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Special temperatures in frustrated ferromagnets
L. Bovo 1,2, M. Twengström 3, O.A. Petrenko4, T. Fennell5, M.J.P. Gingras6,7,8, S.T. Bramwell1 & P. Henelius3

The description and detection of unconventional magnetic states, such as spin liquids, is a

recurring topic in condensed matter physics. While much of the efforts have traditionally

been directed at geometrically frustrated antiferromagnets, recent studies reveal that sys-

tems featuring competing antiferromagnetic and ferromagnetic interactions are also pro-

mising candidate materials. We find that this competition leads to the notion of special

temperatures, analogous to those of gases, at which the competing interactions balance, and

the system is quasi-ideal. Although induced by weak perturbing interactions, these special

temperatures are surprisingly high and constitute an accessible experimental diagnostic of

eventual order or spin-liquid properties. The well characterised Hamiltonian and extended

low-temperature susceptibility measurement of the canonical frustrated ferromagnet

Dy2Ti2O7 enables us to formulate both a phenomenological and microscopic theory of special

temperatures for magnets. Other members of this class of magnets include kapellasite

Cu3Zn(OH)6Cl2 and the spinel GeCo2O4.
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Models of magnetic frustration on regular lattices have
naturally tended to focus on the case where there is a
single interaction of one sign that is frustrated by the

lattice geometry. Examples include the triangular or kagome
lattice antiferromagnets1–3, the pyrochlore Heisenberg
antiferromagnet4, 5 and spin ice in the near-neighbour approx-
imation, a frustrated ferromagnet6. While there are many real
materials that roughly approximate these ideal models7–9, the
nature of real magnetic interactions is such that a competition
between antiferromagnetic (AF) and ferromagnetic (FM) inter-
actions is commonly encountered. This arises because the
superexchange interaction is fundamentally the difference
between two large numbers—an AF and a FM part—and small
differences in orbital overlap can tip it in one direction or the
other10. Also, the dipole–dipole interaction, which is important in
rare earth systems, has a sign that depends sensitively on direc-
tion. Hence, while near-neighbour interactions are of one sign,
further neighbour interactions may be of the opposite sign. In the
context of a geometrically frustrated lattice, it has recently been
recognised that this competition can produce some interesting
effects, including spin-liquid behaviour11, 12, magnetic fragmen-
tation13, competing ground states14, 15 and spin glass physics16.
Many of these materials show a conspicuous broad peak in χT/C
(where χ is the magnetic susceptibility and C the Curie para-
meter), which is the analogue of the product pV/nRT in gas
thermodynamics, and the focus of this work.

Classical gases exhibit a number of temperature values that
signal transitions between contrasting physical properties17, 18.
We label these ‘special temperatures’ to emphasise that they do
not simply reflect characteristic or typical energy scales. They
include the Boyle and Joule temperatures, with the most notable
one being perhaps the Joule–Thomson (or inversion) tempera-
ture, TJT, below which a gas may be liquefied by the
Linde–Hampson process, which underpins a vast low-
temperature technology. A particularly remarkable aspect of TJT
is how large it is. For example, for nitrogen, TJT= 621 K, even
though the thermally averaged potential energy that gives rise to
the finite TJT accounts for only about one thousandth of the
internal energy of the system. In terms of the van der Waals
equation of state, p= RT

V=n�b � an2
V2 , TJT= 2a/(bR) ≈ 27Tc/4. Hence,

TJT presents a surprising signature of the eventual liquid state in a
temperature regime where at first sight, the intermolecular
interactions are negligible. Until now, the magnetic analogies of
these special temperatures foreshadowing phenomena at much
lower temperature appear not to have been noticed.

In this work we put forward the concept of a class of 'inverting'
frustrated ferromagnets, which exhibit a maximum in χT/C as a
function of temperature. In strong analogy with the theory of
classical gases, we identify the peak in χT/C with a magnetic Joule
temperature, TJ, where the system is quasi-ideal, and the internal
energy U is independent of the magnetisation M, (∂U/∂M)T= 0.
The Joule temperature marks the onset of the low-temperature
antiferromagnetic correlations. In addition, we identify and define
a magnetic Boyle temperature, TB, at which point χT/C= 1, and
the incipient ferromagnetic correlations cross over to anti-
ferromagnetic at low temperature. So while the magnitude of
χT/C can be used to classify magnets as ferromagnets (χT/C > 1)
or antiferromagnets (χT/C < 1)19, 20, we here focus on the special
temperature values (points) of χT/C.

Results
Spin ice as a model inverting magnet. Theoretically, the physics
of special temperatures is hard to expose computationally in
quantum spin systems due to the sign problem21. For frustrated
systems with strong FM interactions, a major challenge is to

control demagnetising effects22. This makes the canonical fru-
strated ferromagnet spin ice6, 7, 23–27 Dy2Ti2O7 a natural starting
point to explore the physics of competing FM–AF interactions. In
this material, near-neighbour dipolar and exchange interactions
average to a ferromagnetic coupling and a mapping to Pauling’s
model of water ice. However, further neighbour exchange and
direction-dependent dipolar interactions provide competing
couplings of opposite sign. By measuring the DC bulk suscept-
ibility to lower temperatures than previously reported and using
carefully crafted defect-free spherical single-crystal samples,
which enables full control of demagnetising issues22, we are able
to identify the special temperatures in this well-studied material.
Dy2Ti2O7 lends itself naturally to this study as it stays close to the
ideal paramagnetic limit (χT/C= 1) over a broad temperature
range and remains a paramagnet well below its Curie–Weiss
temperature on account of its high degree of frustration.

Thanks to the availability of a well-characterised Hamiltonian
for Dy2Ti2O7 (refs.15, 28), we are able to formulate a phenom-
enological model of the susceptibility which exposes the
mechanism that induces the special temperatures and elevates
the effects of minute-frustrated exchange interactions to surpris-
ingly high temperature in this dipolar-coupled material. Further-
more, through an explicit numerical decomposition of the
microscopic Hamiltonian, we demonstrate that these special
temperatures, and eventual antiferromagnetic ordering, are
caused by the weak quadrupolar corrections to the primary
monopolar (dumbbell) Hamiltonian. Our study therefore estab-
lishes χT/C as a measure of weak interaction parameters, which
are otherwise difficult to access experimentally. From another
broad context, the low-temperature susceptibility of spin ice is of
particular interest in relation to ‘topological sector fluctuations’ of
the harmonic component of the magnetisation29, 30. The analogy
with the non-ideal gas allows an interpretation of the new
experimental features in the magnetic susceptibility reported in
this study, and have an appreciable impact on the interesting
properties of spin ice—its residual entropy7, magnetic mono-
poles26 and Coulomb phase27—as discussed below.

Experimental determination of the magnetic susceptibility. A
sphere of diameter 4 mm was commercially hand-cut from a
larger crystal of Dy2Ti2O7 (see refs.30, 31). Experimental condi-
tions were carefully controlled to minimise measurement errors;
see the Methods section. The experimental susceptibility of the
sphere, χexp, was determined from measurements of the magnetic
moment, with a subsequent demagnetising correction to obtain
the shape-independent intrinsic susceptibility, χint,

1
χint

¼ 1
χexp

� N; ð1Þ

using the exact result N= 1/3 for a sphere22, 32.
From now on, we shall focus our discussion on the intrinsic

susceptibility and suppress the 'int' subscript. The experimental
measurement results are shown in Fig. 1. The Curie parameter is

given by C= Nμ0μ
2

3VkB
= 3.92 K for Dy2Ti2O7, where N/V is the ion

density, and μ is the magnetic moment30. Our current
measurements extend the earlier ones30 (where the lowest
temperature was 2 K), down to 0.5 K. The extended temperature
range reveals the important physical phenomena that are the
focus of the present study namely, a peak in χT/C at TJ ≈ 2.2 K,
and a 'transition' from χT/C > 1 to χT/C < 1 at TB ≈ 0.57 K. These
define the magnetic Joule and Boyle temperatures, respectively, as
explained below. Alternatively, susceptibility measurements are
often displayed as 1/χ versus T. In the inset of Fig. 1, we show C/χ
versus T, and note that the gradient at T= TJ intersects the origin,
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hence demonstrating that the temperature-dependent
Curie–Weiss temperature TCW(T) equals zero at T= TJ. In the
next section, we analyse the physical interpretation and
consequences of these experimental results.

Analogy to classical gases. In this section, we explore the ther-
modynamic implications of a maximum in χT/C and propose a
strong analogy to the theory of classical gases. That there is a peak
in χT/C is not entirely surprising given that the sign of the
effective nearest-neighbour interaction in Dy2Ti2O7 is ferromag-
netic, while the eventual expected ordering wave vector is most
likely non-zero15, 24. What is more surprising is the 'peak tem-
perature' where χT/C reaches a maximum. It occurs at T ≈ 2 K, or
about 20 times the expected ordering temperature in Dy2Ti2O7

(refs.15, 24), and a factor 2 or so above the well-studied peak
temperature for the specific heat, which signals the rapid cross-
over from the paramagnetic regime to the spin ice state7, 33–35.
The main aim of this study is to understand the temperature scale
and physical origin of the peak in χT/C shown in Fig. 1.

To start with, we consider the consequences of a peak in χT/C
by introducing the thermodynamic potential

F ¼ S� U=T; ð2Þ

with a total differential

dF ¼ �Ud
1
T

� �
� 1

T

� �
μ0VHintdM: ð3Þ

Cross differentiating with respect to M and 1/T, we obtain the
relation

∂U
∂M

� �
T

¼ μ0V Hint � T
∂Hint

∂T

� �
M

� �
; ð4Þ

which implies

∂U
∂M

� �
T

¼ 0 ! χ þ T
∂χ

∂T

� �
M

¼ 0 ! d χTð Þ
dT

¼ 0: ð5Þ

We therefore find that an extremum in χT/C implies
(∂U/∂M)T= 0. Similarly, it follows that the temperature-

dependent Curie–Weiss temperature, TCW(T) vanishes at the
peak temperature, as shown in the inset of Fig. 1. That the
internal energy, U, is independent of the magnetisation is a
strong and intuitive definition of an effectively ideal non-
interacting system. This is reminiscent of certain special
conditions in gas thermodynamics, the best known defining
the Boyle temperature, where the second virial coefficient
vanishes and the ideal equation of state is obeyed. In fact, we see
in Fig. 1 that there is a special temperature that corresponds to
the Boyle temperature, namely the temperature at which χT/C
equals unity, at TB= 0.57 K.

In the Methods section, we show in detail how p/T for a gas
or H/T for a magnet may be expressed as the sum of the
familiar ideal equation of state (ideal gas law or Curie law,
respectively) plus a non-ideal term, that we label q. In both
cases, the sign of the function q reflects the sign of the net
interaction in the system. Thus, for a gas, qgas is essentially the
virial expansion: qgas=

P1
i¼2 BiðTÞðn=VÞi�1, which for many

purposes may be truncated at the second term (i= 2). In that
case, B2 is an integral over the pair potential uij, where the
integrand depends on the Mayer function e�uij=kT � 1

� �
. The

sign of q ∝ B2 thus indicates the net interaction: positive for
repulsive and negative for attractive. For the Van der Waals gas,
B2= b− a/RT and the net interaction switches sign precisely at
the Boyle temperature TB= a/(bR), reflecting the crossover
from net repulsion at high temperature to net attraction at
low temperature. The critical and Joule–Thomson temperatures
are determined by the same energy scale with numerical
pre-factors 8/27 and 2, respectively. Similarly, for a magnet,
qmag=

P
r≠0 ΓrðTÞ, where Γ(r) is the pair correlation function.

It is therefore positive for net ferromagnetic correlations
(analogous to repulsive interactions in the gas as they tend to
make make M or V larger) and negative for net antiferromag-
netic ones (analogous to attractive interactions in the gas as
they tend to make M or V smaller). Therefore, in both a gas and
a magnet, the Boyle temperature, TB, marks the temperature at
which competing interactions cancel each other to give an
apparently ideal equation of state.

We explore further thermodynamic analogies in the Methods
section while here we simply summarise the main results in
Table 1. In order to work out and understand the microscopic
and phenomenological origin of these results, we begin by
discussing the microscopic models used to describe spin ice in the
next section.

Spin ice models. The interactions in spin ice materials stem
from the ions with magnetic moments μi which reside on the
corners of the pyrochlore lattice of corner-sharing tetrahedra36.
As a result of the nature of the crystal-field doublet ground
state37–40, the magnetic moments are Ising-like40 and confined
to point towards the centres of the adjacent tetrahedra. The
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Fig. 1 Magnetic special temperatures in spin ice, Dy2Ti2O7. Experimental
susceptibility χT/C in blue, with arrows indicating the special temperatures
TJ and TB. The black curve marks the previously determined g–DSM and the
tuned parameter set g+–DSM is shown in red. The inset displays C/χ, and
the solid line demonstrates that TCW(T)= 0 at T= TJ

Table 1 The special temperatures in magnets and gases

Temperature Paramagnet Gas

TB χT/C= 1 pV/nRT= 1
TJ d χT=Cð Þ

dT = 0 ∂ðpV=nRTÞ
∂T

h i
V=n

= 0

TJT d χC=Tð Þ
dT = 0 ∂ðpV=nRTÞ

∂T

h i
p
= 0

Summary and comparison of the Boyle (B), Joule (J) and Joule–Thomson (JT) special
temperatures for a magnet and a gas. The special temperatures listed are all indicators of quasi-
ideality. For spin ice, TJT is infinite, while for the Van der Waals gas, TJ is infinite
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primary magnetic interactions are the dipolar and short-range
exchange interaction, and the materials are modelled by the
dipolar spin ice model (DSM)

H ¼ J1
X
i;jh i

Si � Sj þ Da3
X
i>j

Si � Sj � 3 brij � Si� 	 brij � Sj� 	
r3ij

; ð6Þ

where rij is the distance between spin i and j, D the dipolar
interaction and J1 the nearest-neighbour exchange interaction.
With no dipolar interaction (D= 0) and only nearest-neighbour
exchange, this model reduces to the nearest-neighbour spin-ice
model (NNSI), which describes spin ice quantitatively well down
to about 0.6 K41. The NNSI has a completely degenerate ground
state and does not order. Together, dipolar and nearest-neighbour
exchange interaction lead to the standard dipolar spin-ice model
(s–DSM)35. The dipolar interaction weakly breaks the degeneracy
of the NNSI and induces a transition to an ordered state at very
low temperature. In addition to the nearest-neighbour exchange
interactions J1, the generalised spin ice model (g–DSM) contains
second and third nearest-neighbour interactions J2, J3a and J3b. A
set of parameter values were previously determined (J1= 3.41 K,
J2=−0.14 K, J3a= J3b= 0.025 K), which models a number of
experiments at a quantitative level28.

Another model of high conceptual and physical importance
that elegantly captures salient features of spin ice systems is the
dumbbell model26, obtained by replacing the point-like dipoles of
the spin ice materials by dipoles of finite length. In this manner,
the dipolar ( ) Hamiltonian can be written as the sum of the
monopolar ( ⃝ ) dumbbell model and quadrupolar ( )
corrections26, 42,

Having introduced the models commonly used to describe spin
ice, we are now in a position to model the experimental
susceptibility of Dy2Ti2O7 reported in Fig. 1.

Phenomenological susceptibility model. In order to begin
describing phenomenologically the experimental downturn in χT/

C, we use the Husimi tree solution,

χ0T

C
¼ 2þ 2e2βJeff

2þ e2βJeff þ e�6βJeff
; ð8Þ

for the susceptibility of the NNSI29 as our starting point. The
nearest-neighbour interaction is here denoted by Jeff. We assume
that there is an additive correction to the Helmholtz-free energy
of the NNSI, F 0, and that the correction is quadratic in the
magnetisation M,

F ¼ F 0 �
θM2

2C
: ð9Þ

We take F 0 to be the NNSI-free energy obtained on the
pyrochlore cactus and θ is a coupling parameter. Differentiating
twice with respect to M yields the sought correction to χ0:

χθT

C
¼ χ0T

C
� 1
1� θχ0=C

: ð10Þ

The resulting susceptibility, χθ, is thus a product of χ0 and a
Curie–Weiss like susceptibility (1− θχ0/C)−1. This model con-
tains two parameters (θ and Jeff). In Fig. 2, we show the best fit to
experimental data (θ=−0.277 K, Jeff= 1.531 K), along with the
two separate factors of the product. It is clear that χθ models the
experimental data well. Furthermore, the peak in χT/C arises
from the product of the monotonically decreasing function χ0 and
the monotonically increasing function, (1− θχ0/C)−1. Note that
χ0T/C has a low-temperature plateau close to 2 extending out to a
temperature of about 1 K. It follows that an infinitesimally small,
but finite negative θ induces a peak in χT/C at a temperature O(1)
K. This is the 'mechanism' behind the elevation of TJ to a
surprisingly high temperature by very weak interactions. This
phenomenon is a main result of our study.

The physical origin of θ is perhaps most easily viewed as a
mean-field-like correction arising from beyond nearest-neighbour
interactions and the weak ordering tendencies of the dipolar
interaction. It constitutes a mean-field correction to the (Husimi
tree) mean-field construct, which apparently, works rather well.
In the next section, we discuss the microscopic interpretation of
the θ-correction further.

Finally, we would like to point out that this framework bears a
close resemblance to a demagnetising correction, where χ0 is the
external and χθ the internal susceptibility. By differentiating Eq.
(9) only once, we obtain a relation for the magnetic fields in the
two models,

H ¼ H0 �
θ

C
M; ð11Þ

which has exactly the same form as the definition of the
demagnetising field with the demagnetising factor equal to θ/C.
The demagnetising transformation is a sensitive function of the
demagnetising factor22, and evidently a similar sensitivity arises
in our phenomenological model.

Microscopic susceptibility model. In the present section, we
wish to determine how well our measured susceptibility can be
modelled at a microscopic level and to establish a connection
between our phenomenological model of the previous section and
the microscopic theory. We begin by modelling our experimental
data using the g–DSM model28.

As shown in Fig. 1, the g–DSM parameter set results in a
susceptibility that overshoots our experimental result. We thus
found it necessary to slightly adjust the third nearest-neighbour

0 1 2 3 4 5
0

0.5

1

1.5

2

T (K)

χT
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Fig. 2 Phenomenological susceptibility model for the inverting magnet
Dy2Ti2O7. Husimi tree solution χT/C for the NNSI model in cyan, the
Curie–Weiss correction in black and their product, the best fit to the
phenomenological χθ model (Eq. (10)) in red. Experimental data for
Dy2Ti2O7 are shown as blue filled circles
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parameter to J3a= 0.030 K and J3b= 0.031 K. As can be seen in
Fig. 1, we obtain a close match to the experimental data with this
new parameter set labelled g+–DSM. We checked that such an
adjustment of J3a and J3b leads to almost imperceptible changes in
the neutron structure factor and the specific heat.

Having established a good microscopic model describing the
experimental data, we would like to understand the connection
between our phenomenological χθ model and the microscopic g
+–DSM. In order to do this, we consider the
monopolar–quadrupolar decomposition of the Hamiltonian, Eq.
(7). The dumbbell model, H�, like the NNSI, features perfectly
degenerate spin ice states and a Curie crossover from χT/C= 1 at
high temperature to χT/C= 2 at low temperature29. The
quadrupolar model, , is short ranged, with interactions
decaying as 1/r5 (ref.26). From Eq. (7), it follows that the energy of
the ice states in the dipolar and quadrupolar model are
equivalent, up to a constant shift and, therefore, we expect the
short-range quadrupolar model to capture the low-temperature
behaviour of spin ice. We have numerically decomposed the
dipolar Hamiltonian and simulated these three models for finite
systems. In Fig. 3, we show that the specific heat of the g+–DSM
model is indeed well described as the sum of a low-temperature
part from the quadrupolar model restricted to the ice states and a
high-temperature part calculated from the dumbbell model.

The connection to our phenomenological model χθ follows from

the following observations: Since limT→0 χ ⃝= limT→∞ = 2,

and the low (high) temperature behaviour of is well described

by ( χ ⃝ ), it follows that, to a good approximation,

We therefore note that the mean-field-like correction
(1− θχ0/C)−1 to the Husimi susceptibility is closely related to
the susceptibility of the quadrupolar corrections to the dumbbell
model, χ ⃝ /2, restricted to the ice states. We show in Fig. 4 that
this is indeed a good approximation.

Finally, we note that since the dumbbell model does not order
at any finite temperature, it should correspond to our
phenomenological model with θ= 0. However, a second

nearest-neighbour exchange interaction induces a finite-
temperature transition, which is ferromagnetic for J2 < 0 and
antiferromagnetic for J2 > 0. Numerical access to the dumbbell
model therefore allows us to check how well our phenomen-
ological model captures the transition from an antiferromagnetic
to a ferromagnetic ground state as we tune an additional second
nearest-neighbour J2. As can be seen in Fig. 5, the phenomen-
ological model follows the tuned dumbbell model very closely
right through the point of complete frustration (J2= θ= 0). On
the ferromagnetic side, the phenomenological parameter θ equals
the critical temperature, Tc= θ. On the antiferromagentic side,
one finds that limT!0 χθT=CjT¼�θ¼ 2=3, and in Fig. 5, we see
that the ordering transition in the Monte Carlo simulations
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occurs when χθT/C ≈ 2/3. This relation can therefore be a useful
experimental criterion as to when to expect an ordering
transition. It also provides further evidence that the phenomen-
ological model χθ captures relevant physical aspects of frustrated
ferromagnets.

To summarise, in this section we have thus shown that the
experimental susceptibility is well matched by the g–DSM model
with slightly adjusted third nearest-neighbour parameters (g
+–DSM). This shows that χT/C provides access to interaction
parameters that are otherwise hard to access. In addition, we have
demonstrated that our phenomenological model is a good
description of the microscopic dipolar model for a wide range
of parameters, and that the phenomenological correction term
describing the phase transition arises from the quadrupolar
corrections to the dumbbell model.

Discussion
If spin ice were the only inverting ferromagnet, the notion of
special temperatures could be just a curiosity of limited interest.
However, we have identified a number of compounds which
feature a peak in χT/C. Kapellasite, a proposed quantum spin-
liquid12, is formed of kagome planes and features competing FM
and AF interactions. There is a clear peak in χT/C which, as in the
case of Dy2Ti2O7, hints at an eventual AF ordering. χT/C for the
quantum pyrochlore material Nd2Zr2O7 increases as T is lowered,
but the peak is apparently pre-empted by a phase transition to an
ordered all-in-all-out state43–45. Through Monte Carlo simula-
tions, we have also verified that the well-studied Ising and Hei-
senberg models of classical spins coupled through dipolar
interactions on the cubic lattice features a peak in χT/C, as shown
in Fig. 6. The spinel GeCo2O4 also belongs to this class of mag-
nets46. Finally, χT/C peaks for a number of spin-glass materials
such as the organic κ-(BEDT-TTF)2Hg(SCN)2Br compound16

and EuxSr1−xSySe1−y (ref.47).
We have therefore demonstrated that there exists a class of

inverting frustrated ferromagnets, which feature special tem-
peratures at which the intrinsic competing FM and AF interac-
tions balance and the magnets are quasi-ideal. At TB, the
magnetic Boyle temperature, the ideal equation of state is obeyed,
and at TJ, the magnetic Joule temperature, the internal energy is
independent of the magnetisation. Below TJ, the AF interactions
start to dominate, and the corresponding peak in χT/C is an
indication of eventual AF order, barring further disruptive low-
temperature terms in the Hamiltonian. Since the peak can occur
at a high temperature relative to the eventual ordering tempera-
ture, it is a useful diagnostic feature in the quest for quantum and
classical spin liquids. In a true spin-liquid, the competing FM and
AF interactions should be delicately balanced so that there is no

finite Joule temperature, see Fig. 5. In our case study of Dy2Ti2O7,
the peak in χT/C is caused by weak (quadrupolar) perturbations
to the primary (monopolar) Hamiltonian, and provides a way to
experimentally probe these corrections.

In this context, we also note that a common way to characterise
the level of frustration in magnetic systems with strongly com-
peting interactions is the frustration index f≡ TCW/Tc, see ref.48,
where TCW is the Curie–Weiss temperature and Tc the critical
temperature. However, there are many systems for which this
measure is not suitable, such as low-dimensional systems for
which Tc= 0, or systems with either strongly anisotropic com-
ponents of the g tensor or highly anisotropic exchange49. The
field of highly frustrated magnetism would thus benefit from
other indicators of operating high frustration, which relies on
ratios of temperature scales that are readily experimentally
available, such as the Joule temperature for inverting magnets.

By introducing the concept of special temperatures in
frustrated ferromagnets, we have filled a notable gap in the
well-established thermodynamic analogy between magnets and
classical gases. While our present investigation has focused on
systems featuring a maximum in χT/C, we note that the converse
phenomenon occurs in, for example, ferrimagnetic spin chains50.
In these systems, antiferromagnetic correlations at high tem-
perature cross over to an eventual low-temperature ferromagnet.
The prevalence of such behaviour is a question we leave for future
investigations.

Methods
Susceptibility measurement. The magnetic susceptibility was measured using a
Quantum Design SQUID magnetometer and the crystals were positioned in a
cylindrical plastic tube to ensure a uniform magnetic environment. Measurements
were performed in the reciprocating sample option operating mode to achieve
better sensitivity by eliminating low-frequency noise. The position of the sample
was carefully optimised to minimise misalignment with respect to the applied
magnetic field. In particular, the sphere was measured at different positions and
orientations in order to confirm the isotropic response and to fully reproduce the
results of ref.30.

Low-temperature magnetic susceptibility was measured using a Quantum
Design MPMS SQUID magnetometer equipped with an iQuantum 3He insert51. In
analogy with ref.30, different measurements were made: low-field susceptibility (at
μ0H0= 0.005, 0.01 and 0.02 T) and field-cooled (FC) versus zero-field-cooled
(ZFC) susceptibility. Also, magnetic field sweeps at fixed temperature were
performed in order to evaluate the susceptibility accurately and confirm the linear
approximation. The FC versus ZFC susceptibility measurements involved cooling
the sample to base temperature 0.5 K in zero field, applying the weak magnetic
field, measuring the susceptibility while warming up to 2 K, cooling to base
temperature again and finally re-measuring the susceptibility while warming.
Before switching the magnetic field off, field scans with small steps were performed
in order to estimate the absolute susceptibilities.

To increase the statistics and control for dynamical effects, three measurements
were taken at each temperature before warming to the next step point.
Furthermore, to test the accuracy of the measurement, some data were acquired
with an increased number of raw data points—typically 64 points rather than the
usual 24. In fact, at low temperature, the magnetic moment of the sample is close to
the saturation value of the instrument, especially at μ0H0= 0.02 T. When
measuring under such conditions, it is necessary to increase the number of raw
data points to 64 to maintain consistency between measurements.

Data have been compared with the high-temperature measurements described
in ref.30, in particular in the overlapping region 1.8 ≤ T ≤ 2 K. Without further
manipulation, the two sets of data are in very good agreement with variations of the
order of <0.5%. This can be attributed to the uncertainty in the actual field value in
each of the two instruments, mainly due to the presence of small frozen fields in the
superconducting coils. In Fig. 1, the two sets of measurements were accurately
superimposed, by compensating (<0.5%) the actual applied field value of the low-
temperature measurement.

Magnetic thermodynamics. To make an analogy between magnetic and fluid
thermodynamics, we define X and x as the extensive and intensive mechanical
variable, respectively. For a fluid, X= V (volume) and x= p (pressure) and we
assume the mole number n is fixed. For a magnet, we assume an ellipsoidal sample
and deal with intrinsic properties (post-demagnetising correction). We have x=H,
the internal H-field and X=−μ0VM, where M is the magnetisation. Here, the
minus sign is included to complete the analogy, but it makes no difference to the
following results.
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Fig. 6 Susceptibility for the dipolar Ising and Heisenberg models on the
cubic lattice. Monte Carlo calculation of χT/C for the dipolar Ising
(1000 spins) and Heisenberg (216 spins) models described by Eq. (6) with
J1= 0, Da3= 1 and Si ¼ ±bz (Ising)
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A strong and intuitive definition of an ideal non-interacting system is that
the internal energy depends only on temperature: (∂U/∂X)T= 0. This implies
x− T(∂x/∂T)X= 0 as an equivalent definition of ideality. Integration of the latter
then shows that the non-interacting equation of state is of the form:

x
T
¼ ϕðXÞ: ½non� interacting� ð13Þ

where ϕ is some function. Indeed, this is true for both the ideal gas and the ideal
paramagnet, where the functions in question are ϕmag=M/C, where C is the Curie
constant and ϕgas= nR/V, where R is the gas constant. For a real gas or
paramagnet, we write the equation of state as:

x
T
¼ ϕðXÞ þ qðX;TÞ; ½real� ð14Þ

where the function q is the non-ideal correction. We now define the following
special temperatures: these may not be unique, but we will refer to them in the
singular for clarity.

The Boyle temperature, TB, is defined as the temperature where q= 0, so the
ideal equation of state happens to be obeyed.

The Joule temperature, TJ, is the temperature where (∂U/∂X)T= 0⇒ x
− T(∂x/∂T)X= 0, which indicates that the intensive variable p or H is tangentially
proportional to absolute temperature T. This temperature is infinite for a Van der
Waals gas, but may be finite for some real gases (e.g., helium) and some magnets.

The Joule–Thomson temperature, TJT, is defined as the temperature where:
(∂x/∂T)E= 0⇒ X− T(∂X/∂T)x= 0. where E=U+ xX is the enthalpy. For a
typical gas, TJT is finite at any density, and in this sense, a real gas never reaches the
ideal gas limit. For the magnetic models considered here, TJT is infinite.

We can see that TB and TJ indicate quasi-ideality, where some criteria of ideality
are satisfied. The third special temperature, TJT, indicates that X∝ T tangentially.
This corresponds to quasi-ideality only in the particular case of a gas (V∝ T) and
not in the case of a magnet (M∝ T). Nevertheless, there is a symmetry between TJ

and TJT: both are defined by setting to zero a Legendre transform L½z� ¼
z � Tð∂z=∂TÞ of the intensive variable z → x and the extensive variable z → X,
respectively. Hence, both imply tangential linearity of the corresponding variable
with absolute temperature.

Starting with these Legendre transforms, we can translate the three special
temperatures into conditions on the function Tϕ(X)/x. We are interested in the
magnet in the linear regime at low field and magnetisation, where we can define the
susceptibility χ=M/H, which is a function of T only: χ= χ(T). Hence, for a
magnet, we obtain conditions on χT/C which, in this context, is analogous to
pV/nRT. The Boyle temperatures, TB, are located by χT/C= 1 and pV/nRT= 1.
The Joule temperature, TJ, for a magnet corresponds to an extremum in χT/C as a
function of temperature. The Joule–Thomson temperature, TJT, for a gas at fixed
pressure corresponds to an extremum in pV/nRT. These relations are summarised
in Table 1.

Applicability of the phenomenological model. In order to establish the applic-
ability of the phenomenological χθ model, Eq. (10), we compare it here to the
standard dipolar spin ice model (s–DSM), Eq. (6), which includes the dipolar
interaction D in addition to a nearest-neighbour exchange interaction, J1. In this
model, spin ice behaviour persists up to J1/D < 6.01, and the dipolar interaction
induces a low-temperature phase transition to a 'single-chain' state15, 24. The model
features a corresponding Joule temperature, and as can be seen in Fig. 7, our
phenomenological model describes the susceptibility of the s–DSM remarkably well
down to, and including, the critical temperature Tc, at which χθT=CjT¼�θ� 2=3.

Determination of model parameters. The parameters for the g+–DSM were
chosen in the following manner: J1= 3.41 K and J2=−0.14 K were set to the
previoulsy determined values of the g–DSM28. Then, a χT/C RMS chart was cal-
culated for the deviation between our experimental data and Monte Carlo calcu-
lations as a function of J3a and J3b (see Fig. 8). From the chart, we determined the
point closest to the g–DSM values (J3a= J3b= 0.025 K) located in the minimum
RMS valley. This point is indicated by a yellow ring in Fig. 8, corresponding to the
g+–DSM values (J3a= 0.030 K, J3b= 0.031 K).

Code availability. The custom computer codes used in this study are available
from the corresponding author on reasonable request.

Data availability. The data sets generated and analysed in this study are available
from the corresponding author on reasonable request.
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