- 111⟨ ⟩ axes. We used grid searches to investigate 
the effects of the interactions J1, J2, and J3b shown in figure 1. 
In each case, we used the Metropolis algorithm to simulate 
(7). The long-range nature of the dipolar interaction was han-
dled using Ewald summation [33]. This procedure is compu-
tationally expensive compared to short-ranged interactions, 
which places some constraints on maximum system sizes and 
run lengths. Simulations at 1.1 K were run for 5000 proposed 
moves per spin for equilibration, starting from random spin 
arrangements, and snapshots were then taken every t  =  500 
moves. The spin autocorrelation function was measured to 
check that these snapshots were essentially uncorrelated, with 

⋅ �tS S0 0.05⟨ ( ) ( )⟩ . A proposed spin move was defined by (6), 
with δ chosen so that approximately 50% of proposed moves 
were accepted. To estimate critical temperatures, we adapted 
the run lengths to ensure that at least 4t0 moves were used for 
equilibration and 40t0 moves for calculating thermodynamic 
properties, where t0 is the number of moves required to decor-
relate the system (i.e. for ⋅ tS S0⟨ ( ) ( )⟩ to fall to 0). The trans
ition temperature was then estimated from the location of the 
discontinuity in the specific heat. In the same way as for the 
RMC refinements, Monte Carlo simulations were performed 
using spin configurations of size × ×6 6 6 conventional unit 
cells (3456 spins), which was the largest computationally-fea-
sible system size, and 80 separate simulations were averaged 
to calculate, e.g. scattering patterns.

4.  Results and discussion

4.1.  Fits

Our experimental neutron-scattering data and fits are shown 
in figure 2(a). The main features of the data are a broad and 

asymmetric peak centred at ≈
−

Q 1.1 Å
1  , and a decrease in 

scattering intensity to approximately zero as Q 0→ , indicating 
that strong antiferromagnetic correlations persist over short 
distances. The RMC refinement yields excellent agreement 
with the experimental data (χ =N 1.62

d/ ); such good agree-
ment is expected because the refinement is not constrained 
by a specific interaction model. Turning to Monte Carlo 

simulations of the model Hamiltonian (7), we first vary the 
value of J1 to obtain the best fit, keeping all further-neighbour 
interactions equal to zero; we call this the ‘J1-only model’. 
Figure 2(b) shows the dependence of χ N2

d/  on the value of J1.  
The best fit is obtained for J1  =  −0.248(9) K, which is similar 
to published values obtained from the magnetic susceptibility 
[34] and magnetic specific heat [14]. The quality of the fit 
(χ =N 3.12

d/ ) is already good despite the exclusion of further-
neighbour interactions, which suggests that such interactions 
are indeed small, as previously proposed [19, 35]. However, 
the shape of the main peak is not perfectly reproduced by the 
J1-only model (inset to figure 2(a)). Moreover, the transition 
temperature we obtain for the J1-only model, 0.76(2) K, is 
significantly lower than the experimental result =T 1.0N  K. 
These results indicate that further-neighbour interactions 

Figure 2.  (a) Experimental neutron-scattering data collected on 
Gd2Sn2O7 at 1.1 K (black circles) and fits from reverse Monte 
Carlo refinement (green dotted line), J1-only interaction model 
(blue dashed line), and +J J b1 3  interaction model (red solid line). 
The residuals (data–fit) are shown beneath the data curve (colours 
and line styles as above). The inset shows the diffuse peak on an 
expanded scale. (b) Dependence of the goodness-of-fit parameter 

/χ N2
d on the value of the nearest-neighbour interaction J1 (blue 

circles). (c) Dependence of /χ N2
d on the value of the next- 

nearest-neighbour interaction J2, keeping J1  =  −0.248 K and 
J3b  =  0 fixed (brown diamonds), and dependence of /χ N2

d on the 
value of the third-neighbour interaction J3b, keeping J1  =  −0.248 K 
and J2  =  0 fixed (red squares). Solid lines are quadratic fits.
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may still play a role. An analysis of the exchange pathways 
[18] suggests that the most important such interactions are 
likely to be J2 and J3b. We therefore investigate the effect 
of including either J2 or J3b interactions in addition to J1,  
keeping J1  =  −0.248 K constant in each case. Figure  2(c) 
shows the dependence of χ N2

d/  on the value of J2 or J3b. 
The best fit is obtained for either antiferromagnetic values 
of J2 (with ≡J 0b3 ), or ferromagnetic values of J3b (with  
≡J 02 ). For =J 0.00127b3  K, the model transition temper

ature is increased to 0.88(2) K, in considerably better agree-
ment with the experimental value. We have not attempted a 
two-parameter fit of J1 and J2 or J3b simultaneously, due to 
the computational expense involved, but note that the optimal 
values of J2 and J3b obtained for fixed J1 are extremely small—
approximately 0.5% of J1. The smaller degree of scatter evi-
dent in figure 2(c) compared to figure 2(b) may occur because 
the ordering transition is less strongly first order for non-zero 
J2 or J3b [36]. We interpret these results in terms of the mean-
field phase diagram of the dipolar pyrochlore antiferromagnet 
given in [18]. For = =J J 0b2 3 , the system lies on a boundary 
between competing ordering wave-vectors at the mean-field 
level [15]. For ferromagnetic J2 or antiferromagnetic J3b, the 
first ordered state has non-zero k, whereas for antiferromagn
etic J2 or ferromagnetic J3b—as we find for Gd2Sn2O7—the 
system robustly shows =k 0 0 0( ) order at the mean-field 
level [18, 35]. Since Gd2Sn2O7 actually shows =k 0 0 0( ) 
order, our results suggest two conclusions. First, powder-
averaged magnetic diffuse-scattering data can be sensitive to 
very small further-neighbour exchange interactions. Second, 
the =k 0 0 0( ) order observed experimentally in Gd2Sn2O7 is 
stabilised by further-neighbour interactions, and not just by 
terms beyond mean-field level in a J1-only model.

4.2.  Spin anisotropy

With both RMC refinements and interaction parameters in 
hand, we now investigate the correlated paramagnetic phase 
of Gd2Sn2O7. In what follows, we will consider the RMC 
refinements, the J1-only model, and the +J J b1 3  model (taking 
=J 0.001 27b3  K). As a starting point, we consider the distribu-

tion of spin orientations with respect to the lattice. We expect 

that spins are oriented perpendicular to their local ∈z 1111

3
ˆ ⟨ ⟩ 

axes, because this is favoured by both the dipolar and single-

ion terms. Figure  3 shows the distribution of ⋅S zˆ ˆ obtained 
from RMC refinements, and the J1 and +J J b1 3  models. As 
anticipated, all show preferential spin alignment perpend
icular to ẑ. Stereographic projections (not shown) revealed 
an isotropic distribution of spin orientations perpendicular 
to ẑ, consistent with the absence of symmetry breaking or 
bond-dependent interactions. On the one hand, the degree of 
anisotropy is stronger for the interaction models than for the 
RMC refinements, which may occur because RMC produces 
the most disordered (i.e. most isotropic) spin arrangements 
compatible with experimental data [31]. On the other hand, the 
RMC results highlight that a significant degree of anisotropy is 
required to match the powder data shown in figure 2.

4.3.  Spin correlations: reciprocal space

We now turn to the spin-pair correlations, which we con-
sider first in reciprocal space. While the RMC refinements 
are driven by fitting to powder data, calculation of the single-
crystal I Q( ) is possible because a three-dimensional spin con-
figuration is obtained; we have shown previously [30] that the 
additional constraints of fixed atomic positions and equal spin 
lengths means that this reconstruction is usually successful in 
practice. Figure 4(a) shows I Q( ) from RMC refinement, and 
figures 4(b) and (c) show I Q( ) from the J1-only and +J J b1 3  
models, respectively. In all cases, the scattering in the (hhl) 
plane was calculated from the relevant spin configurations by 
applying (1). The dominant features—observed in both RMC 
refinements and model calculations—are rods of diffuse-scat-
tering intensity along [111] reciprocal-space directions. We 
confirmed that this description in terms of rods is correct by 
calculating I Q( ) in all three dimensions of reciprocal space. 
The similarity of the results from RMC refinements and model 
simulations (figure 4) indicates that it is very likely that rods 
of diffuse scattering would be observed if experiments were 
performed on single-crystal samples of Gd2Sn2O7. In addition 
to the rods themselves, diffuse peaks occur at positions where 
several rods intersect, which are also the positions of magnetic 
Bragg peaks in the Palmer–Chalker state. The strongest such 
peaks occur at 0 0 2{ } positions, where four rods intersect (two 
of which lie within the (hhl) plane shown in figure 4). Weaker 
peaks are observed at {111} positions, where two rods inter-
sect (one of which lies within the (hhl) plane). The {111} and 
0 0 2{ } peaks are strongest for the +J J b1 3  calculation, which 

Figure 3.  Probability distribution of the projection of normalised 
spins onto their local-⟨ ⟩111  axes ẑ, showing results from reverse 
Monte Carlo refinement (green diamonds), J1-only interaction 
model (blue circles), and +J J b1 3  interaction model (red squares). 
The distribution function is normalised so that the area under each 
curve is equal to unity. The directions of the ẑ axes for each site on 
a tetrahedron are shown as black arrows in the inset (top left).
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may indicate the development of critical fluctuations associ-
ated with antiferromagnetic =k 0 0 0( ) order, as we discuss in 
more detail below. Interestingly, very similar [111] rods of dif-
fuse scattering were observed in the ferromagnetic ‘quantum 
spin ice’ candidate Yb2Ti2O7, with the important difference 
that in that material the rods intersect at the 0 0 0( ) and 2 2 2{ } 
positions [37–39]—i.e. those associated with ferromagnetic 
=k 0 0 0( ) order.

4.4.  Spin correlations: real space

To explain the diffuse-scattering features shown in figure 4, 
we consider the spin correlations in real space. In general, 
one-dimensional features (rods) in reciprocal space are gener-
ated by two-dimensional (planar) correlations in real space, 
where the real-space plane is perpendicular to the reciprocal-
space rod. Hence, we look for correlations in {111} planes 
in real space. Each of the four {111} planes contains 50% 
of the nearest-neighbour vectors r1, 25% of the next-nearest-
neighbour vectors r2, and 50% of the cross-hexagon vectors 
r b3 . We therefore expect that the diffuse rods may be asso-
ciated with strong correlations along r1 and/or r b3  directions, 
because these are the most strongly represented directions 
within {111} planes. To test this hypothesis, we define the 
spin correlation function

∑∑⋅ =
⋅

= =N Z
S 0 S r

S S1
,

i

N

j

Z
i j

r1 1

r

⟨ ( ) ( )⟩
ˆ ˆ

� (11)

which is the scalar product of a normalised spin with its neigh-
bour at vector separation r, averaged over the Zr symmetry-
equivalent neighbours and N spins as centres. Figure 5 shows 

⋅S 0 S r⟨ ( ) ( )⟩ parallel to nearest-neighbour, next-nearest neigh-
bour, and cross-hexagon directions (i.e. = nr r1, nr2, and nr b3 , 
respectively, where n is an integer). The sign of ⋅ nS 0 S r1⟨ ( ) ( )⟩ 
alternates according to (−1)n—a likely consequence of the 
dominant antiferromagnetic nearest-neighbour exchange 
interactions—whereas the sign of ⋅ nS 0 S r2⟨ ( ) ( )⟩ is positive for 
all n. Over comparable distances, the correlations parallel to 
r1 are of much greater magnitude than those parallel to r2 and 
r b3 . These trends are consistent across the RMC, J1-only, and 

+J J b1 3  models; taking the J1-only model as an example, the 

ratios ( )〈 ( ) ( )〉
〈 ( ) ( )〉

=⋅
⋅

5.85 6S 0 S r
S 0 S r

1

2
, and =⋅

⋅
2.86 4S 0 S r

S 0 S r
2 1

2
( )〈 ( ) ( )〉

〈 ( ) ( )〉
. It is 

interesting to compare our results for Gd2Sn2O7 with a model 
containing nearest-neighbour Heisenberg exchange inter-
actions only (i.e. D  =  0 and ∆ = 0 in (7)). This model is a 
paradigm of frustrated magnetism: its scattering pattern shows 
‘pinch point’ features and does not show rods of diffuse scat-
tering [8, 9, 40, 41]. Our Monte Carlo simulations of this 
model at �T J reveal that it shows much smaller ratios of 
2.733(9) and 0.732(7), respectively. We therefore suggest that 
rods of diffuse scattering in Gd2Sn2O7 are a consequence of 
strong antiferromagnetic correlations along r1 directions.

We now ask whether the incipient =k 0 0 0( ) ordering is 
evident in real space. As noted above, the correlations along 
r1 and r2 directions are similar for all the models we consider. 
Correlations along the r b3  directions are always very small, 
probably because they are particularly strongly frustrated: the 
Palmer–Chalker structure shows ferromagnetic spin alignment 
at r b3  (figure 1), whereas antiferromagnetic J1 favours antifer-
romagnetic alignment. Despite their small magnitudes, the cor-
relations along r b3  differ strongly between models. The RMC 
model shows ferromagnetic correlation at r b3  followed by 
antiferromagnetic correlations at nr b3  with n  >  1; the J1-only 
model shows the opposite trend; and the +J J b1 3  model shows 
ferromagnetic correlations at all nr b3 . Hence, ⋅ nS 0 S r b3⟨ ( ) ( )⟩ 
for the +J J b1 3  model resembles the Palmer–Chalker state, 
and also resembles the RMC result more closely than the J1-
only model. These results suggest that spin correlations along 
r b3  directions can be particularly sensitive to the structure-
directing effects of further-neighbour interactions. To assess 
this effect in more detail, we fitted ⋅S 0 S r⟨ ( ) ( )⟩  along different 
directions. The correlation function does not follow a simple 
exponential decay, but can be reasonably well described by 

a stretched-exponential form, ⋅ = −
ξ

ζ| |⎡
⎣⎢

⎤
⎦⎥S 0 S r exp r( )⟨ ( ) ( )⟩ , 

with different values of the correlation length ξ and stretching 
exponent ζ along each direction. As anticipated, the correlation 
lengths decrease in the order ξ ξ ξ> �r r r b1 2 3( ) ( ) ( ); e.g. for the 
J1-only model, we obtain values of 2.582 4 Å( )  , 0.90 5 Å( )  , and 
0.02 2 Å( )  , respectively. The stretching exponents also decrease 

Figure 4.  Calculated single-crystal magnetic diffuse-scattering intensity ( )I Q  in the (hhl) reciprocal-space plane at 1.1 K, showing 
calculations from (a) reverse Monte Carlo refinement to experimental powder data; (b) J1-only model; and (c) +J J b1 3  model. All 
calculations are shown on the same intensity scale, and the ¯m m3  diffraction symmetry appropriate for Gd2Sn2O7 above its magnetic 
ordering temperature has been applied.
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in the order ζ ζ ζ> �r r r b1 2 3( ) ( ) ( ); e.g. for the J1-only model, 
we obtain exponents of 0.710(2), 0.57(2), and 0.26(5), respec-
tively. Physically, this means that correlations along r1 direc-
tions are most similar to the exponential decay expected in a 
conventional paramagnet, whereas correlations along r b3  direc-
tions rapidly decay to a value close to zero but have a ‘long 
tail’ at large distances. It is natural to identify the correlations 
along r b3  directions with critical fluctuations, because they 
have a long-range component and are sensitive to the incipient 
ordered state. Hence, our results suggest that correlations in 
Gd2Sn2O7 are highly anisotropic in real space, with critical 
fluctuations occurring selectively along r b3  directions. These 
results are very different to Yb2Ti2O7, which shows nearly iso-
tropic behaviour of the spin-correlation function despite also 
showing rods of diffuse scattering [38], a difference that may 
perhaps be related to the much weaker dipolar interaction in 
Yb2Ti2O7 [42].

5.  Conclusions

Our results suggest several avenues for future work. First, 
single-crystal neutron scattering experiments would allow 
a direct experimental test of our prediction of rod-like dif-
fuse-scattering features. Such experiments are challenging, 
however, because of the difficulty of preparing large single 
crystals of Gd2Sn2O7 and the large neutron-absorption 
cross-section of natural Gd. Perhaps more feasibly, a future 
study of the temperature evolution of the diffuse scattering 
should place even tighter constraints on the energy scales of 
the magnetic interactions. Our observation that the powder 
diffuse-scattering profile is sensitive to the weak further- 
neighbour interactions that select a particular ordered state 
may be relevant to the related materials Gd2Pb2O7 [43], 
Gd2Pt2O7 [44], and Gd2Ti2O7, in which the nature of the 
magnetic order is not yet conclusively established [7, 45, 
46]. Careful measurement of the powder I(Q) could allow 
accurate determination of the further-neighbour exchange 
interactions, allowing the nature of long-range order to 

be predicted in these systems. This may be more straight-
forward for Gd2Ti2O7, because its smaller lattice constant 
(10.17 Å [7] versus 10.44 Å in Gd2Sn2O7) indicates that 
further-neighbour exchange interactions may play a more 
important role. Finally, a fuller understanding of the weak 
further-neighbour interactions Gd2Sn2O7 may prove impor-
tant to model the complex sequence of magnetic phase 
transitions it exhibits as a function of applied magnetic 
field [47].
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