

STRUCTURAL CHEMISTRY

Received 6 September 2021
Accepted 20 December 2021

Edited by D. R. Turner, University of Monash, Australia

Keywords: iron(III); carbazone; high spin; tautomerism; crystal structure; magnetic susceptibility.

CCDC reference: 2129820

Supporting information: this article has supporting information at journals.iucr.org/C

Fe ${ }^{\text {III }}$ in a high-spin state in bis(5-bromosalicylaldehyde 4-ethylthiosemicarbazonato- $\left.\kappa^{3} O, N^{1}, S\right)$ ferrate(III) nitrate monohydrate, the first example of such a cationic $\mathrm{Fe}^{\text {III }}$ complex unit

Robyn E. Powell, ${ }^{\text {a,b }}$ Martin R. Lees, ${ }^{\text {c }}$ Graham J. Tizzard ${ }^{\text {d }}$ and Petra J. van Koningsbruggen ${ }^{\text {a,b* }}$

${ }^{\text {a College of Engineering and Physical Sciences, School of Infrastructure and Sustainable Engineering, Department of }}$ Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham, West Midlands, B4 7ET, UK, ${ }^{\mathbf{b}}$ Aston Institute of Materials Research, Aston University, Birmingham, B4 7ET, UK, ${ }^{\text {c }}$ Department of Physics, University of Warwick, Coventry, CV4 7AL, UK, and ${ }^{\mathrm{d}}$ National Crystallography Service, Chemistry, University of Southampton, Southampton, SO17 1BJ, UK. *Correspondence e-mail: p.vankoningsbruggen@aston.ac.uk

The synthesis and crystal structure (100 K) of the title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Br}-\right.\right.$ $\left.\mathrm{N}_{3} \mathrm{OS}\right)_{2} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, is reported. The asymmetric unit consists of an octahedral $\left[\mathrm{Fe}^{\mathrm{III}}(\mathrm{H} L)_{2}\right]^{+}$cation, where $\mathrm{H} L^{-}$is $\mathrm{H}-5-\mathrm{Br}$-thsa-Et or 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate(1-) \{systematic name: 4-bromo-2-[(4-ethylthiosemicarbazidoidene)methyl]phenolate $\}$, a nitrate anion and a noncoordinated water molecule. Each HL^{-}ligand binds via the thione S , the imine N and the phenolate O atom, resulting in an $\mathrm{Fe}^{\mathrm{II}} \mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. This $\left[\mathrm{Fe}(\mathrm{H} L)_{2}\right]($ anion $) \cdot \mathrm{H}_{2} \mathrm{O}$ compound contains the first known cationic $\mathrm{Fe}^{\mathrm{III}}$ entity containing two salicylaldehyde thiosemicarbazone derivatives. The $\mathrm{Fe}^{\mathrm{III}}$ ion is in the high-spin state at 100 K . In addition, a comparative IR spectroscopic study of the free ligand and the ferric complex is presented, demonstrating that such an analysis provides a quick identification of the degree of deprotonation and the coordination mode of the ligand in this class of metal compounds. The variable-temperature magnetic susceptibility measurements ($5-320 \mathrm{~K}$) are consistent with the presence of a high-spin $\mathrm{Fe}^{\mathrm{III}}$ ion with a zero-field splitting $D=0.439$ (1) cm^{-1}.

1. Introduction

The history of $\mathrm{Fe}^{\mathrm{III}}$ spin-crossover compounds goes back to the 1930s when Cambi \& Szegö observed temperaturedependent spin isomerism in iron(III) tris(dithiocarbamate) (Cambi \& Szegö, 1931, 1933). Since then, two main families of $\mathrm{Fe}^{\text {III }}$ spin-crossover systems have been extensively studied: those containing ligands sporting chalcogen donor atoms and those based on multidentate N, O-donating Schiff base-type ligands (van Koningsbruggen et al., 2004; Harding et al., 2016); it has been found that the magnetic interconversion between the low-spin ($\mathrm{S}=1 / 2$) and high-spin ($\mathrm{S}=5 / 2$) state in $\mathrm{Fe}^{\mathrm{II}}$ systems can be triggered by a change in temperature or pressure, or by light irradiation (Hayami et al., 2000; van Koningsbruggen et al., 2004; Hayami et al., 2009; Harding et al., 2016).

Due to their switchable magneto-optical properties, various applications in the fields of molecular electronics and sensing have been suggested for these bistable materials (Létard et al., 2004; Gütlich et al., 2004; Gütlich \& Goodwin, 2004; van Koningsbruggen et al., 2004; Takahashi et al., 2006; Halcrow, 2013; Lefter et al., 2016; Molnár et al., 2018; Senthil Kumar et
al., 2017; Rubio-Giménez et al., 2019; Tissot et al., 2019; Karuppannan et al., 2021). Accordingly, in order to realise the full potential of spin-crossover materials in applications, the quest for knowledge is focused on how to use chemical synthesis in order to tune the spin-transition characteristics such that the compounds can fulfil these particular functions.

Studies carried out by several research groups have demonstrated that R-salicylaldehyde $4 R^{\prime}$-thiosemicarbazones are very versatile ligand systems that enable the tuning of the spin state of the $\mathrm{Fe}^{\mathrm{III}}$ ion (van Koningsbruggen et al., 2004; Phonsri et al., 2017; Powell et al., 2014, 2015, 2020, 2022; Powell, 2016; Yemeli Tido, 2010; Zelentsov et al., 1973; Ryabova et al., 1978, 1981a,b, 1982; Floquet et al., 2003, 2006, 2009; Li et al., 2013, 2016). In spite of this versatility, in all instances the $\mathrm{Fe}^{\mathrm{III}}$ isomer is identical in that the $\mathrm{Fe}^{\mathrm{III}}$ ion is in a distorted $\mathrm{FeS}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ octahedral environment formed by two O, N, S-tridentate ligands, which are geometrically arranged in such a way that the S and O atoms are located in cis positions, whereas the N atoms occupy trans positions, i.e. each tridentate ligand coordinates in an equatorial plane (van Koningsbruggen et al., 2004; Phonsri et al., 2017; Powell et al., 2014, 2015, 2020, 2022; Powell, 2016; Yemeli Tido, 2010; Zelentsov et al., 1973; Ryabova et al., 1978, 1981a,b, 1982; Floquet et al., 2003, 2006, 2009; Li et al., 2013).

It has been demonstrated that the electronic state of an $\mathrm{Fe}^{\text {III }}$ ion surrounded by two such O, N, S-tridentate thiosemicarbazonate ligands depends on the substituents and degree of deprotonation of the R-salicylaldehyde $4 R^{\prime}$-thiosemicarbazone ligands, whereas the identity of the counter-ion and the nature and degree of solvation afford further tuning of the $\mathrm{Fe}^{\mathrm{III}}$ spin state (Powell et al., 2014, 2015, 2020, 2022; Powell, 2016; Yemeli Tido, 2010). We made use of the fact that in solution, the free R-salicylaldehyde $4 R^{\prime}$-thiosemicarbazone ligand $\left(\mathrm{H}_{2} L\right)$ exists in two tautomeric forms, i.e. the thione and thiol forms. Moreover, the ligand may also be present in its neutral, anionic or dianionic form. We established that the formation of a particular type of $\mathrm{Fe}^{\mathrm{III}}$ complex unit, i.e. neutral, monocationic or monoanionic, can be achieved by tuning the degree of deprotonation of the ligand through pH variation of the reaction solution during the synthesis (Powell et al., 2014, 2015, 2020, 2022; Powell, 2016; Yemeli Tido, 2010; Floquet et al., 2009).

For this work, we used 5-bromosalicylaldehyde 4-ethylthiosemicarbazone (abbreviated as $\mathrm{H}_{2}-5-\mathrm{Br}$-thsa-Et), with the correct systematic name for the ligand being 4-bromo-2-[(4ethylthiosemicarbazidoidene)methyl]phenol, whose two tautomeric forms, i.e. the thione and thiol forms, are shown in Scheme 1.

Our present research enlarges the scope for tuning the structure and spin state of $\mathrm{Fe}^{\mathrm{III}}$ compounds of R-salicylaldehyde $4 R^{\prime}$-thiosemicarbazones, as we now report on $[\mathrm{Fe}(\mathrm{H}-5-$

Br-thsa-Et) $\left.{ }_{2}\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, (I) (Scheme 2), where H-5-Br-thsa-Et denotes 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate ($1-$), which contains the first known cationic $\mathrm{Fe}^{\text {III }}$ complex entity containing two salicylaldehyde thiosemicarbazone derivatives. Its structure was determined at 100 K and confirmed that $\mathrm{Fe}^{\mathrm{III}}$ is in the high-spin state. Furthermore, an IR spectroscopic characterization of the free ligand and ferric complex (I) is presented together with a variable-temperature magnetic susceptibility study.

2. Experimental

2.1. Spectroscopic and magnetic measurements

A room-temperature IR spectrum of 5-bromosalicylaldehyde 4-ethylthiosemicarbazone in the range $4000-400 \mathrm{~cm}^{-1}$ was recorded on a PerkinElmer FT-IR spectrometer Spectrum RXI using KBr pellets. IR spectroscopic measurements of (I) in the range $4000-600 \mathrm{~cm}^{-1}$ were carried out at room temperature using an ATR (attenuated total reflectance) PerkinElmer FT-IR Frontier spectrometer.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in DMSO- d_{6} (DMSO is dimethyl sulfoxide) using a Bruker cryomagnet BZH 300/52 spectrometer (300 MHz) with the recorded chemical shifts in δ (in parts per million) relative to an internal standard of tetramethylsilane (TMS).

Measurements of direct current (dc) magnetic susceptibility, χ_{M}, versus temperature, T, were conducted in the temperature range $5-320 \mathrm{~K}$, heating at a rate of $2 \mathrm{~K} \mathrm{~min}^{-1}$ in an applied field, $\mu_{0} H$, of 0.1 T , using a Quantum Design MPMS-5S SQUID (Superconducting Quantum Interference Device) magnetometer. The SQUID magnetometer was calibrated using a standard palladium sample. The backgrounds due to the sample holder and the diamagnetic signal of the sample, estimated using Pascal's constants (Bain \& Berry, 2008), were subtracted from the measured molar magnetic susceptibility χ_{M}.

2.2. Synthesis and crystallization

For the synthesis of 5-bromosalicylaldehyde 4-ethylthiosemicarbazone ($\mathrm{H}_{2}-5-\mathrm{Br}$-thsa-Et), 5-bromosalicylaldehyde ($49 \mathrm{mmol}, 9.85 \mathrm{~g}$) was dissolved in ethanol (80 ml) with constant stirring and added to a solution of 4-ethyl-3-thiosemicarbazide ($49 \mathrm{mmol}, 5.84 \mathrm{~g}$) in ethanol $(40 \mathrm{ml})$. The corresponding mixture was refluxed for 120 min . The resulting solution was cooled to room temperature, the solid isolated by

Table 1
Experimental details.

Crystal data
Chemical formula

M_{r}

Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer

Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
$T_{\min }, T_{\max }$	$0.740,1.000$
No. of measured, independent and	$36848,6477,4297$
\quad observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.088
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.649
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.057,0.130,1.02$
No. of reflections	6477
No. of parameters	360
No. of restraints	6
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
	refinement
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	$0.68,-0.78$

Computer programs: CrystalClear-SM Expert (Rigaku, 2013), CrysAlis PRO (Rigaku OD, 2021), SHELXT2018 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and OLEX2 (Dolomanov et al., 2009).
filtration, washed with ether and dried in a vacuum for 2 d (yield: $14.32 \mathrm{~g}, 47.55 \mathrm{mmol}, 97.0 \%$; m.p. $186^{\circ} \mathrm{C}$). $\mathrm{H}_{2}-5-\mathrm{Br}$-thsaEt is soluble in methanol, acetone and DMSO. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta(\mathrm{ppm}) 11.42(1 \mathrm{H}, s, \mathrm{OH}), 10.28(1 \mathrm{H}$, $s, \mathrm{~S}=\mathrm{C}-\mathrm{NH}), 8.32(1 \mathrm{H}, m, \mathrm{~N}=\mathrm{CH}), 8.66[1 \mathrm{H}, t, \mathrm{~S}=\mathrm{C}-$ $\left.\mathrm{NH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)\right], 6.80-7.38$ (aromatic $\left.3 \mathrm{H}, m, \mathrm{C}-\mathrm{H}\right), 3.60(2 \mathrm{H}$, $\left.p, \mathrm{NH}-\mathrm{CH}_{2}\right), 1.15\left(3 \mathrm{H}, t, \mathrm{NHCH}_{2}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO- d_{6}): $\delta(\mathrm{ppm}) 176.5(\mathrm{C}=\mathrm{S})$, $155.5(\mathrm{C}-\mathrm{O})$, $137.0(\mathrm{C}=\mathrm{N}), 133.2,128.1,122.9,118.2(\mathrm{C}-\mathrm{C}$ aromatic), 110.9 $(\mathrm{C}-\mathrm{Br}), 38.2\left(\mathrm{CH}_{2}\right), 14.8\left(\mathrm{CH}_{3}\right)$. IR $\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3299(\nu \mathrm{OH})$, $3146(\nu \mathrm{NH}), 2990\left(\nu \mathrm{CH}_{3}\right), 2936\left(\nu \mathrm{CH}_{2}\right), 1613(\nu \mathrm{C}=\mathrm{N}), 1601$, $1550(\nu \mathrm{C}=\mathrm{C}), 1237(\nu \mathrm{C}-\mathrm{N}), 1047(\nu \mathrm{C}=\mathrm{S})$.

For the synthesis of $\left[\mathrm{Fe}(\mathrm{H}-5-\mathrm{Br} \text {-thsa-Et })_{2}\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, (I), $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, 0.40 \mathrm{~g})$ was dissolved in distilled water (5 ml). The ligand $\mathrm{H}_{2}-5-\mathrm{Br}$-thsa-Et ($2.0 \mathrm{mmol}, 0.60 \mathrm{~g}$) was dissolved in an ethanol/methanol/water mixture (5:5:1 $v / v / v$) with the addition of dimethylamine ($40 \mathrm{wt} \%$ in water; $10 \mathrm{mmol}, 0.51 \mathrm{ml})$. To this mixture, the $\mathrm{Fe}^{\mathrm{III}}$ salt solution was added dropwise with constant stirring. The resulting darkgreen solution was stirred and heated to $120^{\circ} \mathrm{C}$ for approximately 10 min . The solution was allowed to stand at room temperature until crystals formed. The dark-green microcrystals were isolated by filtration and dried (yield: 0.54 g ,
$0.73 \mathrm{mmol}, 73.2 \%)$. IR (cm^{-1}, ATR): 3313, 3226 ($\nu \mathrm{NH}$), 3047 $\left(\nu \mathrm{CH}_{3}\right), 2997\left(\nu \mathrm{CH}_{2}\right), 1601(\nu \mathrm{C}=\mathrm{N}), 1582,1542(\nu \mathrm{C}=\mathrm{C}$ ring $)$, $1294(\nu \mathrm{C}-\mathrm{O}), 1312(\nu \mathrm{~N}-\mathrm{N}), 819(\nu \mathrm{C}-\mathrm{S}), 867,1352(\nu \mathrm{NO})$.

2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Atoms $\mathrm{H} 10 B$ and $\mathrm{H} 10 A$ of the water solvent molecule were located at idealized geometrical positions and refined using the riding model, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The water molecule was then refined as a rigid group. H atoms bonded to N atoms (H12, H13, H21 and H 22) were located in a difference map and refined riding on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. All other H atoms were included in the refinement in calculated positions, riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ for methine $(-\mathrm{CH}=), \mathrm{C}-\mathrm{H}=0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for methylene $\left(-\mathrm{CH}_{2}-\right)$, and $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl $\left(-\mathrm{CH}_{3}\right) \mathrm{H}$ atoms. Additional details towards the structure refinement of (I) are as follows: the $S M T B X$ solvent-masking routine, as implemented within $O L E X 2$, was used to mask residual electron density from unidentified solvent (Dolomanov et al., 2009). A solvent mask was calculated and 116 electrons were found in four voids per unit cell, with a combined volume of $360 \AA^{3}$. This is consistent with the presence of $0.375 \mathrm{EtOH}, 0.125 \mathrm{MeOH}$ and $0.25 \mathrm{H}_{2} \mathrm{O}$ per asymmetric unit, which accounts for 116 electrons per unit cell. These proportions are an estimate and not all of the solvents are necessarily present, so this estimate has not been included in the structural or moiety formulae.

3. Results and discussion

In solution, the free ligand 5-bromosalicylaldehyde 4-ethylthiosemicarbazone $\left(\mathrm{H}_{2} L\right)$ exists in two tautomeric forms, i.e. the thione and thiol forms, as illustrated in Scheme 1. Consequently, in $\mathrm{Fe}^{\mathrm{III}}$ compounds, the ligand may be present as either of the possible tautomers, and may be neutral, anionic or dianionic. Referring to the thiol tautomer, neutral $\mathrm{H}_{2} L$ has H atoms located on the phenol O atom and the thiol S atom. The first deprotonation step involving the phenol group results in the formation of 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate (1-) (abbreviated as $\mathrm{H} L^{-}$). Subsequent deprotonation yields 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate (2-) (abbreviated as L^{2-}).

The crystal structure of bis[5-bromosalicylaldehyde 4-ethyl-thiosemicarbazonato(1-) $\left.-\kappa^{3} O, N^{1}, S\right]$ ferrate(III) nitrate monohydrate, $\left[\mathrm{Fe}(\mathrm{H}-5-\mathrm{Br} \text {-thsa-Et) })_{2}\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, (I) (Fig. 1), was determined at 100 K . The present compound crystallizes in the orthorhombic space group Pnna. The asymmetric unit is comprised of the $\left[\mathrm{Fe}(\mathrm{H}-5-\mathrm{Br}-\mathrm{thsa}-\mathrm{Et})_{2}\right]^{+}$cation, a nitrate anion and a water solvent molecule, and further ethanol, methanol and water in unknown proportions. To our knowledge, this is the first structure to be reported of a cationic $\mathrm{Fe}^{\text {III }}$ complex entity containing two salicylaldehyde thiosemicarbazone derivatives. Selected geometric parameters are given in Table 2 . The $\mathrm{Fe}^{\mathrm{III}}$ cation is coordinated by two singly depro-

Figure 1
Projection showing the molecular structure and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level.
tonated thione O, N, S-tridentate ligands. The 5 -bromosalicylaldehyde 4-ethylthiosemicarbazonate (1-) ligands are deprotonated at the phenolate O atoms.

The $\mathrm{Fe}^{\mathrm{III}} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$ unit displays a distorted octahedral geometry, as corroborated by the bond angles involving the ligand donor atoms and the Fe 1 atom.

The Fe 1 donor atom distances involving the two tridentate anionic $\mathrm{H}-5-\mathrm{Br}$-thsa-Et ligands are $\mathrm{Fe} 1-\mathrm{S} 11=2.4404$ (15) \AA, $\mathrm{Fe} 1-\mathrm{S} 21=2.4615(14) \AA, \mathrm{Fe} 1-\mathrm{O} 11=1.952(3) \AA, \mathrm{Fe} 1-$ $\mathrm{O} 21=1.944$ (3) $\AA, \mathrm{Fe} 1-\mathrm{N} 11=2.176$ (4) \AA and $\mathrm{Fe} 1-\mathrm{N} 21=$ 2.161 (4) \AA for the bond distances from $\mathrm{Fe}^{\mathrm{III}}$ to the thione S , phenolate O and imine N atoms of the two crystallographically independent ligands. The Fe -donor atom bond distances suggest that the $\mathrm{Fe}^{\mathrm{III}}$ cation in the present compound is in the high-spin state at 100 K . In fact, these bond distances compare rather well to these involving high-spin $\mathrm{Fe}^{\mathrm{III}}$ in $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]$ -[Fe(3-OEt-thsa) $)_{2}$] [3-OEt-thsa is 3-ethoxysalicylaldehyde thiosemicarbazonato(2-)] determined at 100 K , i.e. $\mathrm{Fe} 1-\mathrm{S} 1=$ 2.4320 (6) $\AA, \mathrm{Fe} 1-\mathrm{S} 101=2.4389$ (7) $\AA, \mathrm{Fe} 1-\mathrm{O} 1=1.9806$ (16) \AA, $\mathrm{Fe} 1-\mathrm{O} 101=1.9595(16) \AA, \mathrm{Fe} 1-\mathrm{N} 1=2.167$ (2) \AA and $\mathrm{Fe} 1-$ $\mathrm{N} 101=2.131$ (2) \AA for the bond distances from $\mathrm{Fe}^{\mathrm{III}}$ to the thiol S, phenolate O and imine N atoms of the two crystallographically independent ligands (Powell et al., 2022). In fact, the typical distances for $\mathrm{Fe}-\mathrm{S}, \mathrm{Fe}-\mathrm{O}$ and $\mathrm{Fe}-\mathrm{N}$ bonds are 2.23-2.31, 1.93-1.95 and 1.88-1.96 A, respectively, for low-spin $\mathrm{Fe}^{\mathrm{III}}$ in compounds of formula [cation $\left.(1+)\right][\mathrm{Fe}\{R$-salicylaldehyde $4 R^{\prime}$-thiosemicarbazonato $\left.\left.(2-)\right\}_{2}\right] \cdot x$ (solvent), and $2.40-$ $2.44,1.96-1.99$ and $2.05-2.15 \AA$, respectively, for the corresponding high-spin $\mathrm{Fe}^{\mathrm{III}}$ compounds (van Koningsbruggen et al., 2004), albeit that the $\mathrm{Fe}^{\mathrm{III}}-\mathrm{S}$ distance involves the thiol moiety rather than the thione entity that is present in title compound (I). Variable-temperature magnetic susceptibility measurements $(5-300 \mathrm{~K})$ confirm that the $\mathrm{Fe}^{\mathrm{III}}$ ion in this compound is indeed in the high-spin state over the stated temperature range (vide infra) (Powell, 2016).

Table 2
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Fe} 1-\mathrm{S} 11$	$2.4404(15)$	$\mathrm{Fe} 1-\mathrm{O} 21$	$1.944(3)$
$\mathrm{Fe} 1-\mathrm{S} 21$	$2.4615(14)$	$\mathrm{Fe} 1-\mathrm{N} 11$	$2.176(4)$
$\mathrm{Fe} 1-\mathrm{O} 11$	$1.952(3)$	$\mathrm{Fe} 1-\mathrm{N} 21$	$2.161(4)$
$\mathrm{S} 11-\mathrm{Fe} 1-\mathrm{S} 21$	$98.70(5)$	$\mathrm{C} 28-\mathrm{S} 21-\mathrm{Fe} 1$	$99.60(17)$
$\mathrm{O} 11-\mathrm{Fe} 1-\mathrm{S} 11$	$158.16(11)$	$\mathrm{C} 12-\mathrm{O} 11-\mathrm{Fe} 1$	$134.9(3)$
$\mathrm{O} 11-\mathrm{Fe} 1-\mathrm{S} 21$	$92.89(11)$	$\mathrm{C} 22-\mathrm{O} 21-\mathrm{Fe} 1$	$134.2(3)$
$\mathrm{O} 11-\mathrm{Fe} 1-\mathrm{N} 11$	$83.71(14)$	$\mathrm{C} 17-\mathrm{N} 11-\mathrm{Fe} 1$	$126.8(3)$
$\mathrm{O} 11-\mathrm{Fe} 1-\mathrm{N} 21$	$112.13(14)$	$\mathrm{C} 18-\mathrm{N} 12-\mathrm{N} 11$	$120.4(4)$
$\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{S} 11$	$90.03(11)$	$\mathrm{C} 27-\mathrm{N} 21-\mathrm{Fe} 1$	$126.3(3)$
$\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{S} 21$	$160.48(11)$	$\mathrm{C} 28-\mathrm{N} 22-\mathrm{N} 21$	$121.2(4)$
$\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{O} 11$	$84.89(15)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 17$	$124.1(5)$
$\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{N} 11$	$114.03(15)$	$\mathrm{O} 11-\mathrm{C} 12-\mathrm{C} 11$	$123.0(5)$
$\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{N} 21$	$83.82(14)$	$\mathrm{N} 11-\mathrm{C} 17-\mathrm{C} 11$	$124.9(5)$
$\mathrm{N} 11-\mathrm{Fe} 1-\mathrm{S} 11$	$79.00(11)$	$\mathrm{N} 12-\mathrm{C} 18-\mathrm{S} 11$	$121.3(4)$
$\mathrm{N} 11-\mathrm{Fe} 1-\mathrm{S} 21$	$84.89(11)$	$\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 27$	$123.5(4)$
$\mathrm{N} 21-\mathrm{Fe} 1-\mathrm{S} 11$	$88.32(11)$	$\mathrm{O} 21-\mathrm{C} 22-\mathrm{C} 21$	$121.5(4)$
$\mathrm{N} 21-\mathrm{Fe} 1-\mathrm{S} 21$	$79.05(11)$	$\mathrm{N} 21-\mathrm{C} 27-\mathrm{C} 21$	$125.6(4)$
$\mathrm{N} 21-\mathrm{Fe} 1-\mathrm{N} 11$	$157.80(15)$	$\mathrm{N} 22-\mathrm{C} 28-\mathrm{S} 21$	$120.9(4)$
$\mathrm{C} 18-\mathrm{S} 11-\mathrm{Fe} 1$	$99.81(17)$		

The tridentate ligands in (I) coordinate to the $\mathrm{Fe}^{\mathrm{III}}$ cation to give an $\mathrm{Fe}^{\mathrm{III}} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$ octahedral environment, forming six- and five-membered chelate rings. The values of the r.m.s. deviations from the least-squares planes of the atoms comprising the five-membered chelate rings ($\mathrm{Fe} 1 / \mathrm{N} 11 / \mathrm{N} 12 / \mathrm{C} 18 / \mathrm{S} 11$ and $\mathrm{Fe} 1 / \mathrm{N} 21 / \mathrm{N} 22 / \mathrm{C} 28 / \mathrm{S} 21$) are 0.071 and $0.007 \AA$, respectively; the corresponding values for the six-membered chelate rings ($\mathrm{Fe} 1 /$ $\mathrm{N} 11 / \mathrm{C} 17 / \mathrm{C} 11 / \mathrm{C} 12 / \mathrm{O} 11$ and $\mathrm{Fe} 1 / \mathrm{N} 21 / \mathrm{C} 27 / \mathrm{C} 21 / \mathrm{C} 22 / \mathrm{O} 21$) are 0.073 and $0.102 \AA$, respectively. These geometric features are associated with $\mathrm{O} 11-\mathrm{Fe} 1-\mathrm{N} 11$ and $\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{N} 21$ bite angles of 83.71 (14) and $83.82(14)^{\circ}$, respectively; as expected, the bite angles of the six-membered chelate ring are larger than those of the five-membered chelate ring [$\mathrm{S} 11-\mathrm{Fe} 1-$ $\mathrm{N} 11=79.00(11)^{\circ}$ and $\left.\mathrm{S} 21-\mathrm{Fe} 1-\mathrm{N} 21=79.05(11)^{\circ}\right]$. The

Figure 2
Projection showing the hydrogen-bonding interactions of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) $x+1,-y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $x-\frac{1}{2}, y,-z+1$; (iii) $x,-y+\frac{1}{2},-z+\frac{3}{2}$.]
conformations of the five- and six-membered chelate rings of (I) are such that there is no major puckering.

5-Bromosalicylaldehyde 4-ethylthiosemicarbazone appears to be in its thione form, i.e. it is deprotonated at the phenolate O atoms (O 11 and O 21) and possesses a H atom on the hydrazinic N atoms (N 12 and N 22). The protonation of the hydrazinic N atoms (N 12 and N 22) confirms the presence of the thione form of the tautomer, which is corroborated by the $\mathrm{C}=\mathrm{S}$ bond distances of the 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate $(1-)$ ligands being closer to those having a $\mathrm{C}=\mathrm{S}$ bond order of two. The $\mathrm{C}-\mathrm{S}$ bond distances are $\mathrm{C} 18-$ $\mathrm{S} 11=1.692$ (5) \AA and $\mathrm{C} 28-\mathrm{S} 21=1.698$ (5) \AA. Furthermore, electron delocalization over the five-membered chelate ring involving each ligand is inferred from the values for the $\mathrm{N}-\mathrm{N}$ and $\mathrm{C}-\mathrm{N}$ bond distances of each ligand that is coordinated to the $\mathrm{Fe}^{\text {III }}$ cation. These bond distances are indicative of a bond order greater than one, i.e. the $\mathrm{N} 11-\mathrm{N} 12$ and $\mathrm{N} 21-\mathrm{N} 22$ bond distances are 1.396 (6) and 1.376 (5) \AA, respectively, and the $\mathrm{N} 12-\mathrm{C} 18$ and $\mathrm{N} 22-\mathrm{C} 28$ bond distances are 1.349 (6) and 1.352 (6) Å, respectively.

The hydrogen-bonding interactions of (I) are listed in Table 3 and displayed in Fig. 2. The nitrate anion is involved in hydrogen-bonding interactions with the 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate (1-) ligand. These hydro-gen-bonding interactions include terminal atoms N13 and N23 of the ligand forming contacts with nitrate O atoms, O 203 and $\mathrm{O} 201^{\text {iv }}$ [symmetry code: (iv) $x-1,-y+\frac{3}{2},-z+\frac{3}{2}$], respectively. Atom N12 of the ligand forms an $\mathrm{N} 12-\mathrm{H} 12 \cdots \mathrm{O} 202$ contact with nitrate atom O202. Also, the nitrate anion forms a hydrogen-bonding interaction with water atom $\mathrm{O} 101^{\text {ii }}$ [symmetry code: (ii) $x-\frac{1}{2}, y,-z+1$]. Therefore, the nitrate anion is involved in two hydrogen-bonding ring systems which connect the $\mathrm{Fe}^{\text {III }}$ units. The first ring system is formed between two $\mathrm{Fe}^{\text {III }}$ units, two water solvent molecules and a nitrate

Figure 3
Projection showing the unit cell of (I). Displacement ellipsoids are drawn at the 50% probability level.

Table 3
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 12-\mathrm{H} 12 \cdots \mathrm{O} 202$	$0.87(3)$	$1.92(4)$	$2.733(6)$	$155(5)$
$\mathrm{N} 13-\mathrm{H} 13 \cdots \mathrm{O} 203$	$0.88(3)$	$2.02(3)$	$2.890(6)$	$176(5)$
$\mathrm{N} 22-\mathrm{H} 22 \cdots \mathrm{O} 101^{\mathrm{ii}}$	$0.87(3)$	$1.85(3)$	$2.695(6)$	$166(5)$
$\mathrm{N} 23-\mathrm{H} 23 \cdots \mathrm{O} 201^{\text {iv }}$	$0.87(3)$	$2.23(4)$	$2.887(6)$	$133(4)$
$\mathrm{O} 101-\mathrm{H} 10 A \cdots \mathrm{O} 202^{\text {ii }}$	0.85	1.90	$2.692(6)$	155
$\mathrm{O} 101-\mathrm{H} 10 B \cdots \mathrm{O} 11$	0.85	2.28	$2.809(6)$	121

Symmetry codes: (ii) $x-\frac{1}{2}, y,-z+1$; (iv) $x-1,-y+\frac{3}{2},-z+\frac{3}{2}$.
anion. The ring system is formed by the following contacts $\mathrm{N} 12-\mathrm{H} 12 \cdots \mathrm{O} 202$, $\mathrm{O} 101-\mathrm{H} 10 A \cdots \mathrm{O} 202^{\mathrm{ii}}$, $\mathrm{O} 101-\mathrm{H} 10 B \cdots$ O 11 and $\mathrm{N} 22-\mathrm{H} 22 \cdots \mathrm{O} 101^{\mathrm{ii}}$, giving rise to an $R_{4}^{5}(18)$ ring system. Furthermore, the second ring system is created by the contacts $\mathrm{N} 12-\mathrm{H} 12 \cdots \mathrm{O} 202$ and $\mathrm{N} 13-\mathrm{H} 13 \cdots \mathrm{O} 203$, giving rise to an $R_{2}^{2}(8)$ ring system. The structure does include a halogen-chalcogen contact $\left[\mathrm{Br} 21 \cdots \mathrm{~S} 11^{\mathrm{v}}=3.5103\right.$ (13) \AA; symmetry code: $(\mathrm{v})-x+1,-y+1,-z+1]$ and a halogenhalogen contact $\left[\mathrm{Br} 11 \cdots \mathrm{Br} 11^{\text {vi }}=3.5999\right.$ (11) \AA; symmetry code: (vi) $\left.-x+\frac{5}{2},-y+2, z\right]$ which is less than the sum of the van der Waal radii.

The assembly of the $\mathrm{Fe}^{\mathrm{III}}$ units of the present compound is displayed in Fig. 3. The presence of both the $\mathrm{NO}_{3}{ }^{-}$anion and the water solvent molecule codetermines how the $\mathrm{Fe}^{\mathrm{III}}$ units are packed in the crystal lattice. Complex salt (I) displays $\mathrm{Fe}^{\text {III }} \ldots \mathrm{Fe}^{\text {III }}\left(x+\frac{1}{2}, y,-z+1\right)$ separations of 6.7661 (7) \AA and $\mathrm{Fe}^{\mathrm{III}} \ldots \mathrm{Fe}^{\mathrm{III}}\left(x,-y+\frac{1}{2},-z+\frac{3}{2}\right)$ separations of 7.2104 (16) \AA. Despite the presence of the water solvent molecule and the nitrate anion, the $\mathrm{Fe}^{\text {III }}$ units are packed relatively close together within the crystal lattice. This feature could be due to the hydrogen-bonding ring systems (vide supra), which link the $\mathrm{Fe}^{\text {III }}$ units together via the hydrogen-bonding interactions of the water solvent molecule and the nitrate anion.

An IR spectroscopic characterization of the free ligand has been carried out, as well as a comparison with the IR spectrum of the ferric complex in order to assess the degree of deprotonation and the coordination mode of the ligand.

The IR spectrum of the free ligand, 5-bromosalicylaldehyde 4-ethylthiosemicarbazone ($\mathrm{H}_{2}-5-\mathrm{Br}$-thsa- Et), exhibits a strong band at $1613 \mathrm{~cm}^{-1}$, which is assigned to the imine group that has been formed during the ligand synthesis, which involves the condensation of the salicylaldehyde moiety and the thiosemicarbazone moiety. Furthermore, the IR spectrum of the ligand exhibits a medium band at $3146 \mathrm{~cm}^{-1}$, which is assigned to the $\nu \mathrm{N}-\mathrm{H}$ vibration. The presence of the $\nu \mathrm{N}-\mathrm{H}$ band in the spectrum of (I) evidences that the thione form of the ligand is coordinated to the central $\mathrm{Fe}^{\mathrm{III}}$ cation. Upon coordination of the imine N atom, the $\nu \mathrm{C}=\mathrm{N}$ band shifts from $1613 \mathrm{~cm}^{-1}$ in the free ligand to $1600 \mathrm{~cm}^{-1}$ in the complex. The $\nu \mathrm{N}-\mathrm{N}$ band of the thiosemicarbazone moiety of the free ligand is found at $1105 \mathrm{~cm}^{-1}$; the wavenumber increases to $1312 \mathrm{~cm}^{-1}$ for the $\nu \mathrm{N}-\mathrm{N}$ band in the ferric complex. In comparison to the free ligand, the ferric complex does not show the presence of the $\nu \mathrm{O}-\mathrm{H}$ vibration; this is due to the phenolic O atom having been deprotonated in order for the O, N, S-tridentate chelating ligand to coordinate the $\mathrm{Fe}^{\mathrm{III}}$ atom
in the $\left[\mathrm{Fe}(\mathrm{H}-5-\mathrm{Br} \text {-thsa- } \mathrm{Et})_{2}\right]^{+}$cation. The corresponding $\nu \mathrm{O}-\mathrm{H}$ band for the free ligand is found at $3299 \mathrm{~cm}^{-1}$. The $\mathrm{Fe}^{\text {III }}$ cation is also coordinated to the S atom of the thiosemicarbazone moiety of the ligand. The $\nu \mathrm{C}=\mathrm{S}$ band of the ligand that is coordinated to the $\mathrm{Fe}^{\mathrm{III}}$ ion is assigned at $819 \mathrm{~cm}^{-1}$ in the ferric complex, but it is at a larger wavenumber in the free ligand, i.e. $\nu \mathrm{C}=\mathrm{S}$ at $1046 \mathrm{~cm}^{-1}$. The decrease in the frequency of the $\nu \mathrm{C}=\mathrm{S}$ band in the thiosemicarbazone upon complexation of the ligand indicates coordination of the thione S atom to the $\mathrm{Fe}^{\mathrm{III}}$ cation. The results of our analysis will be instrumental for the quick identification of the degree of deprotonation and the coordination mode of the ligand in other metal compounds as it is based on easily accessible IR spectroscopic measurements.

In the IR spectrum of the ferric complex, there are two bands which represent the presence of the nitrate anion within the crystal lattice; the $\nu \mathrm{N}-\mathrm{O}$ bands of the $\mathrm{NO}_{3}{ }^{-}$anion are assigned at 866 and $1352 \mathrm{~cm}^{-1}$, respectively. Furthermore, as evidenced from the crystallographic study of complex (I), there is hydrogen bonding within the crystal lattice; this is supported by the broad peaks observed for the $\nu \mathrm{N}-\mathrm{H}$ bands assigned to the azomethine and terminal N atoms of the thiosemicarbazone moiety of the coordinated ligand.

Figure 4
(a) $\chi_{\mathrm{M}} T$ versus T for (I). The data were measured while heating at a rate of $2 \mathrm{~K} \mathrm{~min}^{-1}$ in an applied field $\mu_{0} H$ of 0.1 T . (b) Temperature dependence of the corresponding molar magnetic susceptibility, χ_{M}, for (I). The solid red lines show fits to the data using Equation (1), with $D=$ $0.439(1) \mathrm{cm}^{-1}$ and $g=2.0$. The blue line in part (b) shows a fit of $\chi_{M}^{-1}(T)$ above 100 K using the Curie-Weiss law.

Variable-temperature magnetic susceptibility measurements ($5-320 \mathrm{~K}$) were carried out in order to confirm the spin state of the $\mathrm{Fe}^{\mathrm{III}}$ ion. The temperature dependence of $\chi_{\mathrm{M}} T$ for (I) is displayed in Fig. $4(a) \cdot \chi_{\mathrm{M}} T$ varies from $3.27 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ at 5 K to an almost constant value of $4.33(1) \mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$ [5.89 (1) $\mu_{\mathrm{B}} / \mathrm{Fe}$] at higher temperatures $(50-320 \mathrm{~K})$. This is close to the expected value of $4.37 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}\left(5.92 \mu_{\mathrm{B}} / \mathrm{Fe}\right)$ for $\mathrm{Fe}^{\text {III }}$ in its high-spin state $(\mathrm{S}=5 / 2)$, with an electronic g factor of 2.0023 . A Curie-Weiss behaviour at high temperature is confirmed by the linear behaviour of $\chi_{M}^{-1}(T)$, and the fit to the Curie-Weiss law shown in Fig. 4(b) between 100 and 320 K gives a Weiss temperature of $-0.5(1) \mathrm{K}$ and an effective moment of 5.86 (1) $\mu_{\mathrm{B}} / \mathrm{Fe}$.
$\chi_{\mathrm{M}} T$ drops rapidly below 20 K , reflecting a significant zerofield splitting of the $S=5 / 2$ state. The spin Hamiltonian can be written as

$$
H_{\mathrm{S}}=H_{\mathrm{CEF}}+H_{z} .
$$

The crystalline electric field term

$$
H_{\mathrm{CEF}}=D\left[\mathrm{~S}_{z}^{2}-\mathrm{S}(\mathrm{~S}+1) / 3\right]+E\left(\mathrm{~S}_{x}^{2}-\mathrm{S}_{y}^{2}\right)
$$

where D and E are the axial and rhombic zero-field splitting, respectively. The ${ }^{6}$ S high-spin state is split into three Kramers doublets, with the higher levels separated by $2 D$ and $6 D$ from the lowest energy level. The Zeeman energy $H_{z}=\mathrm{g} \mu_{\mathrm{B}} H \mathrm{~S}_{x}$ and then the molar magnetic susceptibility for $E=0$ is

$$
\begin{equation*}
\chi_{M}=\frac{N_{\mathrm{A}} g^{2} \mu_{\mathrm{B}}^{2}}{4 k_{\mathrm{B}} T}\left[\frac{1+9 e^{-2 X}+25 e^{-6 X}}{1+e^{-2 X}+e^{-6 X}}\right] \tag{1}
\end{equation*}
$$

where $X=D / k_{\mathrm{B}} T, N_{\mathrm{A}}$ is Avogadro's number and k_{B} is the Boltzmann constant. A least-squares fit gives $D=$ $0.439(1) \mathrm{cm}^{-1}$ with $g=2.0$. This is in the range expected for high-spin $\mathrm{Fe}^{\text {III }}$ (Chen et al., 2002; Yemeli Tido et al., 2007). Fits with a finite E expected for a system with a rhombic distortion are possible, cf. Chen et al. (2002), but these require a knowledge of the ratio $\lambda=E / D$ from other studies, e.g. electron paramagnetic resonance spectroscopy or inelastic neutron scattering, and lower-temperature magnetic susceptibility data.

We thus reported the first structural characterization of a member of the family of $\left[\mathrm{Fe}\left(\mathrm{H} L^{-}\right)_{2}\right][$ anion $(1-)] \cdot n$ (solvent) ($\mathrm{H}_{2} L=R$-salicylaldehyde $4 R^{\prime}$-thiosemicarbazone) compounds, which contains a cationic $\mathrm{Fe}^{\text {III }}$ entity. This further demonstrated the versatility in charge distribution that can be achieved using this ligand system, as neutral $\mathrm{Fe}^{\mathrm{III}}$ complex units have been observed previously for $\left[\mathrm{Fe}\left(\mathrm{H} L^{-}\right)\left(L^{2-}\right)\right] \cdot n$ (solvent), whereas anionic $\mathrm{Fe}^{\mathrm{III}}$ units have been found to be present in [cation $(1+)]\left[\mathrm{Fe}\left(L^{2-}\right)_{2}\right] \cdot n$ (solvent) (van Koningsbruggen et al., 2004; Phonsri et al., 2017; Powell et al., 2014, 2015, 2020, 2022; Powell, 2016; Yemeli Tido, 2010; Zelentsov et al., 1973; Ryabova et al., 1978, 1981a,b, 1982; Floquet et al., 2003, 2006, 2009; Li et al., 2013).

The $\mathrm{Fe}^{\text {III }}$ ion is the high-spin state throughout the temperature range ($5-320 \mathrm{~K}$) over which the magnetic susceptibility data were recorded. Since this compound is the first example of a cationic $\mathrm{Fe}^{\text {III }}$ entity in this family, it is too early to attempt to relate the structural and electronic features of the material to the nature of the $\mathrm{Fe}^{\mathrm{III}}$ spin state and to comment on the
reasons for the absence of $\mathrm{Fe}^{\mathrm{III}}$ spin crossover. This as yet limited knowledge related to the present material is not unexpected as for the relatively well-known family of [cation $(1+)]\left[\mathrm{Fe}\left(L^{2-}\right)_{2}\right]$ compounds of which several members have been structurally and magnetically characterized (van Koningsbruggen et al., 2004; Phonsri et al., 2017; Powell et al., 2014, 2015, 2020, 2022; Powell, 2016; Yemeli Tido, 2010; Zelentsov et al., 1973; Ryabova et al., 1978, 1981a,b, 1982; Floquet et al., 2003, 2006, 2009; Li et al., 2013, 2016), a correlation between structure and $\mathrm{Fe}^{\text {III }}$ spin state, including the occurrence of spin-crossover behaviour, has not yet been established. The reasons for this incomplete understanding lie in the occurrence of a spin-transition being governed by subtle structural and electronic modifications that are also tuned by the crystal packing, which in concert determine the ligand field strength and hence the manifestation of spin-crossover behaviour. These modifications depend on the nature of the ligands, the noncoordinating cation, the solvent molecules (if any) and the crystal packing. Clearly, the stabilization of $\mathrm{Fe}^{\mathrm{III}}$ in a particular spin state is governed by a subtle balance of electronic and geometric parameters, as is implied by the fact that $\left(\mathrm{NH}_{4}\right)\left[\mathrm{Fe}(5-\mathrm{Br}-\mathrm{thsa})_{2}\right]$ (Ryabova et al., 1981b) exists in slightly different polymorphs each with its distinct magnetic behaviour.

Our further research will focus on investigating the modulation of the $\mathrm{Fe}^{\mathrm{III}}$ spin state upon varying the R and R^{\prime} substituents of the ligand, the noncoordinating anion, the degree of solvation and intermolecular interactions in such $\left[\mathrm{Fe}\left(\mathrm{H} L^{-}\right)_{2}\right][\operatorname{anion}(1-)] \cdot n$ (solvent) $\left(\mathrm{H}_{2} L=R\right.$-salicylaldehyde $4 R^{\prime}$-thiosemicarbazone) compounds with the objective of defining the parameters for generating spin-crossover behaviour in these systems.

Acknowledgements

We thank the EPSRC UK National Crystallography Service (Coles \& Gale, 2012) at the University of Southampton for the collection of the crystallographic data.

References

Bain, G. A. \& Berry, J. F. (2008). J. Chem. Educ. 85, 532-536.
Cambi, L. \& Szegö, L. (1931). Berichte, 64, 2591-2598.
Cambi, L. \& Szegö, L. (1933). Berichte, 66, 656-661.
Chen, C.-H., Lee, Y.-Y., Liau, B.-C., Elango, S., Chen, J.-H., Hsieh, H.-Y., Liao, F.-L., Wang, S.-L. \& Hwang, L.-P. (2002). J. Chem. Soc. Dalton Trans. pp. 3001-3006.
Coles, S. J. \& Gale, P. A. (2012). Chem. Sci. 3, 683-689.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Floquet, S., Boillot, M. L., Rivière, E., Varret, F., Boukheddaden, K., Morineau, D. \& Négrier, P. (2003). New J. Chem. 27, 341-348.
Floquet, S., Guillou, N., Négrier, P., Rivière, E. \& Boillot, M. L. (2006). New J. Chem. 30, 1621-1627.

Floquet, S., Muñoz, M. C., Guillot, R., Rivière, E., Blain, G., Réal, J. A. \& Boillot, M. L. (2009). Inorg. Chim. Acta, 362, 56-64.
Gütlich, P. \& Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.
Gütlich, P., van Koningsbruggen, P. J. \& Renz, F. (2004). Struct. Bonding, 107, 27-75.

Halcrow, M. A. (2013). Editor. Spin-Crossover Materials. Oxford: John Wiley \& Sons Ltd.
Harding, D. J., Harding, P. \& Phonsri, W. (2016). Coord. Chem. Rev. 313, 38-61.
Hayami, S., Gu, Z., Shiro, M., Einaga, Y., Fujishima, A. \& Sato, O. (2000). J. Am. Chem. Soc. 122, 7126-7127.

Hayami, S., Hiki, K., Kawahara, T., Maeda, Y., Urakami, D., Inoue, K., Ohama, M., Kawata, S. \& Sato, O. (2009). Chem. Eur. J. 15, 3497-3508.
Karuppannan, S. K., Martín-Rodríguez, A., Ruiz, E., Harding, P., Harding, D. J., Yu, X., Tadich, A., Cowie, B., Qi, D. \& Nijhuis, C. A. (2021). Chem. Sci. 12, 2381-2388.

Koningsbruggen, P. J. van, Maeda, Y. \& Oshio, H. (2004). Top. Curr. Chem. 233, 259-324.
Lefter, C., Davesne, V., Salmon, L., Molnár, G., Demont, P., Rotaru, A. \& Bousseksou, A. (2016). Magnetochemistry, 2, 18.

Létard, J. F., Guionneau, P. \& Goux-Capes, L. (2004). Top. Curr. Chem. 235, 221-249.
Li, Z. Y., Dai, J. W., Shiota, Y., Yoshizawa, K., Kanegawa, S. \& Sato, O. (2013). Chem. Eur. J. 19, 12948-12952.

Li, Z.-Y., Ohtsu, H., Kojima, T., Dai, J.-W., Yoshida, T., Breedlove, B. K., Zhang, W.-X., Iguchi, H., Sato, O., Kawano, M. \& Yamashita, M. (2016). Angew. Chem. Int. Ed. 55, 5184-5189.

Molnár, G., Rat, S., Salmon, L., Nicolazzi, W. \& Bousseksou, A. (2018). Adv. Mater. 30, 1703862.

Phonsri, W., Darveniza, L. C., Batten, S. R. \& Murray, K. S. (2017). Inorganics, 5, 51.
Powell, R. E. (2016). PhD Thesis, Aston University, Birmingham, UK.
Powell, R. E., Schwalbe, C. H., Tizzard, G. J. \& van Koningsbruggen, P. J. (2014). Acta Cryst. C70, 595-598.

Powell, R. E., Schwalbe, C. H., Tizzard, G. J. \& van Koningsbruggen, P. J. (2015). Acta Cryst. C71, 169-174.

Powell, R. E., Stöger, B., Knoll, C., Müller, D., Weinberger, P. \& van Koningsbruggen, P. J. (2020). Acta Cryst. C76, 625-631.
Powell, R. E. C. H., Lees, M. R., Tizzard, G. J. \& van Koningsbruggen, P. J. (2022). Acta Cryst. C78. In preparation.

Rigaku (2013). CrystalClear-SM Expert. Riguku Corporation, The Woodlands, Texas, USA.
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Wrocłow, Poland.
Rubio-Giménez, V., Bartual-Murgui, C., Galbiati, M., Núñez-López, A., Castells-Gil, J., Quinard, B., Seneor, P., Otero, E., Ohresser, P., Cantarero, A., Coronado, E., Real, J. A., Mattana, R., Tatay, S. \& Martí-Gastaldo, C. (2019). Chem. Sci. 10, 4038-4047.
Ryabova, N. A., Ponomarev, V. I., Atovmyan, L. O., Zelentsov, V. V. \& Shipilov, V. I. (1978). Koord. Khim. 4, 119-126.
Ryabova, N. A., Ponomarev, V. I., Zelentsov, V. V. \& Atovmyan, L. O. (1981a). Kristallografiya, 26, 101-108.
Ryabova, N. A., Ponomarev, V. I., Zelentsov, V. V. \& Atovmyan, L. O. (1982). Kristallografiya, 27, 81-91.

Ryabova, N. A., Ponomarev, V. I., Zelentsov, V. V., Shipilov, V. I. \& Atovmyan, L. O. (1981b). J. Struct. Chem. 22, 234-238.
Senthil Kumar, K. \& Ruben, M. (2017). Coord. Chem. Rev. 346, 176205.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Takahashi, K., Cui, H.-B., Okano, Y., Kobayashi, H., Einaga, Y. \& Sato, O. (2006). Inorg. Chem. 45, 5739-5741.
Tissot, A., Kesse, X., Giannopoulou, S., Stenger, I., Binet, L., Rivière, E. \& Serre, C. (2019). Chem. Commun. 55, 194-197.

Yemeli Tido, E. W. (2010). PhD Thesis, University of Groningen, The Netherlands.
Yemeli Tido, E. W., Vertelman, E. J. M., Meetsma, A. \& van Koningsbruggen, P. J. (2007). Inorg. Chim. Acta, 360, 3896-3902.
Zelentsov, V. V., Bogdanova, L. G., Ablov, A. V., Gerbeleu, N. V. \& Dyatlova, C. V. (1973). Russ. J. Inorg. Chem. 18, 26542657.

supporting information

Acta Cryst. (2022). C78, 63-69 [https://doi.org/10.1107/S2053229621013462]

Fe ${ }^{\text {III }}$ in a high-spin state in bis(5-bromosalicylaldehyde 4-ethylthio-semicarbazonato- $\kappa^{3} O, N^{1}, S$) ferrate(III) nitrate monohydrate, the first example of such a cationic Fe ${ }^{\text {III }}$ complex unit

Robyn E. Powell, Martin R. Lees, Graham J. Tizzard and Petra J. van Koningsbruggen

Computing details

Data collection: CrystalClear-SM Expert (Rigaku, 2013); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis[4-bromo-2-(\{[(ethylcarbamothioyl)amino]imino\}methyl)phenolato- $\left.\kappa^{3} O, N^{1}, S\right]$ ferrate(III) nitrate monohydrate

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrN}_{3} \mathrm{OS}\right)_{2}\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}[+$ solvent $]$
$M_{r}=738.25$
Orthorhombic, Pnna
$a=12.3595$ (3) \AA
$b=23.2686$ (6) \AA
$c=19.6406$ (6) \AA
$V=5648.4$ (3) \AA^{3}
$Z=8$
$F(000)=2952$

Data collection

```
Rigaku FRE+
    diffractometer equipped with HF Varimax
    confocal mirrors and an AFC12 goniometer and
    HG Saturn 724+ detector
Radiation source: Rotating Anode, Rigaku
    FRE+
Confocal mirrors, HF Varimax monochromator
Detector resolution: }28.5714\mathrm{ pixels mm
profile data from }\omega\mathrm{ -scans
```


Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.130$
$D_{\mathrm{x}}=1.736 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71075 \AA$
Cell parameters from 13504 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=3.56 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Lath, dark green
$0.19 \times 0.01 \times 0.01 \mathrm{~mm}$

Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2021)
$T_{\text {min }}=0.740, T_{\text {max }}=1.000$
36848 measured reflections
6477 independent reflections
4297 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.088$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-15 \rightarrow 16$
$k=-30 \rightarrow 28$
$l=-25 \rightarrow 22$
$S=1.01$
6477 reflections
360 parameters
6 restraints

supporting information

Primary atom site location: dual
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0514 P)^{2}+12.8609 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.68 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.78 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. H -atoms bonded to N -atoms were located in the difference map and refined with the riding model. All N H atom pairs were refined with an equal distance geometric restraint. The solvent water molecule was refined as a rigid body group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Br11	$1.13632(5)$	$0.95165(3)$	$0.48873(4)$	$0.0628(3)$
Br21	$0.40926(4)$	$0.48998(2)$	$0.39309(3)$	$0.03039(15)$
Fe1	$0.73206(5)$	$0.71905(3)$	$0.57014(4)$	$0.02070(17)$
S11	$0.74079(10)$	$0.63438(5)$	$0.64326(7)$	$0.0263(3)$
S21	$0.68261(10)$	$0.79079(5)$	$0.65684(7)$	$0.0281(3)$
O11	$0.7817(3)$	$0.77756(15)$	$0.50614(18)$	$0.0292(8)$
O21	$0.7228(3)$	$0.66978(15)$	$0.49042(18)$	$0.0283(8)$
N11	$0.8946(3)$	$0.72721(17)$	$0.6116(2)$	$0.0214(9)$
N12	$0.9239(3)$	$0.69112(19)$	$0.6653(2)$	$0.0289(10)$
H12	$0.983(3)$	$0.700(2)$	$0.687(2)$	0.035^{*}
N13	$0.8917(3)$	$0.61777(19)$	$0.7379(2)$	$0.0296(10)$
H13	$0.955(3)$	$0.623(2)$	$0.757(3)$	0.035^{*}
N21	$0.5579(3)$	$0.71085(16)$	$0.5705(2)$	$0.0201(9)$
N22	$0.4980(3)$	$0.74451(18)$	$0.6141(2)$	$0.0257(10)$
H22	$0.429(3)$	$0.738(2)$	$0.619(3)$	0.031^{*}
N23	$0.4797(3)$	$0.81161(18)$	$0.6965(2)$	$0.0263(10)$
H23	$0.411(3)$	$0.806(2)$	$0.691(3)$	0.032^{*}
C11	$0.9498(4)$	$0.8108(2)$	$0.5479(3)$	$0.0256(11)$
C12	$0.8607(4)$	$0.8145(2)$	$0.5051(3)$	$0.0244(11)$
C13	$0.8551(4)$	$0.8600(2)$	$0.4577(3)$	$0.0290(12)$
H13A	0.794568	0.862823	0.428075	0.035^{*}
C14	$0.9363(4)$	$0.9000(2)$	$0.4539(3)$	$0.0347(13)$
H14	0.931037	0.930904	0.422416	0.042^{*}
C15	$1.0260(4)$	$0.8955(2)$	$0.4958(3)$	$0.0338(13)$
C16	$1.0352(4)$	$0.8516(2)$	$0.5418(3)$	$0.0323(13)$
H16	1.097990	0.848317	0.569491	0.039^{*}
C17	$0.9642(4)$	$0.7670(2)$	$0.5979(3)$	$0.0250(11)$
H17	1.029907	0.767082	0.622988	0.030^{*}
C18	$0.8578(4)$	$0.6481(2)$	$0.6849(3)$	$0.0235(11)$
C19	$0.8305(5)$	$0.5714(2)$	$0.7686(3)$	$0.0325(13)$
H19A	0.833418	0.537044	0.738868	0.039^{*}

H19B	0.753821	0.582947	0.773507	0.039^{*}
C21	$0.5442(4)$	$0.63170(19)$	$0.4908(2)$	$0.0196(10)$
C22	$0.6527(4)$	$0.6310(2)$	$0.4691(2)$	$0.0240(11)$
C23	$0.6846(4)$	$0.5885(2)$	$0.4228(3)$	$0.0340(13)$
H23A	0.757209	0.587862	0.407000	0.01^{*}
C24	$0.6126(4)$	$0.5476(2)$	$0.3998(3)$	$0.0344(13)$
H24	0.635727	0.519082	0.368365	0.041^{*}
C25	$0.5073(4)$	$0.5480(2)$	$0.4224(3)$	$0.0247(11)$
C26	$0.4721(4)$	$0.5895(2)$	$0.4658(3)$	$0.0237(11)$
H26	0.398377	0.590122	0.479458	0.028^{*}
C27	$0.5019(4)$	$0.67281(19)$	$0.5378(2)$	$0.0218(11)$
H27	0.426046	0.672161	0.545748	0.026^{*}
C28	$0.5462(4)$	$0.7824(2)$	$0.6566(2)$	$0.0227(11)$
C29	$0.5135(4)$	$0.8538(2)$	$0.7462(3)$	$0.0332(13)$
H29A	0.585645	0.842911	0.764023	0.040^{*}
H29B	0.462069	0.853351	0.784844	0.040^{*}
C110	$0.8767(6)$	$0.5569(3)$	$0.8375(4)$	$0.062(2)$
H11A	0.952479	0.545279	0.832449	0.092^{*}
H11B	0.835241	0.525371	0.857747	0.092^{*}
H11C	0.872465	0.590771	0.867077	0.092^{*}
C210	$0.5192(6)$	$0.9129(3)$	$0.7180(3)$	$0.0533(18)$
H21A	0.569115	0.913513	0.679198	0.080^{*}
H21B	0.545244	0.939345	0.753204	0.080^{*}
H21C	0.447095	0.924889	0.702894	0.080^{*}
O101	$0.7818(3)$	$0.7444(2)$	$0.3686(2)$	$0.0540(12)$
H10A	0.751602	0.725563	0.336775	0.081^{*}
H10B	0.749073	0.733786	0.404481	0.081^{*}
O201	$1.2660(4)$	$0.6526(2)$	$0.7620(3)$	$0.0714(15)$
O202	$1.1333(4)$	$0.6918(3)$	$0.7100(3)$	$0.089(2)$
O203	$1.1007(4)$	$0.6406(3)$	$0.7980(2)$	$0.0736(17)$
N201	$1.1666(4)$	$0.6618(2)$	$0.7581(3)$	$0.0460(13)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br11	$0.0369(4)$	$0.0510(4)$	$0.1004(6)$	$-0.0233(3)$	$-0.0197(4)$	$0.0426(4)$
Br21	$0.0335(3)$	$0.0198(2)$	$0.0379(3)$	$-0.0054(2)$	$-0.0136(3)$	$-0.0019(2)$
Fe1	$0.0152(3)$	$0.0184(4)$	$0.0284(4)$	$-0.0044(3)$	$-0.0018(3)$	$-0.0002(3)$
S11	$0.0205(6)$	$0.0234(7)$	$0.0348(7)$	$-0.0046(5)$	$-0.0026(6)$	$0.0014(5)$
S21	$0.0193(6)$	$0.0255(7)$	$0.0394(8)$	$-0.0027(5)$	$-0.0049(6)$	$-0.0095(6)$
O11	$0.0213(18)$	$0.038(2)$	$0.028(2)$	$-0.0125(16)$	$-0.0058(16)$	$0.0004(16)$
O21	$0.0230(19)$	$0.031(2)$	$0.030(2)$	$-0.0085(15)$	$0.0049(16)$	$-0.0068(16)$
N11	$0.017(2)$	$0.022(2)$	$0.025(2)$	$-0.0014(16)$	$0.0023(18)$	$0.0014(17)$
N12	$0.022(2)$	$0.030(2)$	$0.035(3)$	$-0.0082(19)$	$-0.008(2)$	$0.0061(19)$
N13	$0.024(2)$	$0.028(2)$	$0.036(3)$	$-0.0020(19)$	$-0.004(2)$	$0.006(2)$
N21	$0.018(2)$	$0.017(2)$	$0.026(2)$	$0.0008(16)$	$-0.0008(18)$	$0.0010(16)$
N22	$0.018(2)$	$0.026(2)$	$0.033(3)$	$-0.0015(18)$	$0.002(2)$	$-0.0062(19)$
N23	$0.018(2)$	$0.031(2)$	$0.030(3)$	$0.0014(18)$	$-0.005(2)$	$-0.0043(19)$

C11	$0.021(3)$	$0.021(3)$	$0.035(3)$	$0.000(2)$	$0.003(2)$	$0.001(2)$
C12	$0.023(3)$	$0.024(3)$	$0.027(3)$	$-0.002(2)$	$0.005(2)$	$-0.002(2)$
C13	$0.027(3)$	$0.032(3)$	$0.028(3)$	$-0.001(2)$	$-0.006(2)$	$0.003(2)$
C14	$0.032(3)$	$0.029(3)$	$0.043(3)$	$0.000(2)$	$0.002(3)$	$0.009(2)$
C15	$0.023(3)$	$0.030(3)$	$0.048(4)$	$-0.004(2)$	$0.003(3)$	$0.009(3)$
C16	$0.024(3)$	$0.029(3)$	$0.044(4)$	$-0.004(2)$	$-0.005(3)$	$0.008(2)$
C17	$0.016(2)$	$0.026(3)$	$0.032(3)$	$-0.004(2)$	$0.000(2)$	$-0.001(2)$
C18	$0.026(3)$	$0.019(3)$	$0.026(3)$	$0.001(2)$	$0.004(2)$	$0.001(2)$
C19	$0.037(3)$	$0.022(3)$	$0.038(3)$	$-0.004(2)$	$0.004(3)$	$0.004(2)$
C21	$0.019(2)$	$0.014(2)$	$0.025(3)$	$-0.0010(18)$	$-0.007(2)$	$0.0025(19)$
C22	$0.028(3)$	$0.026(3)$	$0.018(3)$	$-0.005(2)$	$-0.004(2)$	$0.000(2)$
C23	$0.027(3)$	$0.033(3)$	$0.041(3)$	$-0.006(2)$	$0.002(3)$	$-0.012(3)$
C24	$0.037(3)$	$0.028(3)$	$0.038(3)$	$-0.005(2)$	$-0.002(3)$	$-0.012(2)$
C25	$0.022(3)$	$0.021(3)$	$0.031(3)$	$-0.007(2)$	$-0.012(2)$	$0.003(2)$
C26	$0.015(2)$	$0.019(3)$	$0.037(3)$	$0.0011(19)$	$-0.011(2)$	$0.004(2)$
C27	$0.015(2)$	$0.020(3)$	$0.031(3)$	$-0.0004(19)$	$-0.005(2)$	$0.005(2)$
C28	$0.023(3)$	$0.021(3)$	$0.024(3)$	$0.001(2)$	$-0.002(2)$	$0.002(2)$
C29	$0.027(3)$	$0.038(3)$	$0.034(3)$	$0.000(2)$	$-0.006(3)$	$-0.010(2)$
C110	$0.068(5)$	$0.057(5)$	$0.059(5)$	$-0.025(4)$	$-0.006(4)$	$0.023(4)$
C210	$0.058(4)$	$0.046(4)$	$0.056(4)$	$-0.006(3)$	$-0.007(4)$	$-0.013(3)$
O101	$0.032(2)$	$0.093(4)$	$0.037(2)$	$-0.016(2)$	$0.003(2)$	$-0.006(3)$
O201	$0.029(3)$	$0.094(4)$	$0.091(4)$	$-0.005(3)$	$-0.011(3)$	$0.008(3)$
O202	$0.029(3)$	$0.147(5)$	$0.091(4)$	$-0.023(3)$	$-0.014(3)$	$0.074(4)$
O203	$0.045(3)$	$0.124(5)$	$0.052(3)$	$-0.024(3)$	$0.001(2)$	$0.032(3)$
N201	$0.034(3)$	$0.058(4)$	$0.046(3)$	$-0.014(3)$	$-0.010(3)$	$0.004(3)$

Geometric parameters ($\AA^{\circ},{ }^{\circ}$)

Br11-C15	1.894 (5)	C14-C15	1.385 (8)
$\mathrm{Br} 21-\mathrm{C} 25$	1.903 (5)	C15-C16	1.369 (7)
Fe1-S11	2.4404 (15)	C16-H16	0.9500
Fe1-S21	2.4615 (14)	C17-H17	0.9500
Fel-O11	1.952 (3)	C19-H19A	0.9900
Fel-O21	1.944 (3)	C19-H19B	0.9900
Fel-N11	2.176 (4)	C19-C110	1.506 (8)
Fe1-N21	2.161 (4)	C21-C22	1.407 (7)
S11-C18	1.692 (5)	C21-C26	1.414 (6)
S21-C28	1.698 (5)	C21-C27	1.429 (7)
O11-C12	1.302 (6)	C22-C23	1.399 (7)
O21-C22	1.320 (6)	C23-H23A	0.9500
N11-N12	1.396 (6)	C23-C24	1.381 (7)
N11-C17	1.293 (6)	C24-H24	0.9500
N12-H12	0.87 (3)	C24-C25	1.374 (7)
N12-C18	1.349 (6)	C25-C26	1.360 (7)
N13-H13	0.88 (3)	C26-H26	0.9500
N13-C18	1.325 (6)	C27-H27	0.9500
N13-C19	1.449 (6)	C29-H29A	0.9900
N21-N22	1.376 (5)	C29-H29B	0.9900

N21-C27	1.295 (6)
N22-H22	0.87 (3)
N22-C28	1.352 (6)
N23-H23	0.87 (3)
N23-C28	1.322 (6)
N23-C29	1.446 (6)
C11-C12	1.388 (7)
C11-C16	1.424 (7)
C11-C17	1.426 (7)
C12-C13	1.411 (7)
C13-H13A	0.9500
C13-C14	1.372 (7)
C14-H14	0.9500
S11-Fe1-S21	98.70 (5)
O11-Fel-S11	158.16 (11)
O11-Fel-S21	92.89 (11)
O11-Fe1-N11	83.71 (14)
O11-Fe1-N21	112.13 (14)
$\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{S} 11$	90.03 (11)
O21-Fe1-S21	160.48 (11)
$\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{O} 11$	84.89 (15)
$\mathrm{O} 21-\mathrm{Fe} 1-\mathrm{N} 11$	114.03 (15)
O21-Fe1-N21	83.82 (14)
N11-Fel-S11	79.00 (11)
N11-Fe1-S21	84.89 (11)
N21-Fe1-S11	88.32 (11)
N21-Fe1-S21	79.05 (11)
N21-Fe1-N11	157.80 (15)
C18-S11-Fe1	99.81 (17)
C28-S21-Fe1	99.60 (17)
C12-O11-Fe1	134.9 (3)
C22-O21-Fel	134.2 (3)
N12-N11-Fe1	118.0 (3)
C17-N11-Fe1	126.8 (3)
C17-N11-N12	114.6 (4)
N11-N12-H12	117 (4)
C18-N12-N11	120.4 (4)
C18-N12-H12	123 (4)
C18-N13-H13	123 (4)
C18-N13-C19	123.9 (4)
C19-N13-H13	113 (4)
N22-N21-Fel	119.2 (3)
C27-N21-Fe1	126.3 (3)
C27-N21-N22	114.2 (4)
N21-N22-H22	120 (4)
C28-N22-N21	121.2 (4)
C28-N22-H22	118 (4)

$\mathrm{C} 29-\mathrm{C} 210$	$1.486(8)$
$\mathrm{C} 110-\mathrm{H} 11 \mathrm{~A}$	0.9800
$\mathrm{C} 110-\mathrm{H} 11 \mathrm{~B}$	0.9800
$\mathrm{C} 110-\mathrm{H} 11 \mathrm{C}$	0.9800
$\mathrm{C} 210-\mathrm{H} 21 \mathrm{~A}$	0.9800
$\mathrm{C} 210-\mathrm{H} 21 \mathrm{~B}$	0.9800
$\mathrm{C} 210-\mathrm{H} 21 \mathrm{C}$	0.9800
$\mathrm{O} 101-\mathrm{H} 10 \mathrm{~A}$	0.8498
$\mathrm{O} 101-\mathrm{H} 10 \mathrm{~B}$	0.8487
$\mathrm{O} 201-\mathrm{N} 201$	$1.249(6)$
$\mathrm{O} 202-\mathrm{N} 201$	$1.246(7)$
$\mathrm{O} 203-\mathrm{N} 201$	$1.232(6)$

$\mathrm{C} 11-\mathrm{C} 17-\mathrm{H} 17$	117.5
$\mathrm{~N} 12-\mathrm{C} 18-\mathrm{S} 11$	121.3

123.3 (4)
115.4 (5)
109.7
109.7
110.0 (5)
108.2
109.7
109.7
119.2 (4)
123.5 (4)
117.3 (4)
121.5 (4)
120.3 (5)
118.2 (4)
119.4
121.2 (5)
119.4
120.0
120.0 (5)
120.0
120.0 (4)
119.3 (4)
120.7 (5)
119.7
120.6 (5)
119.7
125.6 (4)
117.2
117.2
120.9 (4)
123.8 (4)
115.3 (4)

C28-N23-H23	118 (4)
C28-N23-C29	124.7 (4)
C29-N23-H23	117 (4)
C12-C11-C16	119.7 (5)
C12-C11-C17	124.1 (5)
C16-C11-C17	116.2 (5)
O11-C12-C11	123.0 (5)
$\mathrm{O} 11-\mathrm{C} 12-\mathrm{C} 13$	117.9 (5)
C11-C12-C13	119.0 (5)
C12-C13-H13A	119.7
C14-C13-C12	120.6 (5)
C14-C13-H13A	119.7
C13-C14-H14	120.0
C13-C14-C15	120.1 (5)
C15-C14-H14	120.0
C14-C15-Br11	118.7 (4)
C16-C15-Br11	120.3 (4)
C16-C15-C14	121.1 (5)
C11-C16-H16	120.3
C15-C16-C11	119.4 (5)
C15-C16-H16	120.3
N11-C17-C11	124.9 (5)
N11-C17-H17	117.5
Br11-C15-C16-C11	178.1 (4)
$\mathrm{Br} 21-\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 21$	177.3 (3)
Fe1-S11-C18-N12	-9.9 (4)
Fe1-S11-C18-N13	170.6 (4)
Fe1-S21-C28-N22	-1.4 (4)
Fe1-S21-C28-N23	179.1 (4)
Fel-O11-C12-C11	16.4 (8)
Fe1-O11-C12-C13	-164.2 (4)
Fe1-O21-C22-C21	23.7 (7)
$\mathrm{Fe} 1-\mathrm{O} 21-\mathrm{C} 22-\mathrm{C} 23$	-157.4 (4)
Fe1-N11-N12-C18	7.9 (6)
Fe1-N11-C17-C11	-5.6 (7)
Fe1-N21-N22-C28	-0.2 (6)
Fe1-N21-C27-C21	-5.3 (7)
O11-C12-C13-C14	-179.6 (5)
$\mathrm{O} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	180.0 (5)
N11-N12-C18-S11	2.8 (7)
N11-N12-C18-N13	-177.6 (4)
N12-N11-C17-C11	-176.5 (5)
N21-N22-C28-S21	1.2 (6)
N21-N22-C28-N23	-179.2 (4)
N22-N21-C27-C21	-178.5 (4)
C11-C12-C13-C14	-0.2 (8)
C12-C11-C16-C15	2.8 (8)

$\mathrm{N} 23-\mathrm{C} 29-\mathrm{H} 29 \mathrm{~A}$	109.0
$\mathrm{~N} 23-\mathrm{C} 29-\mathrm{H} 29 \mathrm{~B}$	109.0
$\mathrm{~N} 23-\mathrm{C} 29-\mathrm{C} 210$	$112.9(5)$
$\mathrm{H} 29 \mathrm{~A}-\mathrm{C} 29-\mathrm{H} 29 \mathrm{~B}$	107.8
$\mathrm{C} 210-\mathrm{C} 29-\mathrm{H} 29 \mathrm{~A}$	109.0
$\mathrm{C} 210-\mathrm{C} 29-\mathrm{H} 29 \mathrm{~B}$	109.0
$\mathrm{C} 19-\mathrm{C} 110-\mathrm{H} 11 \mathrm{~A}$	109.5
$\mathrm{C} 19-\mathrm{C} 110-\mathrm{H} 11 \mathrm{~B}$	109.5
$\mathrm{C} 19-\mathrm{C} 110-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 110-\mathrm{H} 11 \mathrm{~B}$	109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 110-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{H} 11 \mathrm{~B}-\mathrm{C} 110-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{C} 29-\mathrm{C} 210-\mathrm{H} 21 \mathrm{~A}$	109.5
$\mathrm{C} 29-\mathrm{C} 210-\mathrm{H} 21 \mathrm{~B}$	109.5
$\mathrm{C} 29-\mathrm{C} 210-\mathrm{H} 21 \mathrm{C}$	109.5
H21A-C210-H21B	109.5
H21A-C210-H21C	109.5
H21B-C210-H21C	109.5
H10A-O101-H10B	104.6
O202-N201-O201	$117.9(5)$
O203-N201-O201	122.9 (6)
O203-N201-O202	$119.2(5)$

$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11$	$-1.7(9)$
$\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 11$	$177.5(5)$
$\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-1.9(7)$
$\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 17-\mathrm{N} 11$	$178.4(5)$
$\mathrm{C} 17-\mathrm{N} 11-\mathrm{N} 12-\mathrm{C} 18$	$179.7(4)$
$\mathrm{C} 17-\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 11$	$-0.9(8)$
$\mathrm{C} 17-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$179.7(5)$
$\mathrm{C} 17-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 15$	$-178.7(5)$
$\mathrm{C} 18-\mathrm{N} 13-\mathrm{C} 19-\mathrm{C} 110$	$-165.0(5)$
$\mathrm{C} 19-\mathrm{N} 13-\mathrm{C} 18-\mathrm{S} 11$	$-3.1(7)$
$\mathrm{C} 19-\mathrm{N} 13-\mathrm{C} 18-\mathrm{N} 12$	$177.3(5)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$-1.1(8)$
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 26-\mathrm{C} 25$	$1.3(7)$
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 27-\mathrm{N} 21$	$-6.3(8)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$-0.1(9)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25-\mathrm{Br} 21$	$-177.9(4)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$2.0(8)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 21$	$-2.6(7)$
$\mathrm{C} 26-\mathrm{C} 21-\mathrm{C} 22-\mathrm{O} 21$	$179.4(4)$
$\mathrm{C} 26-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$0.5(7)$
$\mathrm{C} 26-\mathrm{C} 21-\mathrm{C} 27-\mathrm{N} 21$	$173.1(4)$
$\mathrm{C} 27-\mathrm{N} 21-\mathrm{N} 22-\mathrm{C} 28$	$173.6(4)$
$\mathrm{C} 27-\mathrm{C} 21-\mathrm{C} 22-\mathrm{O} 21$	$-1.2(7)$
$\mathrm{C} 27-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$179.9(5)$

supporting information

$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 17-\mathrm{N} 11$	$-3.2(8)$	$\mathrm{C} 27-\mathrm{C} 21-\mathrm{C} 26-\mathrm{C} 25$	$-178.1(4)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$1.3(8)$	$\mathrm{C} 28-\mathrm{N} 23-\mathrm{C} 29-\mathrm{C} 210$	$90.3(6)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{Br} 11$	$179.8(4)$	$\mathrm{C} 29-\mathrm{N} 23-\mathrm{C} 28-\mathrm{S} 21$	$-1.2(7)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$-0.4(9)$	$\mathrm{C} 29-\mathrm{N} 23-\mathrm{C} 28-\mathrm{N} 22$	$179.3(5)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 12 — \mathrm{H} 12 \cdots \mathrm{O} 202$	$0.87(3)$	$1.92(4)$	$2.733(6)$	$155(5)$
$\mathrm{N} 13 — \mathrm{H} 13 \cdots \mathrm{O} 203$	$0.88(3)$	$2.02(3)$	$2.890(6)$	$176(5)$
$\mathrm{N} 22 — \mathrm{H} 22 \cdots \mathrm{O} 101^{\mathrm{i}}$	$0.87(3)$	$1.85(3)$	$2.695(6)$	$166(5)$
$\mathrm{N} 23 — \mathrm{H} 23 \cdots \mathrm{O} 201^{\mathrm{ii}}$	$0.87(3)$	$2.23(4)$	$2.887(6)$	$133(4)$
$\mathrm{O} 101-\mathrm{H} 10 A \cdots \mathrm{O} 202^{\mathrm{i}}$	0.85	1.90	$2.692(6)$	155
$\mathrm{O} 101-\mathrm{H} 10 B \cdots \mathrm{O} 11$	0.85	2.28	$2.809(6)$	121

Symmetry codes: (i) $x-1 / 2, y,-z+1$; (ii) $x-1,-y+3 / 2,-z+3 / 2$.

