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Abstract

Non-centrosymmetric superconductors (NCS) and related compounds have
been studied using magnetic, specific heat and transport measurements as well as by
neutron scattering and muon spin relaxation/rotation (µSR). The crystal structures
of NCS lack inversion symmetry and in the presence of a finite antisymmetric spin
orbit coupling, the Cooper pairs are a mixture of spin-singlet and spin-triplet states.
In particular, the cerium based NCS have been reported to display unconventional
superconductivity.

Two different approaches for studying NCS are used. Firstly, the ground
states of materials in the CeTX3 (T = transition metal, X = Si or Ge) family have
been studied. CeCoGe3 is an antiferromagnet at ambient pressures and becomes su-
perconducting at p > 4.3 GPa and was studied using inelastic neutron scattering
(INS), muon spin relaxation/rotation (µSR), neutron diffraction and magnetic sus-
ceptibility measurements. The crystal electric fields (CEF) were studied using INS
and magnetic susceptibility and the CEF scheme was evaluated. From this a ground
state magnetic moment of 1.01 µB/Ce along the c axis was predicted. However, a
magnetic moment of 0.405 µB/Ce along the c axis was observed in single crystal
neutron diffraction measurements, indicating a reduced magnetic moment due to
hybridization between the cerium f-electrons and the conduction band. The INS
response was compared to the isostructural CePdSi3, CePtSi3 and CeRuSi3. The
former two order antiferromagnetically and the Kondo temperatures were evaluated
from the quasielastic scattering. CeRuSi3 is non-magnetic and there is a broad peak
in the magnetic scattering at 59 meV.

Another approach is to study weakly correlated NCS to look for evidence of
unconventional behaviour. In particular, systems where the spin-orbit coupling can
be varied by the substitution of heavier atoms into non-centrosymmetric positions
were considered. LaPdSi3 and LaPtSi3 are superconductors with Tc = 2.65 and
1.52 K respectively and crystallize in the same crystal structure as the CeTX3

compounds. Magnetization, specific heat and µSR measurements reveal that both
compounds are weakly coupled, fully gapped s-wave superconductors but LaPdSi3
is a type-I material while LaPtSi3 is type-II with a Ginzburg-Landau parameter of
2.49. The superconducting properties of single crystals of Nb0.18Re0.82 have been
investigated and are discussed.
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Chapter 1

Introduction

Following the discovery of superconductivity by Kamerlingh Onnes in 1911 [1], it

became to be understood that superconductivity arises from the condensation of

pairs of electrons, bound by an attractive interaction. The discovery of the isotope

effect [2, 3] gave considerable support to the idea that the electron phonon interac-

tion was responsible for the formation of the superconducting condensate [4]. The

microscopic theory of Bardeen, Cooper and Schrieffer (BCS) [5, 6] describes super-

conductivity arising from an attractive interaction between electrons in the vicinity

of the Fermi level, mediated by the exchange of phonons. The electron pairs form in

the spin singlet s-wave state and an isotropic energy gap opens in the single particle

excitation spectrum. The variation in the superconducting transition temperature

(Tc) of elements and alloys were often explained in terms of a set of empirical rules

called the Matthias rules [7, 8]. One of the rules was that superconductivity does not

occur in non-metallic systems, nor does it occur in ferromagnets, antiferromagnets

or rare earth systems with unpaired electrons. In addition to this it was suggested

that Tc primarily depended on the atomic mass, the atomic volume and the number

of valence electrons (n). Tc was determined to increase monotonically with n for

non-transitional metals and peak for n = 3, 5 and 7 for transition metals, with su-

perconductivity only occurring for 2 ≤ n ≤ 8. Interestingly, both Refs. [7] and [8]

remark that superconductors where the crystal structure lacks inversion symmetry

have not been found. However, soon after the publication of Ref [8], supercon-

ductivity was reported in several non-centrosymmetric compounds with α-Mn and

hexagonal structures [9, 10], although this aspect of their crystal structure was not

remarked upon. Although the crystal structure was otherwise considered of lesser

importance in determining the superconducting properties, it was noted that cubic

or hexagonal structures appeared to be preferable. Soon after the introduction of
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BCS theory, it was recognized that the theory could qualitatively explain many of

these rules [8]. Even within the framework of strong coupling BCS theory, the upper

limit of Tc was believed to be around 30 K [11].

1.0.1 Unconventional superconductivity

The first unambiguous example of unconventional superconductivity was found in

1979 following the discovery of superconductivity in the heavy fermion compound

CeCu2Si2 [12, 13, 14], although as pointed out in Ref. [14], superconducting sig-

nals had previously been reported in several uranium based compounds but were

either not widely considered or believed to result from filaments of elemental ura-

nium [15, 16]. CeCu2Si2 consists of a lattice of Ce3+ ions, each with an unpaired

f electron and it was observed to be superconducting at around 0.5 K, whereas no

superconductivity was observed in the non-magnetic, isostructural LaCu2Si2. As a

result of the Kondo interaction, which arises from hybridization between the con-

duction band and f electrons (Sec. 2.1.4), the electronic co-efficient of the specific

heat (γ) is enhanced in heavy fermion compounds and reaches around 1 J/mol K2 in

CeCu2Si2. The fact that the jump in the specific heat at the superconducting tran-

sition is enhanced by a similar factor is a strong indication that the Cooper pairs are

formed from electrons within these ‘heavy’ hybridized bands, as was the suppression

of superconductivity by a small concentration of non-magnetic impurities [13]. Also

of interest was the proximity of the system to magnetic order. The observed prop-

erties are highly sample dependent, with some samples displaying antiferromagnetic

order, some superconductivity and others displaying both properties [17]. Although

this indicates the very close proximity between magnetism and superconductivity,

µSR measurements show a lack of microscopic coexistence [18], suggesting that there

is competition between the two phases.

A more ubiquitous picture of the relationship between heavy fermion super-

conductivity and magnetic order emerged from Ref. [19], where it was demonstrated

that CeIn3 and CePd2Si2 order antiferromagnetically at ambient pressure but be-

come superconducting under applied pressure. In both cases, the magnetic ordering

temperature is suppressed with pressure before superconductivity emerges as a dome

in the temperature-pressure phase diagram, which itself terminates at sufficiently

large pressures. This was taken to be evidence that the attractive interaction be-

tween superconducting electrons is mediated by magnetic interactions. Subsequently

this behaviour has been observed in additional cerium based heavy fermion com-

pounds and in recent years there has been considerable research interest in the role

of quantum critical phenomena in determining the existence of a superconducting
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dome [20]. In fact, subsequent measurements indicate the presence of two supercon-

ducting domes in CeCu2Si2, with the dome at lower pressure being associated with

the suppression of magnetic order [21].

An even more dramatic departure from the rules of Matthias and BCS theory

was observed upon the discovery in 1986 of superconductivity in Ba doped La2CuO4

[22], with a Tc of around 30 K. Higher values of Tc were subsequently observed in

related systems, with a maximum of 93 K in the YBa2Cu3O7−x system [23]. Sev-

eral classes of cuprate superconductors have been discovered with a maximum Tc at

ambient pressure of ∼133 K [24] and 164 K under applied pressure [25] in the Hg-

Ba-Ca-Cu-O system. All cuprate superconductors crystallize in either tetragonal or

orthorhombic structures with layers consisting of CuO2 planes perpendicular to the

c axis. The observation of strongly enhanced superconductivity in a doped oxide

consisting of weakly coupled two dimensional layers contradicts the rules for con-

ventional systems where isotropic, metallic materials were believed to be favoured.

In fact a similar picture emerges from heavy-fermion superconductors, where Tc

increases from a maximum of 0.2 K in the cubic CeIn3 to 2.3 K in the quasi-two-

dimensional CeCoIn5 [26]. Further similarities between heavy fermion and cuprate

superconductors are observed in the phase diagrams. The undoped cuprates or-

der antiferromagnetically, which is suppressed upon doping and a superconducting

dome is observed in this region. In the superconducting state, the Cooper pairs are

believed to have d-wave symmetry [27] and evidence for nodes in the gap functions

has been observed. This is again in contrast to weakly coupled BCS theory, where

the highly symmetric s-wave state is energetically favourable.

The properties of a second class of high temperature superconductors have

been the subject of intensive study in recent years after the discovery of supercon-

ductivity at Tc = 26 K in the iron arsenide compound LaO1−xFxFeAs [28]. Several

further pnictide superconductors have been discovered with higher transition tem-

peratures. These all have crystal structures consisting of different arrangements of

FeAs layers. In several pnictide compounds, superconductivity emerges from altering

the carrier concentration by the doping of the parent compound, which orders anti-

ferromagnetically [14, 29]. The magnetic transition is accompanied by a structural

transition from a tetragonal to an orthorhombic structure. Once again magnetic

order is suppressed with increased doping before a superconducting dome emerges,

coinciding with the disappearance of the structural transition. Despite the layered

nature of the crystal structure, the materials have more of a three dimensional elec-

tronic structure than the cuprates and more isotropic superconducting properties

[30, 31]. The Cooper pairs are believed to condense in the extended s-wave state

3



[32] which is nodeless, unlike the d-wave pairing of the cuprates.

There are therefore striking similarities and differences between supercon-

ductivity in heavy fermion, cuprate and pnictide systems. The superconducting

phase diagrams for these systems frequently display a superconducting dome close

to the region where magnetic order is suppressed, although magnetic ordering is not

observed in the parent compounds of all pnictide superconductors. The supercon-

ductivity in these compounds is believed to be mediated by magnetic interactions

rather than the electron-phonon coupling of conventional BCS theory, although there

is currently not a widely accepted theory which accounts for the superconducting

behaviour.

All the systems discussed up to this point are centrosymmetric, that is the

crystal structure has a centre of inversion. The result of inversion symmetry is that

the Cooper pairs have a definite parity and therefore can be classified as either spin

singlet or spin triplet. This is not necessarily the case for non-centrosymmetric

superconductors and in the presence of a finite antisymmetric spin-orbit coupling

(ASOC), parity is no longer a good quantum number and therefore the supercon-

ducting states may no longer be classified as spin singlet or triplet but an admixture

of the two [33].

In the next section, non-centrosymmetric cerium based heavy fermion su-

perconductors are firstly discussed. It was the novel superconducting properties

of these systems that triggered the intensive experimental and theoretical study

of non-centrosymmetric superconductors. For example, the theory of mixed parity

pairing in non-centrosymmetric systems was outlined in Ref. [33] in 2001. As of April

2014 there have been 303 citations of this work, with only nine of these occurring

prior to the discovery of heavy fermion superconductivity in non-centrosymmetric

CePt3Si [34, 35]. In addition, the superconducting properties of weakly correlated

systems are discussed. These studies were motivated by both the experimental

and theoretical difficulties associated with understanding the behaviour of the non-

centrosymmetric heavy fermion systems. The aim is to isolate the effects of inversion

symmetry on the superconducting properties, without also needing to account for

strongly correlated behaviour.
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1.1 Non-centrosymmetric superconductors

1.1.1 Heavy fermion non-centrosymmetric superconductors

Figure 1.1: Crystal structure of CePt3Si with cerium atoms in green, platinum in
grey and silicon in blue.

CePt3Si was the first non-centrosymmetric, heavy fermion superconductor

to be reported and the only one unambiguously shown to display superconduc-

tivity at ambient pressure [34, 35, 36]. CePt3Si crystallizes in a primitive, non-

centrosymmetric tetragonal structure (space group P4mm), which is displayed in

Fig. 1.1. The lack of a mirror plane perpendicular to the c axis removes inversion

symmetry and results in a potential gradient along c. The system magnetically or-

ders at TN = 2.2 K and undergoes a superconducting transition at Tc = 0.75 K.

The cerium atoms order with a propagation vector of k = (0, 0, 12), with the mag-

netic moments pointing along [100] [37]. The expected magnetic moment from the

crystal electric field scheme is ∼ 0.5 µB [38], but a moment of only 0.16 µB is

observed in neutron diffraction measurements. Such a reduction in the ordered mo-

ment is evidence for the strength of the Kondo interaction, as is the large value

of γ = 390 mJ/mol K2. Unlike CeCu2Si2, µSR measurements reveal that all

muons are implanted in magnetic regions, indicating microscopic coexistence of the

superconducting and magnetic states [39].

Apart from the coexistence with magnetic order, a number of unusual prop-

erties of the superconducting state were identified. Thermal conductivity, specific

heat and penetration depth measurements all indicate the presence of line nodes in

the superconducting gap [40, 41, 42]. From nuclear magnetic resonance (NMR) mea-

surements, the spin susceptibility (χs) remains constant across the superconducting

transition for all orientations [43] and the upper critical field is nearly isotropic at

around 5 T, in excess of the Pauli paramagnetic limiting field of 1.4 T. For a spin
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Figure 1.2: Crystal structure of CeTX3, where T = transition metal and X = Si or
Ge.

singlet superconductor, χs is expected to decrease to zero below Tc. For a triplet

superconductor, it is expected to remain constant for one orientation only [36]. The

possibility of spin triplet superconductivity was of particular interest since it had

previously been noted that inversion symmetry was necessary for spin-triplet super-

conductivity [44], although there is one direction in a crystal structure along which

triplet states with a parallel d(k) are protected [45]. The protected triplet state has

point rather than line nodes but the latter may arise from the mixing of spin singlet

and triplet states, for a sufficiently strong triplet component [46].

Pressure induced superconductivity is also observed in CeRhSi3 (p > 1.2 GPa)

[47], CeIrSi3 (p > 1.8 GPa) [48], CeCoGe3 (p > 4.3 GPa) [49] and CeIrGe3

(p > 20 GPa) [50]. These crystallize in a body-centred, non-centrosymmetric

tetragonal BaNiSn3 type structure (space group I4mm), as displayed in Fig. 1.2.

Like the crystal structure of CePt3Si, inversion symmetry is broken due to the loss

of mirror symmetry along the c axis.

At ambient pressure, CeRhSi3 orders antiferromagnetically at TN = 1.6 K

[52, 51]. Neutron diffraction measurements reveal that the ordered moments are ori-

entated in the ab plane in a spin density wave type structure with an incommensurate

propagation vector k = (0.215, 0, 12) [53]. Since de Haas-van Alphen measurements

indicate that the Ce 4f electrons are itinerant even at ambient pressure [54, 55],

this was ascribed to a spin density wave type structure rather than local moment

magnetism. Further evidence for the strength of the Kondo interaction arises from
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Figure 1.3: Temperature - pressure phase diagram of CeRhSi3 from resistivity mea-
surements. The ordering temperature (TN), superconducting transition temperature
(Tc) are displayed. T ∗ denotes the position at which a kink in the resistivity is ob-
served below Tc. From Ref. [51].

the enhanced value of γ = 110 mJ/mol K4 and the small ordered moment of

∼0.1 µB/Ce compared to 0.92 µB/Ce from the CEF scheme [56].

The temperature-pressure phase diagram of CeRhSi3 is shown in Fig. 1.3.

TN initially increases with pressure until about 1 GPa when it starts to decrease,

before merging with the superconducting dome. Superconductivity is observed for

pressures above 1.2 GPa. The blue points in Fig. 1.3 show the superconducting dome

extending down to ambient pressures. These points correspond to measurements of

the resistivity with currents along the c axis and a broad superconducting transition

is observed at lower pressures [51]. µSR measurements under pressure reveal the

suppression of both the ordered moment and TN to zero temperature at a quantum

critical point for p = 2.36 GPa [57].

Similar behaviour is observed in CeIrSi3, which both has a higher ordering

temperature of TN = 5 K [52] and becomes superconducting at higher pressures.

The temperature-pressure phase diagram is shown in Fig. 1.4. A maximum Tc of

1.6 K is observed at 2.5 GPa, which is near to where TN and Tc coincide. Much like

CeRhSi3, the cerium 4f electrons in CeIrSi3 display itinerant behaviour [58] and an

incommensurate spin density wave structure is observed with k = (0.265, 0, 0.43)

[59].

An interesting contrast to the behaviour of these two compounds is observed

in CeCoGe3, which orders at a much higher temperature of TN1 = 21 K [60] and
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Figure 1.4: Temperature - pressure phase diagram of CeIrSi3. From Ref. [48].

becomes superconducting at a higher pressure again of 4.3 GPa [49]. A more detailed

discussion of the properties of this compound is given in Sec. 4.1. However it is

interesting that there is no evidence for the itinerancy of the 4f electron, since the

same branches are observed in both CeCoGe3 and non-magnetic LaCoGe3 [61, 62].

Furthermore, the magnetically ordered state consists of magnetic moments ordered

along the c axis and the magnetization as a function of a field along [001] shows three

step-like metamagnetic transitions [60]. These are readily interpreted as transitions

between magnetic phases resulting from the flipping of localized Ce spins. It is not

known if local moment magnetism is present at pressures close to the region of the

superconducting dome.

The ground state properties of several other isostructural CeTX3 compounds

have also been reported. Several other compounds including CeRhGe3 (TN = 14.6 K)

[52], CeIrGe3 (TN = 8.7 K) [52], CePtSi3 (TN = 4.8 K) [64] and CePdSi3 (TN = 5.2 K)

[65] order antiferromagnetically at ambient pressure. Of these CeIrGe3 becomes su-

perconducting for p > 20 GPa [50], while CeRhGe3 and CePtSi3 do not become

superconducting up to at least 8.0 GPa [63, 66]. Other compounds such as CeRuSi3,

CeOsSi3 and CeCoSi3 do not order magnetically and are believed to be intermediate

valence compounds [63]. The range of behaviours in the series are often explained in

terms of the Doniach phase diagram [67]. There is competition between the inter-

site Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, which leads to magnetic
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Figure 1.5: The dependence of (a) TN and (b) γ, as a function of unit cell volume
for selected CeTX3. From Ref. [63].

order and the onsite Kondo interaction, which favours a non-magnetic ground state.

In this case, altering the composition either expands or contracts the unit cell which

either strengthens or weakens the coupling between the 4f and conduction electrons.

This is shown in Fig. 1.5, where the ordering temperature and γ have been plotted

as a function of unit cell volume. Going from left to right, the volume decreases

corresponding to an increase in chemical pressure. The solid lines illustrate the

expected behaviour of the Doniach phase diagram. Increasing the coupling initially

enhances the RKKY interaction and therefore TN. However, with increased pressure

the Kondo interaction dominates and TN is suppressed to zero at a quantum critical

point (QCP). It is also around this region where there is a greater enhancement of

γ. It can be seen that these diagrams appear to encapsulate the relative behaviour

of several members of the series including the pressure induced superconductors.

However, this simplified picture does not readily explain the behaviour of all com-

pounds. For example, CeFeGe3 does not order magnetically and has a relatively
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large value of γ = 150 mJ/mol K2, yet with a unit cell volume of 186.6 Å3 it

would be expected to be in the magnetically ordered regime. The unit cell volumes

of CeRuSi3 and CePtSi3 are 175.7 and 175.5 Å3 respectively, despite the latter be-

ing deep in the ordered regime and the latter being non-magnetic and probably an

intermediate valence compound.

The most notable feature of the superconducting states of these compounds

are the large, anisotropic upper critical fields. For example, the upper critical field

of CeRhSi3 reaches ∼7 T for fields in the ab plane but is significantly larger along

the c axis, possibly reaching up to 30 T for p = 2.9 GPa [68]. Similarly in CeIrSi3, a

zero temperature value of 9.5 T is obtained perpendicular to c, while it exceeds 30 T

along c at 2.65 GPa [69]. Much like CePt3Si, the BCS Pauli limiting field is greatly

exceeded in all directions but in this case there is a much greater anisotropy. The

Bc2 curve also turns up at low temperatures for fields along c, while the curve for

fields perpendicular to this resembles conventional behaviour. This suggests that

paramagnetic limiting is absent for fields along the c axis and greatly reduced for

perpendicular fields. In the absence of paramagnetic limiting, Bc2 is determined

solely by the orbital limiting value, which may be greatly enhanced in the region of

a QCP [70, 71]. This behaviour is consistent with the calculated spin susceptibility

for the permitted triplet state of the non-centrosymmetric crystal structure [72],

whereas the consistency of the spin susceptibility of CePt3Si in all directions remains

more difficult to account for.

While initially it was only the heavy fermion non-centrosymmetric super-

conductors which were the subject of intense study, in recent years the properties

of weakly correlated non-centrosymmetric superconductors have been increasingly

examined. Several reasons can be identified for this. Firstly, the number of known

heavy fermion non-centrosymmetric superconductors is small, with only CePt3Si,

CeTX3 and UIr [73] being reported. Of these, only CePt3Si becomes superconduct-

ing at ambient pressures and the ability to characterize the superconducting states

under pressure is much more limited. Even in the case of CePt3Si, the low Tc, sam-

ple dependence [74] and coexistent magnetic order further restrict measurements of

the superconducting properties. There are also difficulties in separating the effects

of unconventional pairing states and other phenomena such as coexistent magnetic

order and strong electronic correlations. For example in the case of CePt3Si, the

presence of line nodes and a constant spin susceptibility are often taken as evidence

of mixed singlet and triplet pairing. However, the line nodes have also been ex-

plained as resulting from coupling with magnetic order [75] and strong electronic

correlations may also enhance the spin susceptibility to the normal state value in
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all directions [76]. Therefore it may be the case that in weakly correlated systems,

the effects of a lack of inversion symmetry on the pairing symmetries can be more

readily isolated.

1.1.2 Weakly correlated non-centrosymmetric superconductors

In this section, the properties of weakly correlated non-centrosymmetric supercon-

ductors are discussed. The aim is to look for evidence of mixed pairing states

resulting from the loss of inversion symmetry. It will be of particular interest to

examine systems where the ASOC can be varied by the substitution of heavy atoms

on non-centrosymmetric positions [77].

Perhaps the canonical example of such compounds are Li2Pd3B (Tc = 7 K)

and Li2Pt3B (Tc = 2.7 K) [78, 79, 36]. These both crystallize in a cubic non-

centrosymmetric perovskite type structure and γ values of 9 and 7 mJ/mol K2

respectively [80] indicate a lack of strong electronic correlations. Specific heat [81],

magnetic penetration depth [82] and NMR [83] measurements are consistent with

fully gapped s-wave superconductivity in Li2Pd3B. Upon the substitution of the

heavier Pt for Pd, there is an increase in the ASOC. At low temperatures, there is a

quadratic dependence of the electronic specific heat and a linear dependence of the

penetration depth, indicating the presence of line nodes. NMR measurements indi-

cate no change in χs at Tc, suggesting spin-triplet superconductivity. In Ref. [82] the

magnetic penetration depth of both compounds is modelled with a superconducting

gap consisting of an admixture of an isotropic singlet state and a triplet state com-

patible with the spin-orbit coupling of the crystal structure. One of the gaps of the

resulting two gap structure has line nodes for a sufficiently large triplet component.

The model contains a parameter ν, which is the ratio of the magnitude of the singlet

and triplet components. Values of ν = 4 for Li2Pd3B and ν = 0.6 for Li2Pt3B

were obtained, indicating that upon increasing the ASOC the triplet component

of the pairing increases, leading to line nodes in one of the superconducting gaps.

It has also been suggested that Li2Pt3B is dominated by a singlet s± state which

arises from nesting of the Fermi surface [84]. In this case, the difference between

the two compounds arises from changes in the Fermi surface from the additional

contribution of platinum 5d bands. It should be noted that neither of these models

predict χs to remain unchanged for a polycrystalline sample at Tc and this result is

yet to be accounted for.

Unconventional superconductivity has also been reported in the orthorhom-

bic compound LaNiC2 (Tc = 2.7 K) [85]. Magnetic penetration depth measure-

ments indicate both the presence of point nodes [86] and a fully gapped, two gap
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structure [87]. Ref. [86] ascribes the discrepancy as arising from the effect of mag-

netic impurities. The most dramatic experimental result is the observation of spon-

taneous fluctuating magnetic fields below Tc, from muon spin relaxation measure-

ments [88]. This indicates that time reversal symmetry is broken in the supercon-

ducting state. Time reversal symmetry is only broken by a subset of spin-triplet

states which are known as non-unitary and the Cooper pairs are spin polarized [89].

A symmetry analysis reveals that while there are three non-unitary states compati-

ble with the crystal structure, none of these are allowed in the presence of a sizeable

ASOC [90]. This suggests that the ASOC in LaNiC2 is negligible and that the un-

conventional pairing state arises despite the non-centrosymmetric crystal structure,

rather than as a consequence of it. This is further supported by the observation of

time reversal symmetry breaking in the related but centrosymmetric superconductor

LaNiGa2 [91].

Time reversal symmetry breaking was also reported for non-centrosymmetric

Re6Zr [92] with the α-Mn structure. Unlike LaNiC2, the crystal structure contains

a large number of heavy atoms in non-centrosymmetric positions and therefore a

negligible ASOC is unlikely. However, in this instance the non-unitary state is saved

in the presence of ASOC, as a result of the higher symmetry of the cubic α-Mn

structure and a state with the mixing of singlet and triplet states was identified.

An admixture of singlet and triplet states will not necessarily lead to nodal

structures, in which case a two-band, fully gapped structure would be anticipated.

These gaps would be expected to be anisotropic, particularly on the ∆− surface

(Eq. 2.47). An example of a system where such a structure has been deduced is

BiPd (Tc = 3.8 K) [93], which is weakly correlated with γ = 4 mJ/mol K2. Two

gap superconductivity is revealed by both point contact Andreev reflection [94] and

penetration depth measurements [95] of single crystals. Single crystals are necessary

for the former and with the latter different field directions can be measured, allowing

greater information of the gap anisotropy to be obtained. The penetration depth

data can be fitted with one isotropic and one anisotropic gap and this is consistent

with an ASOC which is estimated to be smaller than CePt3Si and Li2Pt3B.

Several non-centrosymmetric superconductors have also been reported with

properties consistent with BCS s-wave superconductivity. These include T2Ga9 (T =

Rh, Ir) [96, 97], Re3W [98], Re24Ti5 [99] and LaPt3Si [42]. There has been a par-

ticular focus on compounds of the form RTX3 (R = Sr, Ba, La, Ca; T = transition

metal; X = Si,Ge), which crystallize in the BaNiSn3 structure, the same as the

pressure induced heavy fermion superconductors discussed in Sec. 1.1.1. It will

therefore be of interest to determine whether similar unconventional behaviour is
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observed in isostructural, weakly correlated materials. SrPdGe3 (Tc = 1.49 K),

SrPtGe3 (Tc = 1 K) [100], BaPtSi3 (Tc = 2.25 K) [101], CaPtSi3 (Tc = 2.3 K),

CaIrSi3 (Tc = 3.6 K) [102] and LaIrSi3 (Tc = 0.9 K) [69] all contain 5d transition

metals and are type-II superconductors. The specific heats of BaPtSi3, CaPtSi3 and

CaIrSi3 are all consistent with an isotropic superconducting gap of the magnitude

predicted by BCS theory. A relatively low upper critical field of 64 mT was reported

for BaPtSi3 with a Ginzburg Landau parameter (κ) of 2.6, while larger values of

were reported for CaIrSi3 and CaPtSi3 respectively. One possible reason for this dif-

ference is that for the latter two compounds, the upper critical field was measured

using the onset of Tc, while the BaPtSi3 values were bulk values from muon spin

rotation measurements. In fact, upper critical field values obtained from resistivity

measurements are significantly larger in all three materials and there is a positive

curvature at low temperatures, possibly as a result of the significant broadening of

the in-field transition. Single crystals of LaIrSi3 have been grown and there is only a

small anisotropy in the upper critical field, in contrast to the massively anisotropic

values in the cerium based compounds. Different behaviour is observed in LaRhSi3,

which is a dirty type-I superconductor, as revealed through muon spin rotation,

specific heat and magnetization measurements [103]. The specific heat data are also

compatible with weakly coupled BCS superconductivity and the estimated value of

κ puts the material in the type-I regime.

Electronic structure calculations of BaPtSi3 [36, 101] reveal that the main

contributions to the density of states at the Fermi level are from Si-3p and Pt-5d

states. The presence of 5d states might indicate that the bands will be significantly

affected by spin-orbit coupling. However, while relativistic calculations show that

there is significant spin-orbit splitting of the bands at around −1.5 eV, there is only

weak splitting of the bands at the Fermi level. Since it is electrons in the region of

the latter which condense to form Cooper pairs, it is unlikely the spin-orbit coupling

plays a significant role in determining the superconducting properties of BaPtSi3.

These results give some indication of the range of properties observed in

weakly correlated non-centrosymmetric superconductors. These range from systems

where the strong spin-orbit coupling leads to unusual nodal gap structures, to those

where fully gapped, two-band behaviour is observed and those which are consistent

with single band BCS superconductivity. While a two gap structure is expected to

be a generic feature of non-centrosymmetric superconductors, for weak spin-orbit

coupling both gaps may be nearly isotropic and very similar in magnitude. The

example of LaNiC2 is also important, since despite displaying highly unconventional

behaviour, this does not appear to arise as a result of strong ASOC and theoretical

13



calculations indicate the non-unitary state is only permitted when it is weak. This

shows that while studying weakly correlated non-centrosymmetric superconductors

has allowed progress to be made in disentangling the effects of strong electronic

correlations and inversion symmetry breaking, unconventional properties can not

necessarily be ascribed to the latter.
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Therefore, two different approaches for understanding the behaviour of non-

centrosymmetric superconductors are outlined in sections 1.1.1 and 1.1.2. That is

the properties of the CeTX3 compounds can be studied directly, or weakly corre-

lated non-centrosymmetric superconductors can be examined. Examples of both

approaches are given in this thesis, which is structured as follows. Chapter 2 con-

tains a theoretical background, mainly detailing selected topics in superconductivity,

magnetism and neutron scattering. Details of experimental techniques are given in

chapter 3. The following four chapters contain the experimental results of this

work. Chapters 4 and 5 are concerned with the ground state properties of CeTX3

at ambient pressure. Chapter 4 details neutron scattering, muon spin relaxation and

magnetic susceptibility measurements of the antiferromagnetic, pressure-induced su-

perconductor CeCoGe3. Chapter 5 contains neutron scattering measurements of the

antiferrogmagnets CePdSi3 and CePtSi3, as well as CeRuSi3, which does not dis-

play magnetic order. Chapters 6 and 7 are concerned with the properties of weakly

correlated non-centrosymmetric superconductors. Results of investigations into the

superconducting properties of LaPdSi3 and LaPtSi3 are given in chapter 6, whereas

chapter 7 is concerned with the superconducting properties of a single crystal of

Nb0.18Re0.82.
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Chapter 2

Theoretical background

2.1 Magnetic properties of f electron systems

2.1.1 Isolated ion properties

This section gives an overview of some of the magnetic properties of f electron sys-

tems, that is compounds containing elements with partially filled f -electron shells.

The solution of the non-relativistic, time independent Schrödinger equation for a

hydrogen atom gives a set of wave functions ψnlm where n, l and m are the princi-

pal, orbital and magnetic quantum numbers. Along with the spin quantum number,

these can uniquely describe the state of an electron in the system. For atoms other

than hydrogen, there is an additional term in the Hamiltonian due to the Coulomb

interaction between electrons. Calculations of the radial wave functions for lan-

thanide elements show a peak for the 4f states at low radii, below that of the 5s, 5d

and 6s orbitals. Moving across the period, the increasing nuclear charge is poorly

screened by the f electrons and the orbitals become increasing contracted and lo-

calized. However, the 4f wave function of cerium has a long tail which reaches into

the outer shells.

Atomic states may be described by the total angular momentum J which is

the sum of the orbital angular momentum L and spin angular momentum S

J = L+ S, (2.1)

which takes values between |L + S| and |L − S| [109]. The subsequent magnetic

moments are given by

µ = gJµB
√
J(J + 1), (2.2)
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where gJ is the Landé g-factor given by

gJ =
3

2
+
S(S + 1)− L(L + 1)

2J(J + 1)
. (2.3)

Since J can take a range of values, determining the moment requires knowledge of

which is the ground state. This requires considering the configuration of unfilled

shells, since J = 0 for a filled one. This can be estimated from Hund’s rules which

are

1. Select the largest value of S for the electronic configuration.

2. Select the largest value of L for the electronic configuration.

3. J = |L − S| for a less than half filled shell and |L + S| otherwise.

The first rule minimizes the Coulomb repulsion by preventing electrons from occu-

pying the same position. The second also minimizes Coulomb interactions and can

be understood qualitatively as preventing the crossing of electron orbits. The third

rule is from minimizing the spin-orbit energy which arises from a term proportional

to L · S in the Hamiltonian, when relativistic corrections are taken into account.

Ce3+ has a 4f1 configuration and applying Hund’s rules, S = 1
2 , L = 3 and

J = 5
2 . For this state, gJ = 6

7 and µ = 2.54 µB. The J = 7
2 state is well sepa-

rated by typical energies of ∼ 3000 K [110] and therefore does not play a significant

role in the magnetic properties.

2.1.2 Crystal electric fields

In addition to the atomic properties, it is necessary to consider the local environment

of an ion sitting in a regular atomic lattice. This will contribute an additional

electrostatic interaction termed the crystal electric field (CEF). In a metal, this

will arise not only from the point like charges of surrounding nuclei but the broad

distribution from surrounding conduction electrons. The appropriate method of

dealing with this field depends on the magnitude of the effect. Since f orbitals

lie quite close to the nucleus, the effect of the local electric field is relatively weak

compared to the spin-orbit coupling. In this case, all three of Hund’s rules are

expected to hold and the effect of this field is to act as a perturbation which lifts

the degeneracy of the (2J + 1) states of the ground state multiplet.

This can be analyzed using the method of Stevens operator equivalents

[111, 112]. This approach is valid under the condition that the other multiplets are
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sufficiently well separated from the one in consideration. Once the perturbing poten-

tial is expressed as a function of Cartesian co-ordinates (x, y, z), the Wigner-Eckhart

theorem can be applied which allows the replacement of (x, y, z) with the projections

of the angular momentum operators (Jx, Jy, Jz), provided the non-commutation of

the angular momentum operators is taken into account. In this case, the perturbing

CEF Hamiltonian (HCEF) is

HCEF =
∑
n,m

Bn
mO

n
m, (2.4)

where the coefficients Bn
m are Stevens parameters and Onm are Stevens operator

equivalents which depend only on the angular momentum operators. For a cerium

ion in a tetragonal CEF, HCEF takes the form of

HCEF = B0
2O

0
2 +B0

4O
0
4 +B4

4O
4
4. (2.5)

For the J = 5
2 multiplet, the higher order parameters Bn

6 are all zero. The three

Stevens operator equivalents in Eq. 2.5 are given by

O0
2 = 3J2

z − J(J + 1) (2.6)

O0
4 = 35J4

z − 30J(J + 1)J2
z + 25J2

z − 6J(J + 1) + 3J2(J + 1)2 (2.7)

O4
4 =

1

2
(J4

+ + J4
−). (2.8)

J± are raising and lowering operators. The J = 5
2 multiplet has six states |mJ >,

where mJ runs from −5
2 to 5

2 . Using these as a set of a basis states a matrix can be

constructed with elements < m′
J |HCEF|mJ > which is given by



10B0
2+60B0

4 0 0 0 12
√
5B4

4 0

0 −2B0
2−180B0

4 0 0 0 12
√
5B4

4

0 0 −8B0
2+120B0

4 0 0 0

0 0 0 −8B0
2+120B0

4 0 0

12
√
5B4

4 0 0 0 −2B0
2−180B0

4 0

0 12
√
5B4

4 0 0 0 10B0
2+60B0

4


This can be diagonalized and the eigenvectors and eigenvalues give the CEF wave

functions and their corresponding energies. The forms of the operators and their

matrix elements are tabulated in Ref. [112]. It can be seen that the only off-diagonal

elements are proportional to B4
4 since < m′

J |O0
2|mJ > and < m′

J |O0
4|mJ > are zero
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for m′
J ̸= mJ , whereas < m′

J |O4
4|mJ > is only non zero for m′

J − mJ = 4.

Therefore, if B4
4 is non-zero, there will be mixing of the |52 > and | − 3

2 >, and

| − 5
2 > and |32 > states. There are no terms that mix the | ± 1

2 > states. The level

scheme will consist of three doublets. This is a result of Kramer’s theorem which

states that if the Hamiltonian for a non-integer spin does not break time reversal

symmetry, then the energy levels will be at least doubly degenerate. Electric fields

do not break time reversal symmetry but magnetic fields do, so in the absence of

a field there exist protected Kramer’s doublets but in an applied field these levels

may split.

It can be seen that even before the magnetic interactions between 4f ions are

considered, the perturbing effect of the surrounding charge distribution can lead to

strongly anisotropic properties. These are often termed single-ion anisotropic effects

which can strongly influence magnetic properties up until temperatures where the

thermal energy greatly exceeds the energy of the CEF splittings. To the lowest

order, the anisotropy energy (Ea) of a tetragonal system is given by

Ea = K1sin
2θ, (2.9)

where θ is the angle between the direction of the magnetic moments and the c axis

[113]. So if K1 < 0, Ea is minimized for moments in the ab plane and if K1 > 0,

Ea is minimized for moments along the c axis. Within this CEF model for a cerium

ion, K1 is given by

K1 = −
(
3

2
B0

2 < O0
2 > +5B0

4 < O0
4 >

)
. (2.10)

Typically the sign of K1 is dominated by the sign of B0
2 < O0

2 >. The projections of

the ground state magnetic moment in the ab plane (⟨µx⟩) and along the c axis are

given by

⟨µz⟩ = ⟨ψ±
1 |gJJz|ψ

±
1 ⟩ (2.11)

⟨µx⟩ = ⟨ψ±
1 |
gJ
2
(J+ + J−)

∣∣∣ψ±
1

⟩
, (2.12)

where
∣∣∣ψ±

1

⟩
are the wave functions of the ground state doublet. It is therefore pos-

sible for a range of ground state moments to arise purely from single-ion anisotropy.

One technique in which anisotropic properties will be readily apparent is in magnetic

susceptibility measurements of single crystals.
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Single crystal susceptibility

In the absence of CEF splittings, the low field magnetic susceptibility of a param-

agnetic ion is given by

χ =
µ0µ

2
eff

3kBT
, (2.13)

where µeff is the effective moment and can be estimated from Eq. 2.2 [109]. The

experimentally observed value for Ce3+ is 2.51 µB compared to the theoretical value

of 2.54 µB. Taking into account the CEF splitting, the magnetic susceptibility of

an ion along the axis i given by [114]

χCEF = χ0 + (gJµB)
2Z−1

∑
j ̸=k

| < ψj |Ji|ψk > |2 1− e
Ek−Ej
kBT

Ek − Ej
e

Ej
kBT

+
1

kBT

∑
j

| < ψj |Ji|ψj > |2e
Ej
kBT

 ,

(2.14)

where Ej is the energy of the jth level and Ej = 0 for the ground state. Z =
∑
j
e

Ej
kBT

is the partition function. As T → 0, only the term on the right hand state for the

ground state remains and the susceptibility is reduces to Eq. 2.13 with an effective

moment determined by the ground state doublet. Eq. 2.14 models the magnetic

susceptibility taking into account single-ion anisotropy from CEF. However, it does

not take into account two-ion interactions. The high temperature magnetic sus-

ceptibility of magnetically ordered compounds is significantly different above the

ordering temperature since instead of Eq. 2.13, χ ∝ (T − θCW)−1, where θCW is

the Curie-Weiss temperature. Magnetic ordering evidently must arise from two-ion

interactions and this can be accounted for by the addition of a molecular field (λ).

The magnetic susceptibility is then given by [114].

χ = χ0 +
χCEF

1− λχCEF
(2.15)

The molecular field parameters can also be anisotropic and this represents two-ion

anisotropic exchange interactions. The CEF parameter B0
2 can also be related to

the high temperature susceptibility for isotropic exchange interactions by [115]

B0
2 =

10kB(θab − θc)

3(2J − 1)(2J + 3)
, (2.16)
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where θab and θc are the Curie Weiss temperatures perpendicular and parallel to the

c axis respectively. In the next section, two-ion interactions and magnetic ordering

are discussed more fully.

2.1.3 Magnetic order

For magnetic order to occur there must be interactions between magnetic moments.

The Hamiltonian for such an interaction is given for the Heisenberg model by

H = −
∑
i,j

JijSi · Sj, (2.17)

where Jij is the exchange interaction between the ith and jth spins [109]. Consid-

ering a nearest neighbour model where Jij = J for neighbouring spins and is zero

otherwise, the energy will be minimized when neighbouring spins align for J > 0

and antialign for J < 0, and the former describe ferromagnetic interactions while

the latter describe antiferromagnetic interactions. In an Ising model, the spins can

no longer point in any direction and are constrained to point along a single axis. In

this case, Si · Sj in Eq. 2.17 can be replaced with just the component along one axis

Szi S
z
j .

The most straightforward interaction between a pair of localized spins is

the dipolar interaction. The energy scale is of this interaction is at most of the

order of 1 K and in metallic materials the localized moments are surrounded by a

cloud of conduction electrons. It is the interaction between the f electrons and the

conduction band that gives rise to magnetic exchange interactions in many of these

systems. The q dependent paramagnetic susceptibility of an electron gas in three

dimensions is given by [109]

χ(q) =
χP

2

(
1 +

1− q̃2

2q̃
ln

∣∣∣∣ q̃ + 1

q̃− 1

∣∣∣∣
)
, (2.18)

where χP is the Pauli paramagnetic susceptibility and q̃ = q/2kF is the ratio of

wave vector to twice the Fermi wave vector. χP is the response of an electron gas to

a uniform magnetic field. As a result, the electron gas at distance r from a perfectly

localized spin S1 has a spin polarization s(r) given by [116]

s(r) ∝
∑
q

χ(q)eiq·rS1 ∝ Jcf

(
−2kFrcos2kFr + sin2kFr

16(kFr)4

)
, (2.19)

where Jcf is the on site exchange interaction between S1 and a conduction electron.

The polarized conduction electrons can then couple to another localized spin S2
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which leads to an effective interaction between a pair of local moments mediated

by the conduction electrons. This is the Ruderman-Kittel-Kasuya-Yosida (RKKY)

interaction

HRKKY ∝ Jcf s(r) · S1 ∝ J2
cf

(
−2kFrcos2kFr + sin2kFr

16(kFr)4

)
S1 · S2. (2.20)

This can be identified as a form of the Hamiltonian in Eq. 2.17 with an exchange in-

teraction of the form shown in Fig. 2.1. The interaction is strong and ferromagnetic

for short separations. However, with increasing interatomic distances, JRKKY oscil-

lates and therefore the interactions can either be ferromagnetic or antiferromagnetic.

Furthermore, a structure can display both ferromagnetic and antiferromagnetic in-

teractions when different pairs of ions are considered and this can lead to competing

magnetic interactions. Fig. 2.2 illustrates how for a face-centred lattice, interactions

can be ferromagnetic between nearest neighbours and antiferromagnetic between

next nearest neighbours. The extreme example of this is when the moments are

randomly positioned in a conducting medium and this leads to a spin-glass be-

haviour [109]. As kF → 0, the interaction is ferromagnetic and JRKKY ∼ 1/r3.

kF = 0 corresponds to the disappearance of the Fermi surface and therefore the

absence of conduction electrons and the form of Eq. 2.20 reduces to the dipolar

interaction.

This type of two-ion interaction can explain much of the magnetic behaviour

of f electron systems. The strength of the interaction scales with J2
cf and there-

fore upon increasing the coupling between the local moments and the conduction

electrons, the RKKY interaction would be expected to be enhanced. However, as

discussed in the next section, increasing the coupling in some systems enhances the

Kondo interaction which competes with magnetic ordering.

2.1.4 Kondo Interaction

The behaviour of localized magnetic moments in a metallic host can be described

by the Anderson impurity model given by [116]

H =
∑
k,σ

ϵkc
†
k,σck,σ +

∑
σ

ϵff
†
σfσ + Uf †↑f↑f

†
↓f↓ +

∑
k,σ

(
Vkc

†
k,σfσ + h.c.

)
. (2.21)

c†k,σ and ck,σ are creation and annihilation operators for conduction electrons with a

band energy ϵk and spin σ, while f †σ and fσ are creation and annihilation operators
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Figure 2.1: The functional form of the exchange interaction for the RKKY interac-
tion.

Figure 2.2: An illustration of how the RKKY interaction can lead to ferromagnetic
interactions (blue) between nearest neighbours (nn) and antiferromagnetic interac-
tions (red) between next nearest neighbours on a face-centred lattice.
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for localized electrons with an energy ϵf . The dispersion of a conduction band in the

free electron model is ∝ k2 while it has no k dependence for a perfectly localized

electron. U is the Coulomb repulsion on the localized electron site and describes

the energy cost of the level being doubly occupied. The last term describes the

hybridization of the conduction and localized electrons, the strength of which is

given by the matrix element Vk. It can be shown that in the limit of a large U and

small Vk [117], the Hamiltonian in Eq. 2.21 takes the form of the Kondo interaction

H ∼ Js · S between the spins of a conduction and localized electron. This is an

antiferromagnetic coupling, the strength of which is proportional to the square of the

hybridization strength V 2 and is inversely proportional to (ϵF − ϵf ), the difference

in energy between the Fermi level and the localized electron levels.

The Kondo model can be used to study the properties of certain f electron

systems. In the case of strongly localized f electrons, ϵf is too far below the Fermi

level. The poorly screened nuclear charge ensures that the wave function lies very

close to the core with a negligible amplitude further out. However, cerium ions in

particular often have ϵf close to the Fermi level and although the wave function

peaks close to the core, there is a longer tail to greater distances [115]. Therefore,

the Kondo interaction plays a dominant role in the magnetic properties of many

cerium based systems. Although the model in Eq. 2.21 can account for much of the

behaviour of these compounds, a fundamental difference is that in these compounds

the localized moments are often arranged in a regular lattice. Since the Anderson

impurity model describes the interaction of a single impurity spin, it will be unable to

account for coherence effects which may be very important for describing the wide

range of unusual phenomena observed in heavy-fermion and intermediate valence

compounds.

Upon reducing the temperature, the conduction electrons increasingly screen

the magnetic moment of the localized electrons. At temperatures far below a char-

acteristic energy scale called the Kondo temperature (TK), there is strong coupling

between the localized and conduction electrons and there is screening of the local

moment. They can be thought of as forming a non-magnetic singlet state with a

binding energy

kBTK ∼ ϵFe
−1/Jρ(ϵF), (2.22)

where ρ(ϵF) is the density of states at the Fermi level. The crossover between

local moments and the Kondo singlet can be observed in the magnetic susceptibility

which displays Curie like behaviour at high temperatures (Eq. 2.13) and a constant

susceptibility of order 1/TK at low ones [118]. There is a large resonance in the
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density of states around ϵF which is reflected in massively enhanced values of γ, up

to the order of ∼ 1 J/mol K [119]. This corresponds to the conduction bands having

a ‘heavy’ f like character. That is the bands have a weak dispersion corresponding to

large effective electron masses. With increased coupling J , the model of the Kondo

interaction can not be applied and in particular, the 4f level is no longer fully

occupied. This is the intermediate valence regime where the f electron fluctuates

between occupying f orbitals and the conduction band, so that 0 < nf < 1 and

properties such as the low temperature susceptibility and γ are moderately enhanced

but not to the extent of the heavy-fermion regime [116].

2.1.5 Doniach phase diagram and quantum criticality

From considering the coupling of localized f electrons to the conduction band, two

very different possible behaviours emerge. It is possible for magnetic exchange in-

teractions to be realized between magnetic moments following Eq. 2.20, yet it is also

possible for hybridization between f electrons and the conduction bands to lead to

the screening of the moment and the formation of an effective singlet state. These

are two fundamentally different ground states and the competition between these

interactions are often described within the framework of the Doniach phase diagram

[67]. In this model, the coupling constant Jcf in Eq. 2.20 is identified with the

Kondo coupling constant. Therefore the magnetic ordering temperature TN scales

as ∼ J2ρ(ϵF) while TK scales as in Eq. 2.22. For low couplings, the RKKY inter-

action dominates and the system orders magnetically. As the coupling is increased

the RKKY interaction is enhanced but not as strongly as the Kondo interaction,

which dominates at large J . Although TN will increase initially, the effect of the

Kondo interaction is to screen the local moments and suppress magnetic order. At a

critical coupling Jc, TN will be suppressed to zero at a quantum critical point (QCP)

[120]. In many systems, a superconducting region is observed surrounding the QCP,

where the Copper pairs consist of heavy quasiparticles and the superconductivity is

believed to be mediated by spin fluctuations [13].
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2.2 Superconductivity

2.2.1 Introduction to superconductivity

The key experimental signatures of superconductivity which motivated early studies

were the loss of resistivity [1] and perfect diamagnetism [121]. In the case of the

latter, not only will an applied field be unable to penetrate beyond the surface of

superconducting material, but upon cooling through the superconducting transition

temperature (Tc), magnetic flux is expelled from the bulk of the sample. In the

absence of a thermodynamic or microscopic theory of the superconducting state,

the electrodynamic properties are encapsulated by London equations given by

E =
me

nse2
dJs

dT
(2.23)

∇× Js = −nse
2

m
B, (2.24)

where E and B are the electric field and the magnetic flux density, Js is the super-

current density and ns is proportional to the superfluid density. The first equation

describes a perfect conductor, since in the absence of an electric field, a finite cur-

rent solution is permitted. Therefore electric fields are needed only to change the

current and there are no dissipative processes. The utility of the second equation is

generally found from substituting in Ampere’s law for Js, which results in

∇2B =
B

λ2L
, (2.25)

where the London penetration depth is given by

λ2L =
mec

2

4πnse2
. (2.26)

For a constant magnetic field applied to an infinite superconducting slab, the solution

is a decaying exponential, with a decay constant λL. Therefore, apart from in

a region at a depth of order ∼ λL from the surface, magnetic fields are entirely

excluded. This is related to the ability of supercurrents on the surface to screen the

magnetic field and for larger superfluid densities ns, magnetic fields are screened

more effectively and the smaller λL is.
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2.2.2 Phase transitions

Further progress can be made from considering the nature of the superconducting

phase transition. The Ginzburg-Landau theory follows from the Landau theory

of phase transitions for describing the change from an ordered to disordered sys-

tem. For an ordered system, there is an order parameter (M) which is zero in the

disordered phase but non-zero in the ordered phase. The state of a system must cor-

respond to a minimum in the free energy F and at the critical temperature (Tc), the

minimum in F changes from a disordered state with M = 0 to an ordered state

with M ̸= 0. In a second-order phase transition, the order parameter changes

continuously at Tc so F can be expanded in even powers of M .

F = a(T − Tc)M
2 + bM4 + ..., (2.27)

where it has been assumed that M is spatially homogeneous, and a and b > 0.

For T > Tc, F is only minimized for M = 0 but for T < Tc there is a non-zero

solution with

M2 =
a(Tc − T )

2b
. (2.28)

Therefore upon cooling below the transition, M grows continuously from zero and

M ∝ (Tc−T )
1
2 . This is the expected behaviour of the (sublattice) magnetization in

the mean field model of an (anti)ferromagnet close to a second order phase transition.

In systems where the fluctuations can not be neglected, there may be a different

temperature dependence but it will scale as M ∝ (Tc−T )β. β is a critical exponent

applicable for a wide range of phase transitions with the same dimensionality of the

system and order parameter [109]. The first derivative of Eq. 2.27 is continuous at

the phase transition but there is a discontinuity in the second derivative. Therefore

a discontinuity will be observed at a second order transition in quantities dependent

on the second derivative of the free energy, such as the specific heat. In the case of a

first-order transition, F can not necessarily be expanded in powers ofM , since there

is no guarantee that the order parameter is small at the transition. However, if the

order parameter is sufficiently small close to the transition, a first order transition

can be described with

F = a(T − Tc)M
2 + bM4 + cM6 + ..., (2.29)

where now b < 0 and c > 0. Again at high temperatures, the only minimum in the

free energy occurs atM = 0. However now the minima at non-zeroM do not grow
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Figure 2.3: The top shows the free energy of the first order phase transition described
by Eq. 2.29 while the bottom shows the free energy of the second order phase
transition in Eq. 2.27. The red lines show curves where the only minimum is at
M = 0 while the blue lines only have minima at M ̸= 0. The green lines on
the first order show curves with metastable states and there is coexistence between
the ordered and disordered phases. In the second order plot, the minima emerge
continuously from M = 0 while in the first order plot they emerge first at finite
M .
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continuously from zero and at the phase transition the order parameter jumps from

zero to a finite value. Furthermore for the above model, if B2 > 3a(T − Tc) there

are local minima for M = 0 and M ̸= 0 and therefore in this temperature region

there exist metastable states. This is the origin of superheating and supercooling

phenomena, whereby the system does not necessarily sit in a global minimum of

the free energy but in a metastable local minimum. The free energies for first and

second order transitions are shown in Fig. 2.3. In the second-order plot, it can be

seen that below Tc, the minima in the free energy start from M = 0 and move

continuously away from the origin. For the first-order case, the minima initially

emerge at finite M and there is a jump from M = 0 to a finite M . In the regions

of coexistence shown in green, there exist local minima at both zero and non-zero

M .

2.2.3 Ginzburg-Landau theory

Applying a similar principle to the superconducting transition, in Ginzburg-Landau

theory a complex order parameter ψ is postulated. In addition to the terms in

Eq. 2.27, the free energy also contains terms with the gradient of ψ as well as

coupling to the magnetic field in the same way as a wave function. In this case the

free energy density of the superconducting state fs is given by [11]

fs = fn + α|ψ|2 + β

2
|ψ|4 + 1

2m

∣∣∣∣∣
(
h̄

i
∇− 2e

c
A

)
ψ

∣∣∣∣∣
2

+
(B−Bapp)

2

2µ0
, (2.30)

where fn is the normal state free energy density, B is the total magnetic field, Bapp

is the contribution from the external magnetic field and A is the magnetic vector

potential. For a homogeneous solution, the gradient term disappears and a minimal

solution can be found similar to Eq. 2.28. This can be substituted into Eq. 2.30 and

it can be seen that there is a critical applied field Bapp = Bc above which the free

energy of the Meissner state (with B = 0) is greater than fn. Therefore, there is

a phase transition from the superconducting to the normal state at Bc. This is the

thermodynamic critical field and the temperature dependence is given by [122]

Bc(T ) = Bc(0)

[
1−

(
T

Tc

)2
]
. (2.31)

Two characteristic lengthscales emerge from Ginzburg-Landau theory. The first is

the London penetration depth. If |ψ|2 is identified as corresponding to the super-
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fluid density, then an effective penetration depth (λeff) proportional to λL enters

Ginzburg-Landau theory via Eq. 2.26. A relationship between ns and the order

parameter is expected, since ns is a quantity which becomes non-zero only in the

superconducting state. However, that does not mean that the order parameter is

simply the density of superconducting electrons, since ψ is a complex number. The

phase of the wave function is important for describing currents in the superconduct-

ing state. There is a second length scale, the Ginzburg-Landau coherence length ξ.

This is the characteristic distance over which ψ varies. Both λeff and ξ are ∝ |ψ|−2

and therefore diverge approaching the superconducting transition temperature (Tc).

The ratio κ = λeff/ξ is the Ginzburg-Landau parameter and is almost temperature

independent.

As discussed previously, the Meissner state with complete flux expulsion from

the bulk was one of the key experimental signatures of superconductivity. However,

the form of the free energy in Eq. 2.30 does not necessarily preclude the existence

of a superconducting state with internal magnetic fields. At Bapp = Bc, the

energetic cost of maintaining the Meissner state is too great but for a non-zero

B, it may be that the superconducting state can remain energetically favourable,

even for larger applied fields. Whether this is the case depends on the value of κ.

For κ < 1/
√
2, the boundary energy between normal and superconducting states

is positive. In this case, the reduction in energy from the increased penetration

does not offset the energy cost of suppressing the order parameter in the boundary

region. This describes a type-I superconductor. Upon applying a sufficiently large

field, the samples undergoes a first order transition from the Meissner to the normal

state. For a finite demagnetization factor [123], there is an intermediate state with

macroscopic domains of normal and superconducting phases. The thickness of these

domains depends on the sample thickness but the macroscopic nature reflects the

energy cost of the normal-superconducting boundary region [11].

If the boundary energy is negative it may be expected that there would be

no constraint to the normal-superconducting boundary area. However, as a result

of the complex nature of ψ and the requirement that it is single valued throughout

the sample, the flux threading a normal region must be a multiple of the magnetic

flux quantum Φ0 = 2.067833758 × 10−15 Wb. For type-II superconductors, there

is a Meissner state for applied fields less than the lower critical field given by

µ0Hc1(T ) =
Φ0

4πλ2eff
(lnκ+ α(κ)), (2.32)

where α(κ) is calculated numerically in Ref. [124]. Above this field, magnetic flux
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can penetrate into the sample via thin tubes and this is known as the mixed state.

There is a core of normal material with an area of order ∼ ξ2 and the magnetic field

penetrates into the surrounding superconducting region in a depth on the order of

∼ λeff . There is a repulsive force between flux lines and they arrange in the minimum

energy configuration, which for an isotropic superconductor is a hexagonal flux line

lattice [125, 126]. However once the applied fields reach the orbital upper critical

field Borb
c2 , the cores of neighbouring flux lines overlap and the material is entirely

in the normal state. Borb
c2 is given by

Borb
c2 =

Φ0

2πξ2
. (2.33)

Borb
c2 can be related to the critical field with

Borb
c2 =

√
2κBc, (2.34)

which shows how the mixed state can remain energetically favourable in some type-II

superconductors for applied fields considerably higher than Bc.

There is often interest in the magnetic properties of both type-I and type-II

superconductors. This includes the average magnetization and the internal magnetic

field distribution. The ideal magnetization as a function of field of type-I and II

superconductors are shown in Fig. 2.4. For a type-I superconductor, it can be

seen that in the absence of demagnetization effects, there is a discontinuity in the

magnetization atHc. This is the situation for a field applied parallel to the surface of

an infinitely thin superconducting sheet. A real system has a finite demagnetization

factor D. For for a uniform magnetization M , when

H−DM = Hc, (2.35)

flux can penetrate the sample and the system enters the intermediate state. Since

M = −H for the Meissner state, this occurs when (1 − D)H = Hc. The magnetic

field probability distribution P (B) of a type-I superconductor in the intermediate

state is expected to have peaks at B = 0 for the regions in the Meissner state and

at a field B∗ corresponding to normal state domains. Evidently B* must be greater

than µ0Hc if the material is in the normal state and the normal-superconducting

boundaries are most stable if B* is not much above the critical field [11]. The mag-

netization curves of an ideal type-I superconductor are reversible. This corresponds

to the complete re-expulsion of flux upon reducing the field below Hc. However,

real systems are often partially irreversible due to strain or inhomogeneities [11] but
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a region of re-entrant diamagnetism is often observed.

Figure 2.4: The magnetization against applied field for ideal type-I and type-II
superconductors. The type-I curve is shown in black for D = 0 and in blue for a
non-zero D, where the curve has been shifted by an amount DH indicated by the
red arrow.

The magnetization against applied field is also shown for a type-II supercon-

ductor in Fig. 2.4. The magnetization is linear until Hc1, after which flux penetrates

the sample until the magnetization reaches zero at Hc2. The field distribution of a

hexagonal flux line lattice is shown in Fig. 2.5, which was obtained in Ref. [127] from

numerically solving the Ginzburg-Landau equations. The spatial field distribution

is shown on the right from Ref [128]. The former shows that the field distribution is

mostly at fields lower than the applied field. The distribution is broad but has sharp

cutoffs and well defined maximum and minimum fields. The maximum field corre-

sponds to the vortex cores and the minimum field corresponds to a point equidistant

between three cores. The peak in P (B) corresponds to the saddle point. It is the

maximal field on a line joining the two minima but a minimum on a perpendicular

line joining two vortex cores. The saddle point splits into two or three peaks for

non-hexagonal flux line lattices, since when the symmetry is lowered, the field at all

the saddle point positions are no longer equivalent [129].

The field distribution is calculated for a range of applied fields and param-

eters using Ginzburg-Landau theory in Ref. [124]. The second moment (⟨B2⟩) is

calculated as a function of b = Bapp/Bc2 for a range of κ. The results are shown in

Fig. 2.6. Various approximate relationships for ⟨B2⟩ as a function of b, Bc2, κ and

λeff are reported for different parameter regimes. Using Eq. 2.33, ⟨B2⟩ can be ob-

tained for a given applied field with knowledge of only λeff and ξ. For small applied
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Figure 2.5: The left shows the field distribution of the mixed state of a type-II
superconductor for three different values of the penetration depth, from Ref. [127].
The spatial field distribution for a hexagonal flux line lattice is shown on the right,
from Ref. [128]. These have been modified to show the positions corresponding to
the maximum, minimum and saddle points, which are marked with squares, circles
and triangles respectively.

Figure 2.6: The second moment of the field distribution of a hexagonal flux line
lattice for a range of κ from Ref. [124]. The square root of ⟨B2⟩ is multiplied by a
factor of (κ2−0.069)/Bc2 and the dashed lines are multiplied by a factor of (1 − b)−1.
The dashed lines all converge at b = 1 for all κ, following Eq. 2.37.
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fields, ⟨B2⟩ increases approximately linearly with b before peaking at a maximum

value, which shifts to lower b with increasing κ. For κ > 50, there is a very weak

b dependence near the maximum and ⟨B2⟩ can be approximated as

⟨B2⟩ = 0.00371
Φ2
0

λ4eff
. (2.36)

A different approximation valid for higher values of b is given by

⟨B2⟩ = 7.52× 10−4 Φ
2
0

λ4eff

κ4(1− b)2

(κ2 − 0.069)2
. (2.37)

This is a reasonable approximation for all κ in the range 0.25 < b < 1. This can

be seen from the dashed lines in Fig. 2.6 which all converge at b = 1 following the

above expression. A more commonly used expression is

⟨B2⟩ = 0.02958
(1− b)2

κ4

[
1 + 1.21

(
1−

√
b
)3]2

. (2.38)

This is especially useful for studying many superconducting systems since it is valid

across a large range of b, from around the point of the maximum to b = 1. However,

this is only a good approximation for κ > 5 and is therefore unsuitable for studying

systems close to the boundary of type-I and II behaviour. For these, it is generally

necessary to use Eq. 2.37.

These results give some indication of the progress which can be made without

resorting to a microscopic theory. This has been achieved by utilizing Landau theory

with an order parameter that behaves as a complex valued wave function. On this

basis, a wide range of superconducting properties can be deduced, including the

existence of type-I and type-II superconductivity which depends only on the value

of the dimensionless parameter κ. It has also been shown how Ginzburg-Landau

theory can be used to quantitatively describe inhomogeneous systems, in this case

the mixed state of a type-II superconductor. One caveat however is that Landau

theory explicitly relies on the order parameter being small. It will therefore not

necessarily be applicable away from the phase boundary, where this is not likely to

be the case. The microscopic BCS theory is described in the next section. Soon after

its proposal, it was shown that the Ginzburg-Landau equations can be derived from

BCS theory in a temperature region close to Tc [130] and this provides a link between

the phenomenological parameters in the Ginzburg-Landau free energy (Eq. 2.30) and

the microscopic BCS parameters. This gives justification to the identification that

|ψ|2 is proportional to the superfluid density ns [131]. As discussed further on, this

allows the microscopic superfluid density to be related to the penetration depth, a
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measurable quantity.
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2.2.4 BCS Theory and the superconducting energy gap

A successful microscopic theory of superconductivity requires a mechanism by which

the ground state of a metal is not the normal state and therefore it is natural to

look for means by which electrons in a free band can undergo a phase transition to

an ordered state. It was a shown that if there is an arbitrarily attractive interaction

between two electrons just above the Fermi level of a filled Fermi sea, then there

exists a bound state between them [132]. The origin of the attractive interaction

in conventional superconductivity is the electron-phonon interaction. There is an

interaction between electrons arising from interactions with the lattice. In particu-

lar, upon considering the elastic process of an electron emitting a phonon which is

subsequently absorbed by a second electron, it can be shown that there is an attrac-

tive interaction between electrons with an energy difference less than the phonon

frequency [131]. Therefore in the simplest BCS models, there can be considered to

be a constant attractive interaction within h̄ωD of the Fermi surface, where ωD is

the Debye frequency, a characteristic maximum phonon frequency.

Some of the results of BCS theory can be summarised as follows [5, 6, 11].

The BCS wave function is given by

|BCS >=
∏
k

(uk + eiθvkc
†
k+s,↑c

†
−k+s,↓)|0 >, (2.39)

where the normalization of the wave function requires that u2k + v2k = 1. The

second term describes the creation of a pair of electrons with opposite crystal mo-

menta k and −k, a centre of mass momentum 2h̄s and opposite spins. These are

Cooper pairs in the s-wave state. That is for an isotropic interaction, the lowest

energy wave function is spatially symmetric. Therefore the Cooper pairs must have

opposite spins, so that the overall pair wave function is antisymmetric under particle

exchange. The quasiparticle excitation energy (Ek) is given by

Ek =
√
ϵ2k +∆2

k (2.40)

where ϵk is the band energy measured from the chemical potential. The excitation

spectrum is gapped with a k dependent energy gap ∆k. This is found from self

consistently solving the gap equation

∆k = −
∑
k′

(1− 2fk′)
∆k′

2Ek′
Vkk′ , (2.41)

where f is the Fermi-Dirac function given by f = (1 + eE/kBT )−1. Vkk′ is the
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Figure 2.7: The temperature dependence of the BCS gap as a function of the reduced
temperature t = T/Tc. The approximate formula is Eq. 2.43 from Ref. [134], while
the numerical solution is calculated following the procedure in Ref. [133].

matrix element for the interaction between electrons in the k and k′ states. In

isotropic weakly coupled BCS theory, there is an attractive potential −V within

h̄ωD of the Fermi surface and V = 0 otherwise. In this case, the energy gap is

k independent within this region and at T = 0 the magnitude of the gap (∆0) is

given by

∆0 = 1.764kBTc. (2.42)

Even with these approximations, an analytic solution can not be found for T ̸= 0.

A procedure for calculating ∆(T ) numerically is given in Ref. [133]. Alternatively,

an approximate formula, given in Ref. [134] is

∆(T ) = 1.764kBTc tanh

1.82

[
1.018

(
Tc
T

− 1

)]0.51 . (2.43)

The normalized temperature dependence of the gap is shown in Fig. 2.7. It can be

seen that Eq. 2.43 is a good approximation to the BCS gap.

It is often desirable to calculate the gap function for superconductors with

anisotropic gaps or for stronger couplings. Strictly speaking this requires finding a
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self consistent solution to Eq. 2.41 for an appropriate Vkk′ . However, experimental

data for these systems are often analyzed using the α-model of superconductivity

[135, 136]. Within this model, the temperature dependence of the gap is the same as

in weakly coupled, isotropic BCS theory as shown in Fig. 2.7. However, the factor

of 1.764 in Eq. 2.7 is replaced by a variable α, so ∆0 is given by

∆0 = αkBTc, (2.44)

where αBCS = 1.764 corresponds to BCS theory. α > αBCS corresponds to

moderate or strong electron-phonon coupling, while α < αBCS can indicate an

anisotropic superconducting gap [136]. The strength of the attractive interaction

for BCS superconductors can be characterized by a dimensionless parameter known

as the electron-phonon coupling parameter (λep) [122]. This is equal to N(EF)V , the

product of density of states at the Fermi level and the attractive matrix element.

The weak coupling limit is obtained from λep ≪ 1 and superconductors with

λep < 0.5 are weakly coupled, although there is not a universally accepted cut off.

In strong coupling theory, the transition temperature is given by [137]

Tc =
ΘD

1.45
exp

[
− 1.04(1 + λep)

λep − µ(1 + 0.62λep)

]
, (2.45)

where ΘD is the Debye temperature and µ* is typically between 0.1 and 0.15, and

arises due to Coulomb repulsion. This allows λep to be estimated from readily

measurable parameters. It also places important constraints on the transition tem-

peratures of conventional BCS superconductors. Exceptionally large values of ΘD

and λep are required to reproduce Tc of many cuprate superconductors, providing

evidence for a pairing mechanism not mediated via the phonon-electron interaction.

So far the energy gap arising from BCS theory has been discussed. For an

isotropic attractive potential, the Cooper pairs form an isotropic s-wave state with

even parity (l = 0). This is a spin singlet state, since the spin component of

the pairing wave function must be antisymmetric under particle exchange. How-

ever, other pairing mechanisms may favour pairing states with higher values of l,

particularly when there are strong on-site Coulomb interactions. In p-wave super-

conductors, the Cooper pairs form odd parity states (l = 1) and therefore have a

spin triplet configuration, where pairs consist of two electrons in an S = 1 state. In

a spin triplet superconductor, the pairing state is specified by a vector d(k) and the

gap is given by
∣∣d(k)∣∣2 [138, 139]. The superconducting gap for triplet superconduc-

tors can either be isotropic or strongly anisotropic, becoming zero at certain points

on the Fermi surface. These nodes can either be points or lines depending on the
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form of d(k). It is also possible for there to be non-unitary triplet states which break

time reversal symmetry. In this case, the Cooper pairs are at least partially spin

polarized and time reversal symmetry is broken in the superconducting state. There

can also be spin singlet states with higher order pairing angular momenta. d-wave

superconductors have even parity pairing l = 2 and therefore form spin singlets.

This is believed to be the preferred pairing state for the cuprate superconductors

which appear to have line nodes in the superconducting gap [27].

2.2.5 The gap structure of non-centrosymmetric superconductors

So far it has been assumed that the pairing states can be classified as either spin sin-

glet or triplet. This is valid for centrosymmetric superconductors, where the orbital

part of the pair wave functions have either even or odd parity. Since the overall wave

function must be antisymmetric under particle exchange, the Cooper pairs must be

either purely singlet or triplet. In non-centrosymmetric superconductors, parity is

no longer a good quantum number [36] and in the presence of a finite antisymmetric

spin-orbit coupling (ASOC), the pairing states can no longer be classified as singlet

or triplet but an admixture of the two [140, 141]. In this case, the superconducting

order parameter is given by [142]

∆(k) = i(ψ + d(k) · σ)σy, (2.46)

where the first term in brackets is the singlet component and the second is the

triplet. The effect of the ASOC is to split the spin degenerate conduction band into

a pair of sheets. The resulting superconducting gaps are given by

∆±(k) = ψ ± |d(k)|. (2.47)

Therefore the two gaps are given by the constructive and destructive interference of

the singlet and triplet terms. It can be seen that if the triplet term is small, then the

two gaps will be nodeless, near isotropic and similar in magnitude. The ASOC is

characterized by a vector gk, which depends on the crystal and electronic structures.

The Hamiltonian has a term of the form αSOgk · S, where αSO is the strength of the

ASOC. For example in the case of CePt3Si and CeTX3 with space groups P4mm

and I4mm, inversion symmetry is broken as a result of a lack of a mirror plane

perpendicular to the c axis. The resulting ASOC is to the leading orders of the

Rashba type, where HASOC ∝ (k × z), which corresponds to gk = (ky,−kx, 0).
As discussed in Sec. 1.1.1, a loss of inversion symmetry is in general detrimental

to triplet pairing states but there exists a direction along which the triplet state is
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protected. This corresponds to when d(k) ∥ gk and for this structure such a d(k)

can be found in the p-wave channel [45].

2.2.6 Thermodynamic properties of superconductors

Having discussed BCS theory and in particular the existence of a gap in the sin-

gle particle excitation spectrum, thermodynamic properties in the superconducting

state can be examined. The existence of a gap ∆k will significantly modify the

density of states around the Fermi level which will therefore strongly affect many

thermodynamic quantities. These will also be sensitive to the structure of the gap,

particularly the presence of nodes. This is because nodal gap structures have a

non-zero density of states all the way down to the Fermi level, which is not the case

for fully gapped systems.

The electronic contribution to the specific heat of a normal state metal has

a linear temperature dependence given by [143]

Cel =
π2

3
N(EF)k

2
BT, (2.48)

which is just γT . The total specific heat at low temperatures, taking into account

electronic and phonon contributions is then given by

C = γT + βT 3, (2.49)

where β is related to ΘD by

ΘD = (12π4NAnkB/5β)
1
3 , (2.50)

where n is the number of atoms per mole. A different expression is needed below

Tc, which can be found from considering the entropy of the superconducting state

given by [144]

S

γTc
= − 6

π2
∆0

kBTc

∫ ∞

0
[f lnf + (1− f)ln(1− f)]dy, (2.51)

where f is the Fermi-Dirac function with E = ∆0

√
y2 + δ(T )2, where y is the en-

ergy of the normal state electrons and δ(T ) is the temperature dependence of the

superconducting gap. Both of these quantities have been normalized by ∆0 which

following the approach of the α-model is not necessarily fixed to the BCS value.

The left hand side is in fact normalized to the normal state entropy at Tc. As dis-

cussed in Sec. 2.2.2, the first derivative of the free energy is continuous for a second
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order phase transition and therefore the left hand side will be equal to unity at the

transition in zero-field. The electronic contribution to the specific heat is then given

by

Csc

γT
=

d(S/γTc)

dt
. (2.52)

The specific heat is discontinuous at the transition and the size of the jump in BCS

theory is given by ∆C/γTc = 1.426 [11]. More generally within the α-model, the

magnitude of the jump in the specific heat is proportional to α2 and is therefore

given by [136]

∆C

γTc
= 1.426

(
α

αBCS

)2

. (2.53)

The structure of the gap has the most significant effect at low temperatures. For

a fully gapped superconductor, at T << Tc, there are no states within ∼ kBT

of the Fermi level and therefore there are no accessible states for electrons become

excited to. As a result, the specific heat has an exponential dependence at low

temperatures with C ∝ (∆0/kBT )
3/2e−(∆0/kBT ) [145]. Nodal superconductors have

accessible states for excitations at all temperatures and these low lying excitations

will dominate the specific heat at low temperatures. In the case of line and point

nodes in the energy gap, T 2 and T 3 dependencies in the specific heat are expected

[138].

As discussed in Sec. 2.2.3, the difference between the free energy densities of

the superconducting and normal states is related to the square of the thermodynamic

critical field Bc. This can then be calculated by integrating the entropy difference

between the normal and superconducting states or by twice integrating the difference

in the specific heat using

∆f =
B2

c (T )

2µ0
=

∫ T

Tc

∫ T ′

Tc

Csc − Cn

T ′′ dT ′′dT ′. (2.54)

The penetration depth is another quantity which depends on the structure of the

energy gap. From Eq. 2.26, λ−2
L ∝ ns and therefore the temperature dependence

of λ−2
eff will give information about the temperature dependence of the superfluid

density. This can be modelled as [134]

λ−2
eff (T )

λ−2
eff (0)

= 1 +
1

π

∫ 2π

0

∫ ∞

∆(T )

∂f

∂E

EdEdϕ√
E2 −∆2(T, ϕ)

, (2.55)

where ∆(T, ϕ) has an angular dependence for anisotropic gaps. Plots are shown in
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Figure 2.8: The temperature dependence of the penetration depth for an isotropic
s-wave model and an anisotropic d-wave model with line nodes. The plots are shown
for three values of ∆0, one at the BCS value, and one above and below. The arrows
indicate the direction of increasing ∆0.

Fig. 2.8 for an s-wave fully isotropic model and a d-wave model with line nodes in

the energy gap [146]. For the full gapped model, the penetration depth plateaus at

low temperatures and the temperature at which this occurs increases with increasing

gap size. This indicates that the superfluid density is constant at low temperatures.

In a fully gapped system, there is a minimum pair breaking energy for the Cooper

pairs at all points on the Fermi surface and if the thermal energy kBT ≪ ∆0,

then the thermal fluctuations are not energetic enough to deplete ns, so it remains

constant. For nodal superconductors, the thermal energy can always break pairs at

some points on the Fermi surface and with increasing temperature, an increasing

number of states are within ∼ kBT of the ground state and there is no plateau

with constant ns. At low temperature, there is a linear temperature dependence for

λeff(T ) − λeff(0) in the presence of line nodes and a T 2 dependence for point nodes.

2.2.7 The clean and dirty limits

Having obtained a microscopic theory which can reproduce the phenomenological

Ginzburg-Landau theory close to Tc, it is of interest to relate the characteristic length

scales of this theory to microscopic properties. In particular, ξ was a characteristic
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length over which the order parameter ψ varied. Therefore it would be expected to

be linked to a characteristic length of the extent of the Cooper pair wave function.

This is the BCS coherence length (ξ0) given by [11]

ξ0 =
h̄vF
π∆0

, (2.56)

where vF is the Fermi velocity. Neglecting the elastic scattering of electrons from the

lattice, this quantity is related to the coherence length in Ginzburg-Landau theory

by ξ ∼ 0.74ξ0 [147]. This neglection is reasonable if the scattering rate is low and

therefore the electrons have a long mean free path (l) between scattering events.

The system is in this clean limit if ξ0 ≪ l. However, if the scattering rate is high,

then ξ will be modified and in the dirty limit where l ≪ ξ0, ξ ∝
√
ξ0l. Therefore,

strong elastic scattering reduces the effective coherence length from that expected

from BCS theory. In the clean limit, λeff is given by λL/
√
2. However, in the dirty

limit

λeff = λL

√
ξ0

1.33l
. (2.57)

The effect of strong scattering is to increase λeff and therefore reduce the effectiveness

of the screening of magnetic fields from that expected from just considering the

number of superconducting electrons. κ is now given by

κ = 0.96
λL
ξ0
, (2.58)

in the clean limit and

κ = 0.715
λL
l
, (2.59)

in the dirty limit. In this case, κ is independent of ξ0 but is instead inversely

proportional to the mean free path.

2.2.8 Upper Critical Field

There are two pair-breaking mechanisms by which an applied field can destroy su-

perconductivity in a type-II superconductor. The first is the orbital pair breaking,

which occurs when there is significant overlap of vortex cores and the orbital upper

critical field is given by Eq. 2.33. However, there is also the paramagnetic limiting

effect. This can be understood by considering the effect of an applied magnetic

field to a band of electrons [36]. This causes a splitting of the degenerate bands into
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spin-up and spin down bands and this lowers the energy of the system by an amount

known as the Zeeman energys given by χnH
2/2, where χn is the normal state sus-

ceptibility, which is just the Pauli susceptibility for an electron gas. However, the

spin susceptibility of the superconducting state (χs) is constrained by the nature of

the pairing. Singlet Cooper pairs have opposite spins so if at T = 0 all the electrons

on the Fermi surface are paired, then χs = 0. There is therefore an applied field

for which there is a greater reduction in energy from the Zeeman energy then there

is from the condensate energy, in which case the system will become normal. This

is the Pauli paramagnetic limiting field (HP) which is given by [36]

µ0HP =

√
2∆0

gµB

√(
1− χs/χn

) , (2.60)

where g = 2 for free electrons. With the BCS theory value of ∆0 from Eq. 2.42 and

χs = 0 for an s-wave superconductor, the Clogston-Chandrasekhar limit is obtained

[148] with µ0HP = 1.86Tc, where the coefficient has units of T/K. In the case of

spin triplet superconductors, χs = χn and there is no Pauli paramagnetic limiting.

More complex pairing states can lead to anisotropic and intermediate values of χs,

which will reduce but not entirely eliminate paramagnetic pair breaking.

The Werthamer-Helfand-Hohenberg (WHH) model analyzes Bc2 within BCS

theory in the dirty limit, taking into account both orbital and Pauli paramagnetic

pair breaking effects [149]. The dirty limit will be appropriate in most cases where

paramagnetic limiting is significant, since for many materials ξ0 is large enough

that Borb
c2 ≪ µ0HP in the clean limit. In the dirty limit, ξ can be significantly

reduced due to reduced l and therefore Borb
c2 is large enough that Pauli paramagnetic

limiting needs to be accounted for. A notable exception for this is in the heavy-

fermion superconductors, where ξ0 is much lower as a result of a greatly reduced vF

due to the large effective electronic masses. This is coupled with the fact that these

systems are generally very clean, with large residual resistivity ratios. However, in

the case of a BCS superconductor in the dirty limit, Bc2 is found from solving

ln
1

t
=

(
1

2
+
iλso
4δ

)
ψ

(
1

2
+
h+ 0.5λso + iδ

2t

)
+

(
1

2
− iλso

4δ

)
ψ

(
1

2
+
h+ 0.5λso +−iδ

2t

)
− ψ(0.5),

(2.61)

where ψ(x) is the digamma function, h is a dimensionless form of the upper critical

field given by
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h =
4Bc2

π2

(
dBc2

dt

)−1

t=1

, (2.62)

and δ =
√

(αMh)2 − 0.25λ2so. The two parameters which determine h are the Maki

parameter αM and the spin-orbit scattering parameter λso. Since αM =
√
2Borb

c2 /µ0HP,

it is a measure of the relative influence of Pauli paramagnetic pair breaking compared

to orbital limiting. αM = 0 corresponds to either the absence of paramagnetic

limiting or when Borb
c2 ≪ µ0HP. In this limit, the upper critical field is given by

Borb
c2 ≈ −0.693

(
dBc2

dt

)
t=1

. (2.63)

The effect of increasing αM is to increase the effect of paramagnetic pair limiting

and therefore reduce the upper critical below the orbital value. λso characterizes

the scattering rate for spin flip processes. The effect of spin flip scattering is to

reduce the paramagnetic limiting effect. λso will not affect the upper critical field

when αM = 0, but as Bc2 is suppressed with increasing αM , increasing λso will

push it back towards the orbital value. The absolute values of Bc2 within the WHH

model can be obtained from Eq. 2.62 by determining the gradient of Bc2 close to

Tc. Alternatively the gradient is related to αM by

αM = 0.52758

(
dBc2

dT

)
T=Tc

, (2.64)

where the slope is given in units of T/K. Therefore, the WHH model allows the

role of paramagnetic limiting to be examined. The absence or decrease in HP can

provide evidence for unconventional pairing symmetries. However, the WHH model

is derived from one band, weak coupling BCS theory and it can be seen from Eq. 2.60

thatHP is likely to increase in a strongly coupled system. Furthermore, a sufficiently

large Borb
c2 is required to discern whether paramagnetic pair breaking effects have

been suppressed.

2.3 Scattering theory

2.3.1 X-ray diffraction

X-ray diffraction is a powerful method of determining the structural properties of

materials. It is observed in the coherent elastic scattering of x-rays from an ordered

arrangement of atoms. The incoming x-rays have a wave vector ki and kf after

scattering. For elastic scattering, |ki| = |kf | = 2π/λ and the condition for
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constructive interference is

Q = kf − ki = G, (2.65)

where Q is the scattering vector and G is a reciprocal lattice vector [143]. The recip-

rocal lattice corresponds to a Fourier transform of the real space lattice. Therefore

information about the structure and orientation of crystal structure can be obtained

from mapping the position and intensity of reciprocal lattice points. The diffraction

condition can be visualized by considering the Ewald sphere construction shown in

Fig. 2.9. Although shown in two dimensions, this is a sphere of radius 2π/λ where

ki touches one of the reciprocal lattice points. The condition for diffraction is that

the point on the sphere touched by kf is also a reciprocal lattice point, in which

case the diffraction condition in Eq. 2.65 holds.

For measurements of single crystals with a monochromatic source, reciprocal

space must be systematically measured by rotating the relative orientations of ki,

kf and the crystal. However, it is also possible to use the Laue method, whereby

the x-ray beam has a wide range of wavelengths and there are a continuum of Ewald

spheres with different radii. In this case, a large number of reflections will meet the

diffraction condition for one of the constituent wavelengths and therefore if an area

detector is used, many reflections can be recorded simultaneously. The diffraction

pattern is sensitive to the orientation of the lattice and therefore from comparing

simulated and observed patterns, the orientation of a single crystal relative to the

incident beam can be deduced.

Rather than using single crystals, the diffraction from finely ground polycrys-

talline samples are often measured. Powdered material is used to ensure that the

crystallites are randomly orientated and that there is no preferred direction. The

scattering is measured as a function of the scattering angle 2θ and from considering

the geometry of Fig. 2.9, the condition for diffraction becomes

λ = 2dhklsinθ, (2.66)

where dhkl = 2π/|G| for a reciprocal lattice vector G = (ha∗ kb∗ lc∗), and
a∗,b∗ and c∗ are the basis vectors of the reciprocal lattice. Powder diffraction data

is commonly fitted using the Rietveld method. This involves simulating the diffrac-

tion pattern for a specified crystal structure with a set of variable parameters. These

include properties of the crystal structure such as lattice parameters, atomic posi-

tions and site occupancies. Additional variables can also be considered such as peak

profile parameters, Debye-Waller factors, background terms and preferred orienta-
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Figure 2.9: A diagram of the Ewald sphere when the condition for diffraction is
met. The points correspond to points of the reciprocal lattice and therefore a vector
joining two points is a reciprocal lattice vector. The condition in Eq. 2.65 holds
since the points where ki and kf touch the sphere coincide with reciprocal lattice
points.
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tions. These are fitted so that the difference between the observed and simulated

patterns are minimized. The absence of peaks in the observed pattern which ap-

pear in the simulated pattern may indicate an incorrect starting structure, although

weak peaks may be too faint to be observed. The presence of peaks not predicted

by the simulated pattern may indicate the presence of impurity phases. If these

can be identified, multiple phases can be refined and the impurity fraction can be

estimated. Significant discrepancies in intensities can indicate an additional effect

that the model pattern does not correctly account for. There are several parameters

for measuring the quality of a refinement and comparing different structural models

[150]. The two used in this work are the weighted profile factor (Rwp) and the Bragg

factor (RBragg). These are given by

Rwp =


∑
i
wi (yci − yoi)

2∑
i
wiy2ci


1
2

, (2.67)

RBragg =

∑
hkl

|Ic,hkl − Io,hkl|∑
hkl

Io,hkl
. (2.68)

yci and yoi are the calculated and observed intensities respectively at each point with

a weight wi inversely proportional to the square statistical uncertainty. Ic,hkl and

Io,hkl are the calculated and observed intensities for the peaks of the model. Both

quantities are frequently expressed as percentages. Rwp is commonly used, as it

gives the quality of fit for the whole model and can be related to the reduced χ2. A

poorer value of Rwp will be obtained if there are unindexed impurity peaks. This is

less likely to be the case for RBragg, which only compares how well the peaks of the

structural model are fitted. However, RBragg can not readily be related to statistical

quantities [150]. RBragg can also be used to measure the quality of refinements of

single crystal measurements and can also be used to get an indication of the quality

of one component of a structure. For example, in the case of refining a model for

neutron diffraction data with a crystal and magnetic structure, RMag can be defined

which is given by Eq. 2.68 but only summed over the magnetic reflections.

Although aspects of x-ray diffraction have been discussed in this section,

many of the above concepts can also be applied to neutron scattering measurements,

which are discussed in the following section. There are several software packages

for carrying out Rietveld refinements. In this work, TOPAS [151] has been used for

refinements of x-ray diffraction data while the General Structure Analysis System
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(GSAS) [152] and FullProf [153] have been used for neutron diffraction data.

2.3.2 Neutron scattering

Several properties of the neutron make it a useful probe of condensed matter sys-

tems. Owing to the nature of wave-particle duality, a particle of momentum p has

a wavelength λ = h/p, where h is Planck’s constant. The neutron has a mass

of mn = 1.675 × 10−27 kg and thermal neutrons with an energy of 300 K have

a wavelength of 1.8 Å, which is comparable to the size of the lattice parameters of

many crystalline solids. The neutron is a spin 1
2 particle with a magnetic moment

of −1.913 µn, where µn is the nuclear magneton. This compares to ∼ 2 µB for a

free electron and since µn/µB ∼ (me/mn), the nuclear magnetic moment is around

1000 times smaller than that of a free electron. It is therefore possible to study

condensed matter systems from both the scattering of neutrons from nuclei and the

magnetic moments of unpaired electrons.

2.3.3 Neutron diffraction

Neutrons are scattered by interactions with atomic nuclei. These are extremely short

range nuclear forces and a neutron is symmetrically scattered from a nucleus. Unlike

x-rays which scatter from the charge density of the electron clouds, neutrons are

scattered from an extremely localized scatterer. The scattering length b characterizes

the scattering strength of an individual nucleus. It is not only isotope dependent

but if there is a nuclear spin, b depends on whether the neutron and nuclear spins

align or antialign. A total cross section σtot can be defined which is the ratio of the

total number of neutrons scattered per second and the incident neutron flux [154],

and is given by σtot = 4πb2. Although it is generally a very good assumption

that neutrons scatter symmetrically, a strong angular dependence in the scattering

from samples is often observed. These are coherence effects which arise from spatial

correlations between scatterers. The angular dependence is given by the differential

cross section, which is the ratio of the number of neutrons scattered per second

through a solid angle dΩ and the incident flux through dΩ. For elastic scattering

from a crystalline material, this can be found by considering the scattering from

a periodic array of atoms with a random distribution of scattering lengths bj at a

position rj. This takes into account the variation in scattering length from different

isotopes and nuclear spin orientations. There is also factor of eiQ·rj , where Q by

convention has the opposite sign to Eq. 2.65, which takes into account the phase

relationship of waves scattered from different sites. From summing over pairs of
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sites, the differential cross section is given by [154]

dσ

dΩ
=
∑
j,j′

⟨b⟩2eiQ·(rj−rj′ ) +
∑
j

(
⟨b2⟩ − ⟨b⟩2

)
. (2.69)

The first term has a Q dependence and describes coherent scattering. For a crys-

talline lattice, this is only non-zero when the Bragg condition for constructive in-

terference (Eq. 2.65) holds and therefore this describes neutron diffraction. The

strength of the coherent scattering is given by bcoh = ⟨b⟩2, which is the mean

scattering length of the nuclei. The second term has no angular dependence and

therefore describes incoherent scattering. The strength of the incoherent scattering

is given by binc =
√

⟨b2⟩ − ⟨b⟩2, which is the standard deviation of the scatter-

ing amplitudes of the sample. In materials with a large average range of b, the

incoherent background will be large.

Diffraction experiments can therefore be carried out with neutrons to mea-

sure the structure of materials as described in Sec. 2.3.1. There are advantages and

disadvantages of using x-rays and neutrons in diffraction experiments. Neutrons

are weakly interacting and scatter from the bulk of a material, whereas x-rays are

strongly interacting and so do not usually penetrate beyond the surface. The scat-

tering intensities of x-rays depends on the charge density of the electron clouds and

therefore increases monotonically with the atomic number Z. As a result, the x-ray

scattering from a structure is dominated by heavy elements and the position of light

atoms may be difficult to measure. Furthermore, atoms of similar atomic number

will have very similar scattering intensities, making it difficult to distinguish between

them. However, neutron scattering lengths are dependent on complex nuclear pro-

cesses and are not systematic in Z. Atoms with similar Z may scatter neutrons

by dramatically different amounts, allowing for their role in crystal structures to be

distinguished. Neutron scattering will not be suitable for measuring all compounds.

There is also a finite probability that a nuclei will absorb rather than scatter a neu-

tron. For example, naturally occurring gadolinium has a thermal absorption cross

section ∼ 275 times as large as the scattering cross section. In this case, the scat-

tering will be extremely difficult to measure unless less absorbing isotopes are used.

Neutron scattering measurements are also often more resource intensive, since large

scale facilities are required to safely produce the requisite number of neutrons. This

is in contrast to x-rays, where many diffraction experiments can be performed on

small scale instruments. Also, the weak interaction of neutrons means that larger

samples are required which may not be obtainable. X-ray diffraction measurements

often only requires very small samples, particularly if high intensity synchrotron
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sources are used.

2.3.4 Diffraction from magnetic structures

As discussed previously, the neutron has a magnetic moment and can be scattered

from the moment of unpaired electrons. Therefore, diffraction will also result from

the periodic arrangements of magnetic moments as well as periodic nuclear arrange-

ments. A magnetic differential cross section similar to Eq. 2.69 can be defined with

bj replaced by a magnetic scattering length. There are two important differences

to the case of nuclear scattering. Firstly, the scattering of neutrons from a nucleus

is spherically symmetric. However, there is an angular distribution to the magnetic

scattering and the magnitude depends on the relative orientations of the magnetic

moment and Q. In particular, the magnitude of the scattering depends on the

component of the moment perpendicular to the scattering vector and no magnetic

scattering is observed when the two are parallel. A second difference is that while

nuclei can be treated as point-like particles, the finite size of the scatterer for elec-

tron orbitals must be taken into account. This is done by the multiplication of a

magnetic form factor (F (Q)) which can be approximated using the method of P.J.

Brown in Ref. [155]. The form factors of Ce and Mn ions are shown in Fig. 2.10. The

form factor drops more rapidly for the Mn than the Ce ions. This reflects the fact

that cerium contains unpaired 4f rather than 3d electrons, which are more localized

and therefore the effective size of the scatterers are smaller.

The origins of long range magnetic order are discussed in Sec. 2.1.3 and

in this section there will be an overview of using neutron diffraction to study the

resulting magnetic structures. A periodic magnetic structure will have a repeating

unit called the magnetic unit cell which will in general not be equal to the unit cell of

the lattice. The periodicity of the magnetic cell can be described by a propagation

vector k. The modulation of the magnetic moment is given by [156]

mj = Ψje
−2πk·r, (2.70)

where r is in units of lattice spacings andΨj is a vector which describes the magnetic

moment at the origin in terms of projections of the magnetic moment along the

crystallographic axes. For example, Ψj = (0, 0, 1) describes a magnetic moment

pointing along the c axis. More generally, Ψj can be expressed as the sum of several

basis vectors with a particular weighting. It can be seen from the above equation

that when k · r is equal to an integer, mj is unchanged from the position at the

origin and this therefore defines the periodicity of the magnetic unit cell. So for
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Figure 2.10: The magnetic form factors of cerium and manganese ions, calculated
from Ref. [155]. For the manganese ion it has been assumed that gJ = 2.

k = (0, 0, 12), k · r is an integer for r = (0, 0, 2n) and the magnetic unit cell is now

twice as long as the nuclear cell along the c axis. For a primitive cell this describes an

antiferromagnetic structure with alternating equal moments. Since the periodicity

of the magnetic lattice is different to the crystal lattice, additional magnetic Bragg

peaks are observed at (hkl) ± k, where (hkl) corresponds to an allowed nuclear

reflection. For k = 0, there is no change in the moment for any translations and

this corresponds to a ferromagnetic structure. In this case, there is an increase in

the intensity of the nuclear reflections.

From indexing the positions of magnetic reflections, the magnetic propaga-

tion vector(s) can be deduced. However, for a particular propagation vector there

may be a wide range of possible magnetic structures. Magnetic representation the-

ory allows for the number of possible magnetic structures to be reduced. The results

are based on group theoretical arguments described in Ref. [156]. A given crystal

structure has an associated space group G0 [155]. This is the group of symmetry

operations which leave the crystal structure unchanged. For a given propagation

vector, the little group Gk is the subgroup of G0 which also leaves k invariant.

Within the Landau theory of second order of phase transitions (Sec. 2.2.2), the
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basis vectors which make up Ψj in Eq. 2.70 must all correspond to one of the irre-

ducible representations of Gk. This can significantly reduce the number of possible

magnetic structures which need to be tested against experimental data. For exam-

ple, in Sec. 4.4 a propagation vector of k = (0, 0, 12) is observed at 2 K in neutron

diffraction measurements of CeCoGe3. The software package SARAh [157] was used

to find the irreducible representations of Gk and the corresponding basis vectors.

This analysis showed that the magnetic structure can correspond to two possible

irreducible representations, one of which is one dimensional, labelled Γ1
2 and the

other is two dimensional, labelled Γ2
5. For the Γ

1
2 representation, the only associated

basis vector points along the c axis while the Γ2
5 representation contains basis vectors

pointing along a and b. Therefore, provided the magnetic structure corresponds to

only one representation, the allowed magnetic structures either have the moments

pointing along the c axis or in the ab plane.

2.3.5 Inelastic neutron scattering

Neutron diffraction corresponds to coherent, elastic scattering. The cross section

given by Eq. 2.69 is summed across all energies and this is usually taken as the

elastic cross section, since the elastic component is generally much larger than the

inelastic. The inelastic scattering can also be studied and this gives information

about excitations of the system. Once again, the scattering can be split into coherent

and incoherent components. The coherent partial differential cross section for N

scatterers is given by [158](
d2σ

dΩdEf

)
coh

= N⟨b⟩2
kf
ki
S(Q, ω). (2.71)

S(Q, ω) is the scattering function which describes the scattering intensity as a func-

tion of both the momentum transfer Q and energy transfer h̄ω = Ei − Ef . A

similar expression can be found for the incoherent cross section but with the pref-

actor from the right hand side of Eq. 2.69. The coherent inelastic scattering gives

information about collective excitations of the system. In the case of nuclear scat-

tering, these correspond to phonons which are quantized excitations corresponding

to collective modes of the lattice.

There can be several origins of magnetic excitations. Transitions between

CEF levels (see Sec. 2.1.2) can be probed directly. Due to the dipole selection rules,

transitions are only allowed between levels where ∆mJ = ± 1. From an analysis

of the energy dependence of the magnetic scattering integrated over Q, the CEF

Hamiltonian in Eq. 2.4 can be solved and the values of Bn
m obtained. Spin wave
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excitations in the magnetically ordered state can also be studied. The dispersion

curves for these excitations can be mapped out, which gives information about the

exchange interactions between magnetic ions. Inelastic neutron scattering is also

used to study the Kondo effect in materials (Sec. 2.1.4). In many Kondo systems,

broad magnetic quasielastic scattering is observed. That is a peak of magnetic

scattering centred at ω = 0 but with a Lorentzian linewidth (half width at half

maximum) Γ broader than the elastic resolution of the instrument. Γ often scales

with temperature according to a power law but extrapolates to a zero temperature

value Γ(0) ∼ kBTK [159]. The magnetic scattering integrated over Q is fitted with

Smag =
h̄ω

1− exp
(
−h̄ω/kBT

) AΓ

Γ2 + (h̄ω)2
, (2.72)

where A is a constant. The left hand fraction is necessary to satisfy detailed bal-

ance. A linear temperature dependence is predicted when the thermal energy is

much less than the first CEF excitation [160]. However a
√
T [161] dependence and

temperature independent [162] behaviour are also sometimes observed. In systems

where the f electrons remain sufficiently localized, excitations due to CEF levels

are still observed but these are broadened due to hybridization with the conduction

electrons. For systems with a stronger Kondo coupling in the intermediate valence

regime, CEF levels are not present and a broad peak in the magnetic scattering is

observed at non-zero ω at low temperatures.

When analyzing the magnetic scattering, it is often useful to have knowledge

of Smag in absolute units (typically mb/sr meV formula unit). This requires both a

means of obtaining S(Q, ω) in absolute units and a method of isolating the magnetic

contribution. The former is done by normalizing the spectra to a standard vanadium

sample. Vanadium is used because it has an incoherent cross section of 5.08 b but

a coherent cross section of just 0.02 b and therefore the elastic scattering is very

nearly angularly independent. The magnetic contribution is obtained by subtracting

an estimate of the phonon contribution, often from measuring the scattering of non-

magnetic analogues. Ideally these will be isostructural to the magnetic compound

of interest and contain atoms of a similar atomic weight. Once the scattering of

the non-magnetic compound (Sph(Q, ω)) is obtained, one method of obtaining the

magnetic contribution is to use

Smag(Q, ω) = S(Q, ω)− αSph(Q, ω), (2.73)

where α is the ratio of the coherent scattering cross sections of the magnetic and

non-magnetic compounds. This is expression is often able to satisfactorily subtract
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the phonon scattering [163]. However, particularly when there are differences be-

tween the phonon energies of the two compounds, Eq. 2.73 does not adequately

remove the phonon contribution. In this case, there is another method for obtaining

estimated integrated cuts of Smag. Firstly, cuts of S(Q, ω) and Sph(Q, ω) are made

by integrating over low |Q| (SlQ) and high |Q| (ShQ) regions for the magnetic and

non-magnetic compounds respectively. It is then assumed that the phonon contribu-

tions for the two compounds have the same |Q| dependence and that the magnetic

contribution to ShQ is negligible. This is likely to be the case, since phonon scat-

tering increases with |Q|, while the magnetic scattering falls due to F (Q). In this

case, the magnetic contribution is given by

Smag = SlQ −
Sph
lQ

Sph
hQ

ShQ. (2.74)

This will be non-zero if there is additional scattering at low |Q| and is less sensitive

to the absolute positions of the phonon peaks.
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Chapter 3

Experimental techniques

3.1 Sample preparation

3.1.1 Polycrystalline samples

Polycrystalline samples were produced either using a Centorr tri-arc or a Cyberstar

tetra-arc furnace. The constituent materials were placed on a water cooled copper

hearth. With the tri-arc furnace, the sample chamber was evacuated several times

with a rotary pump and flushed with argon before the samples were melted under a

positive pressure of argon. For the tetra-arc furnace, the chamber was also flushed

several times with argon before being evacuated with a turbo pump and the melting

was carried out under a partial pressure of argon. The chamber of the tetra-arc

furnace is displayed in Fig. 3.1. For both furnaces, tungsten electrodes are linked to

a DC welding power supply and upon striking them against the hearth, an arc of

current is created between the tip of the electrode and the hearth which can be used

to melt the materials. Samples were flipped and remelted several times to improve

homogeneity. The as-cast samples were subsequently sealed in evacuated quartz

tubes and annealed in a box furnace to improve homogeneity and phase purity.

Typically the samples were annealed at 900◦C for two weeks.

3.1.2 Single crystals

Single crystals of CeCoGe3 were produced using the flux method [164], following

the procedure outlined in Ref. [60]. Polycrystalline CeCoGe3 and the flux material

bismuth (in a molar ratio of ∼ 1 : 20) were placed in an alumina crucible, which was

sealed inside an evacuated quartz tube. The quartz tube was necked in the middle

where a metallic gauze was fixed. The tube was placed in an upright position

in a box furnace. The tube was heated from room temperature to 1050◦C at a
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Figure 3.1: Photograph of the sample chamber of the Cyberstar tetra-arc furnace.

rate of 60◦C/h. It was kept at this temperature for 24 hours before being slowly

cooled at 1◦C/h until it reached 650◦C. At this temperature CeCoGe3 has solidified

but the bismuth is still liquid since it has a melting point of 271◦C [165]. The

tube was removed at this temperature, the liquid bismuth was drained and single

crystals were obtained. Excess bismuth was removed by washing the crystals with

a solution of 1 : 1 nitric acid (70%) and water. The flux method can be used to

obtain crystals of materials which do not melt congruently, so may not be obtainable

by other methods. However, the crystals are often not as large as those grown

using the optical floating zone or Czochralski methods. There is also the possibility

of there either being macroscopic regions of flux becoming embedded in crystals

or substitution of the flux material for elements in the desired phase. These can

be particularly problematic when measuring resistivity, since it can be difficult to

discern whether a superconducting signal originates from the bulk material or surface

regions of flux.

3.2 Magnetization

Magnetization measurements were made using a Quantum Design Magnetic Prop-

erty Measurement System (MPMS) [166]. This is a magnetometer which utilizes

a superconducting quantum interference device (SQUID) to make sensitive mag-

netization measurements. The system consists of a probe mounted in a dewar of

helium-4, surrounded by a jacket filled with liquid nitrogen. For measurements be-

tween 1.8 and 400 K, samples are mounted inside a straw attached to a sample rod

which is inserted vertically into the probe. The measurement system is illustrated in
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Figure 3.2: A schematic diagram of the detection system for the MPMS SQUID
magnetometer. The circuit is made of superconducting wire which is kept in the
superconducting state, except when the heater is engaged. The diagram was adapted
from Ref. [166]

Fig. 3.2, where the sample is moved through a pair of superconducting coils, induc-

ing supercurrents. A typical measurement consists of measuring 32 points across a

scan length of 4 cm. The change in current at each step is converted by the SQUID

to a voltage extremely accurately. The output voltage as a function of position is

fitted with a model of the response to a dipole field. After calibration with a sample

of known magnetic susceptibility, the absolute magnetization of an unknown sample

can be obtained. The heater in the circuit shown in the diagram periodically drives

the coil and SQUID into the normal state between measurements, which serves

to remove the otherwise persistent currents in the system. Measurements can be

performed in applied fields up to 7 T.

Magnetization measurements between 0.48 and 1.8 K were made using an

iQuantum 3He insert [167]. The sample rod is enclosed in a thin pipe which is

inserted into the sample space of the MPMS. A closed system is formed between

the pipe and the external 3He tank. This operates in ‘one shot’ mode whereby the
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3He is condensed at the bottom of the pipe and the system is cooled to the base

temperature. The magnetization as a function of temperature can be measured

by warming the system from the base temperature, or alternatively measurements

as a function of field can be performed by holding the sample space at a fixed

temperature. Once the liquid 3He has evaporated, it returns to the gas tank of the

system and further measurements require the gas to be recondensed.

3.3 Resistivity

Figure 3.3: A schematic diagram of the sample for a four probe resistivity measure-
ment, where l is the distance between the two voltage wires.

The resistivity was measured using the four-probe method with a Quantum

Design Physical Properties Measurement System (PPMS). Measurements were ei-

ther performed down to 1.8 K, or to 0.4 K using a 3He insert. Magnetic fields up to

9 T were applied during the measurements. The samples were cut into bar shaped

pieces and four silver wires, 0.05 mm in diameter were attached to the surface using

DuPont 4929N silver paste as illustrated in Fig. 3.3. Either a direct or alternating

current passes between the two outer wires, while the voltage is measured across a

distance l between the two inner contacts and the resistivity (ρ) is calculated from

the resistance (R) and the cross sectional area (A) by

ρ =
RA

l
. (3.1)

3.4 Specific heat

The specific heat was measured in a Quantum Design PPMS between 1.8 and 400 K,

or down to 0.4 K with a 3He insert. Measurements were performed in applied fields of

up to 9 T. The measurements were performed using the relaxation method, whereby
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the sample is mounted on a platform which is suspended by wires attached to a

copper heat sink held at a constant temperature [168]. The samples were prepared

with at least one polished face, which is mounted on the stage using Apiezon N

or H grease to ensure a good thermal contact. The platform is made of sapphire

and a heater and thermometer are attached to the underside. The wires allow

both an electrical connection to these puck components and also create a thermal

link between the otherwise isolated platform and the heat sink. The measurement is

performed by switching on the heater to heat the platform before turning it off, with

the platform temperature being measured during the heating and cooling stages.

The relaxation of the platform temperature can either be fitted with a single or pair

of exponential functions. The latter corresponds to a two-tau model, where there is

an imperfect thermal contact between the platform and sample. In this case, there

will be a fast relaxation process due to the fact that the stage initially equilibrates

quickly with the thermal bath, while for the sample this is a slower process. To

accurately measure the specific heat of the sample, addenda measurements of the

stage and grease are made and the sample heat capacity is obtained from subtracting

the heat capacity of the addenda from the total.

3.5 Neutron scattering

The theory of neutron scattering is described in Sec. 2.3.2. In this section aspects of

neutron production and instrumentation are outlined. Neutron scattering facilities

can either be classified as reactor or spallation sources. In this work, neutron scat-

tering measurements have either been carried out at the Institut Laue-Langevin in

Grenoble, France or at the ISIS pulsed neutron source at the Rutherford Appleton

Laboratory, Didcot, UK.

The Institut Laue-Langevin (ILL) is a reactor source. A neutron flux of

1.5 × 1015 s−1 is produced by a water cooled reactor fuelled by enriched uranium.

As well as the moderating effect of the cooling water, there is an additional heavy

water moderator which decelerates the neutrons produced by fission reactions. The

result is a distribution of neutron wavelengths which peaks at 1.2 Å(∼660 K) [154].

There is also a hot graphite moderator at 2400 K for producing higher energy

neutrons and two liquid hydrogen moderators at 25 K for lower energies. Neutron

scattering instruments are either located in the reactor hall or in one of two guide

halls located at a further distance.

The ISIS pulsed neutron and muon source is a spallation source. Neutrons

are produced by colliding pulses of protons with a tungsten target. H− ions are
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accelerated in a linear accelerator to 70 MeV before being injected into a circular

synchrotron. The ions are stripped of their electrons upon entering the synchrotron

and are accelerated to energies of 800 MeV. Pulses of protons are extracted and four

out of five pulses are directed to target station 1, while the remaining pulse is directed

to target station 2. Each target station contains a target made of tungsten clad with

tantalum and fast neutrons are produced upon collisions with the proton pulses. The

high energy neutrons are slowed by various moderators. Both target stations have

water moderators but target station 1 has additional moderators consisting of liquid

methane at 110 K and hydrogen at 20 K while target station 2 has a 40 K solid

methane moderator and one consisting of liquid hydrogen at 17 K.

3.5.1 Single crystal neutron diffraction

A diagram of the single crystal neutron diffractometer D10 at the ILL is shown in

Fig. 3.4. Neutrons of a single energy are selected with the use of either a pyrolytic

graphite or copper monochromator. In this work, the graphite monochromator was

used to select an incident wavelength of 2.36 Å. D10 can be operated in four circle

mode, where the sample sits in a Eulerian cradle where it can be rotated about three

axes while the detector is rotated about one. To reduce the background signal, the

instrument can be operated with an energy analyzer. In this case, the scattered

neutrons are measured with a single 3He detector after passing through vertically

focussed pyrolytic graphite. This ensures that only neutrons with the same wave-

length as the incident beam are detected. However, due to the physical dimensions

of the analyzer, the angular coverage is reduced when it is used. With knowledge

of both the neutron energy and angle of scattering, the momentum transfer can be

deduced [154].

3.5.2 Inelastic neutron scattering

To perform inelastic neutron scattering measurements, it is necessary to have knowl-

edge of the energy of both incident and scattered neutrons. This can be obtained

either by using the triple-axis or time-of-flight techniques. With a triple-axis spec-

trometer, both the initial and final energies are selected using a crystal analyzer.

However, all the inelastic neutron scattering instruments used in this work are time-

of-flight spectrometers. For direct geometry spectrometers, the initial energy of a

neutron pulse is selected and the energy of the scattered neutrons are deduced from

the time taken for them to reach the detectors. In the case of indirect geometry spec-

trometers, the initial pulse is not monochromated but the scattered beam is passed
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Figure 3.4: The layout of the D10 single crystal neutron diffractometer. Taken from
Ref. [169].

through an analyzer so that neutrons of a single energy reach the detectors. At a

neutron source such as ISIS, the time of flight instruments can exploit the pulsed

structure of the neutron beam, whereas time-of-flight instruments at continuous

sources require that the incident neutron beam is split into discrete pulses.

The IN6 spectrometer at the ILL is shown in Fig. 3.5. The white beam

of neutrons enters the triple monochromator where up to three incident energies

can be selected using crystals of pyrolytic graphite. Higher energy neutrons from

higher order reflections are then removed by the beryllium filter. The beam is split

into discrete pulses using a Fermi chopper. This is a large drum, rotating about

an axis perpendicular to the neutron beam. It consists of alternating sheets of

aluminium of gadolinium and therefore only neutrons traveling along the direction

of the aluminium can pass through the chopper and a continuous beam will be split

into a discrete one. The scattered neutrons are detected at a bank of 3He detectors

which covers a scattering angle of 10 to 115◦. From the time taken for the scattered
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Figure 3.5: The layout of the IN6 inelastic neutron spectrometer. Taken from
Ref. [170].

neutrons to reach the detector at a particular angle, S(Q, ω) can be measured.

3.6 Muon spin rotation/relaxation

Muon spin rotation and relaxation are two techniques, both denoted by µSR, whereby

spin polarized, positive muons (µ+) are implanted into materials and the magnetic

field distribution at the muon stopping site is deduced from the directional depen-

dence of the positrons emitted from µ+ decay. The muon is one of the elementary

particles of the standard model of particle physics and is a second generation lepton,

where the electron is the corresponding first generation particle. Like the electron,
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the muon is a spin 1
2 particle but due to having a larger mass of approximately 11%

of that of the proton, the magnetic moment is considerably smaller, just ∼ 0.005 µB.

Positive muons are produced by the decay of positive pions. At the ISIS

pulsed neutron and muon source, these are produced by colliding pulses of protons

with a graphite target. As described in the previous section, pulses of accelerated

protons are extracted from a synchrotron and directed towards one of two target

stations. Before reaching target station 1, the protons pass through a graphite target

and pions are produced via the collision of protons by [171]

p + p → π+ + p + n. (3.2)

A proton colliding with a neutron can also produce π+ particles but in this case two

neutrons are produced. The pion is unstable and quickly decays to produce a muon

and a muon-neutrino by

π+ → µ+ + νµ. (3.3)

If the pion is at rest, the muons produced will be 100% spin polarized antiparallel to

the direction of travel of the muon beam [172]. It is therefore possible to produce a

beam of nearly entirely spin polarized muons, which are implanted into the samples

at the instrument. The implanted muons are rapidly decelerated by electrostatic

interactions so that they come to rest in the material, while the polarization of the

moments remains unchanged. Muons decay with a half life of 2.2 µs by

µ+ → e+ + νe + ν̄µ. (3.4)

It is the positron emitted from this decay which is detected in a µSR experiment.

The positron is emitted preferentially in the direction of the muon spin and this

can be used to study the magnetic field at the muon stopping site. The angular

dependence of the emitted positron direction is given by

N(θ) ∝ 1 + acosθ, (3.5)

where N(θ) is the number of positrons emitted at an angle θ to the muon spin. The

parameter a measures the strength of the asymmetry and a ∼ 0 for low positron

energies, a ∼ 1 at high energies and a = 1
3 is obtained integrating over all energies.

The configuration of a µSR experiment is shown in Fig. 3.6. The two detectors

in blue are shown in the forward (F) and backward (B) positions relative to the

sample. In the longitudinal field configuration, a magnetic field is applied parallel
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Figure 3.6: A typical geometry of a µSR experiment. Two detectors are shown in
blue in the forward (F) and backward (B) positions relative to the sample. The
direction of the applied field (H) is shown for the longitudinal field (LF) and the
transverse field (TF) configurations.

to the direction of the muon beam, whereas it is perpendicular in the transverse

field configuration. Although the detectors are shown in the forward and backward

positions, for transverse field measurements they can be positioned along any axis

perpendicular to the applied transverse field. Typically in a µSR experiment, the

asymmetry as a function of time is measured, which is calculated by

A(t) =
NB − αNF

NB + αNF
, (3.6)

where NF and NB are the number of counts in the forward and backward positions,

and α is a calibration constant. Using α = 1 for an ideal pair of detectors and

substituting in Eq. 3.5 with a = 1
3 , a maximum asymmetry of 1

3 is obtained for

fully polarized muons. The maximum asymmetry on a real instrument will be less

than this. If there is a magnetic field at the muon stopping site, the muon spin will

precess about it and A(t) will therefore be sensitive to the magnitude, distribution

and dynamics of the magnetic field. This is described in much greater deal in

Refs. [172, 173] but some results for situations applicable in this work will now be

given.

Firstly, a distribution of static fields can be considered. This is applicable to

many materials, since muons are sensitive to nuclear magnetic moments. Although
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these are not entirely static, the fluctuation rate is slower than the muon life time

and therefore this is a valid approximation. In the case of a random Gaussian field

distribution, the asymmetry is given by [173]

A(t) = A

1
3
+

2

3
(1− σ2t2)exp

(
−σ

2t2

2

) , (3.7)

where the Gaussian width of the field distribution is given by σ/γµ and γµ/2π = 135.53 MHz T−1

is the gyromagnetic ratio of the muon.

The relaxation of the asymmetry in the presence of fluctuating moments can

also be considered. In the limit of fast fluctuations the relaxation is given by [172]

A(t) = Ae−Λt, (3.8)

where Λ is the fluctuation rate. In a transverse field, the magnetic moment of the

muon precesses, leading to oscillations in the asymmetry. A transverse field at the

muon site may arise from an applied field or an ordered arrangement of magnetic

moments, leading to all the muons at a particular site precessing about the same

field. If all muons experienced an identical field then the asymmetry would be

described by a sinusoidal function but for a finite field distribution, the asymmetry

will also depolarize. The asymmetry can be modelled as a sum of n Gaussian

distributions

A(t) =
n∑
i=1

Aicos(γµBit+ ϕ)e−(σit)
2/2, (3.9)

where the field distribution for the ith component is centred on Bi and has a Gaus-

sian width σi/γµ. In the case of a magnetically ordered material each field corre-

sponds to a unique muon stopping site. For a superconductor in a transverse field,

the field distribution of the flux line lattice (Fig. 2.5) can be modelled by summing

multiple Gaussians [127]. The first and second moments of the overall distribution

are then given by

⟨B⟩ =
n∑
i=1

AiBi
Atot

(3.10)

⟨B2⟩ =
n∑
i=1

Ai
Atot

[(σi/γµ)
2 + (Bi − ⟨B⟩)2], (3.11)

where Atot is the total asymmetry given by
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Atot =
n∑
i=1

Ai. (3.12)
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Chapter 4

CeCoGe3

4.1 Introduction

CeCoGe3 is a member of the CeTX3 (T = transition metal, X = Si or Ge) series

of compounds which crystallize in the non-centrosymmetric, tetragonal BaNiSn3

type structure (space group I4mm). Like the isostructural CeRhSi3, CeIrSi3 and

CeIrGe3, CeCoGe3 orders magnetically at ambient pressure and displays pressure-

induced superconductivity. At ambient pressure CeCoGe3 orders antiferromagneti-

cally, with three magnetic phases (TN1 = 21 K, TN2 = 12 K, TN3 = 8 K) [174, 60].

This is the highest reported ordering temperature for this series of compounds.

Initial measurements on polycrystalline samples had reported two magnetic

transitions, at 21 and 18.5 K from specific heat measurements while only the former

transition was observed in resistivity measurements. However, the successful growth

of single crystals allowed the magnetic properties of CeCoGe3 to be clarified more

clearly. Unlike CeRhSi3 and CeIrSi3, the authors of Ref. [60] were unable to grow

single crystals of CeCoGe3 using the Czochralski method, suggesting this was due

to incongruent melting of the compound. Single crystals were successfully grown

using a bismuth flux, yielding plate like single crystals with faces perpendicular to

[001]. Their measurements of the resistivity and magnetic susceptibility of these

crystals in zero-field revealed the presence of three transitions. The existence of

three magnetic phases was further supported by the observation of three sharp

metamagnetic transitions in measurements of magnetization against applied field

for H ∥ [001] at 1.3 K, while the magnetization is linear up to 7 T for H ∥ [100].

The field-temperature phase diagram was constructed and is shown in Fig. 4.1. In

between the transitions, the magnetization does not sharply increase with applied

field. Hc3 corresponds to the transition between the ordered and paramagnetic
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Figure 4.1: The field-temperature phase diagram of CeCoGe3 from Ref. [60]. TN1,
TN2 and TN3 are the transition temperatures observed in zero-field.

states, while Hc1 and Hc2 are transitions between the ordered phases. Taking the

value of the saturation magnetization (Ms) as 0.42 µB/Ce, the metamagnetic steps

are observed atMs/4,Ms/3 andMs. The magnetic susceptibility below the ordering

temperature is highly anisotropic with an easy axis along [001]. Below TN1 there is

a sharp increase in χ which peaks at TN2 = 12 K. Upon decreasing the temperature

further, there is a shoulder until TN3 = 8 K, below which χ drops sharply.

The explanation offered for this behaviour is that the cerium moments mag-

netically order along the c axis. Below TN3, simple antiferromagnetic order is ob-

served with the cerium moments alternating in an up-down configuration. Such

a configuration has zero net magnetic moment at T = 0 and this explains the

sharp drop in χ for H ∥ [001] at low temperatures. The dramatic increase of χ

for TN3 < T < TN1 indicates a ground state with a net magnetization. It was

suggested that the simplest spin structure consistent with the observations would be

a three-up, one-down configuration for TN3 < T < TN2 and a two-up, one-down

configuration for TN2 < T < TN1. A two-up, one-down arrangement is clearly

compatible with a plateau at Ms/3, since one in every three cerium spins make a

net contribution to the magnetization. However, a three-up, one-down configuration

would give a plateau at Ms/2. In fact, the simplest configuration for a plateau at

Ms/4 is a three-up, five-down arrangement. In this model, the spins are strongly

constrained to lie along the c axis and the transitions between magnetic phases just

correspond to a change in structure resulting from flipping a certain number of spins.

A crystal electric field (CEF) scheme was also suggested, from measurements
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of χ with H ∥ [001] and H ∥ [100]. Based on the observed magnetization above

Hc3 of around 0.4 µB/Ce, the ground state doublet of the split J = 5
2 multiplet was

taken to be
∣∣∣±1

2

⟩
. A CEF scheme with B0

2 = 3 K, B0
4 = −1 K and B4

4 = = 0 K

was suggested, which gives such a ground state and this was shown to give reasonable

agreement to the observed data allowing for finite molecular field parameters and

temperature independent susceptibilities. The predicted level splittings from the

ground state to the other two doublets of the multiplet are 9.8 and 27.3 meV.

Neutron diffraction experiments on CeCoGe3 have been reported on both

single crystal [175] and polycrystalline samples [176]. The single crystal neutron

diffraction measurements at 2.9 K revealed a two component magnetic structure with

a dominant component k1 = (0,0,12) and a weaker one k2 = (0,0,34). The ground

state moment was deduced to be 0.5(1) µB/Ce in agreement with the magnetic

measurements. The presence of the k1 component was also observed in the powder

neutron diffraction experiments.

There has also been considerable interest in the properties of CeCoGe3

under pressure. This has been studied both under applied hydrostatic pressure

[49, 177, 178] or by applying chemical pressure in the CeCoGe3−xSix system [179,

180, 181, 182, 183]. The substitution of silicon for germanium compresses the lat-

tice and therefore acts as an effective pressure. It has been of particular interest

to study the proximity of the system to superconductivity and quantum criticality

and compare this to other compounds in the CeTX3 series. An initial study of the

CeCoGe3−xSix system identified three regimes of behaviour; an antiferromagnetic

region for 0 ≤ x ≤ 1, a quantum critical region for 1 < x < 1.5 and an in-

termediate valence region for 1.5 ≤ x ≤ 3 [179]. Specific heat and magnetization

measurements show that the ordering temperature (TN) decreases with increasing

x. At around x ≈ 1.2, the transition is no longer observed and magnetic order

has been suppressed. Measurements of the specific heat show that the low tem-

perature values of C/T reach a maximum at x = 1.25. This corresponds to the

maximum value of γ occurring at this concentration and indicates that the system

is in the heavy-fermion state. Non-Fermi liquid behaviour for x = 1.1, 1.25 and

1.5 is deduced from the observation of a temperature range where there is a ln(T )

dependence of C/T . The resistivity also shows a linear temperature dependence at

low temperatures which is another indication of NFL behaviour. The region around

this quantum critical point was measured with µSR [183]. These show that around

x = 1.2, there is short range ordering of cerium moments with a low ordering

temperature of 0.86 K and a greatly reduced magnetic moment of ∼ 0.01 µB/Ce.

It is also demonstrated that at these concentrations, ∼ 36% of the Ce ions are
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Figure 4.2: The temperature-pressure phase diagrams of CeCoGe3. The low pressure
phase diagram on the left is from Ref. [178] and the high pressure phase diagram on
the right is from Ref. [177]. The low pressure phase diagram was constructed from
measurements of polycrystalline samples, whereas single crystals were used for the
high pressure measurements.

paramagnetic. This is associated with Ce ions which have a different local environ-

ment, either due to site vacancies or site disorder. This inhomogeneous magnetic

phase indicates the possible importance of the degree of disorder in determining

the properties around the critical region, which may be important for explaining

the difference between applying hydrostatic and chemical pressure. Crucially, no

evidence for superconductivity was observed in the critical region down to 30 mK,

despite this being a region where strong spin fluctuations are expected to be present

[179].

Upon further increasing x, the low temperature enhancement of C/T is re-

duced and for x ≥ 2.0, a maximum is observed in the magnetic susceptibility.

This is evidence for the system being in the intermediate valence state and TK was

deduced from the temperature where the susceptibility reaches a maximum, indi-

cating TK ∼ 900 K for x = 3.0. The change in the system towards an intermediate

valence state is also observed in resonant inverse photoemission spectroscopy mea-

surements (RIPES) [180]. RIPES spectra measured at the Ce-N4,5 edge show two

peaks labelled f1 and f2. These represent the weights of the 4f0 and 4f1 states of

Ce respectively. The relative magnitude of the f1 peak is greatest at the lowest tem-

peratures and greatest values of x. These results give support to the fact that the

localized 4f electron becomes itinerant at higher concentrations due to the Kondo

interaction, with the local moment characteristics being recovered at sufficiently

high temperatures.
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Measurements of the magnetic properties of CeCoGe3 under hydrostatic pres-

sure have also been made on polycrystalline [178] and single crystal [177] samples.

The resulting complex magnetic phase diagrams are shown in Fig. 4.2. The phase

diagram measured on polycrystalline samples indicates the presence of five phases

at ambient pressure. The transitions between the phases labelled III and IV and IV

and V in the left of Fig. 4.2 correspond to the transitions at TN2 and TN3 reported

in single crystals [60]. However two further transitions are reported to lie between

TN1 and TN2. Under an applied pressure all the transitions below TN1 move closer

together until they merge to around 15 K for p ∼ 1 GPa. At this pressure there

is a downward step in TN1 and three further low temperature phases are reported

up to 2 GPa. The high pressure phase diagram from measurements of the spe-

cific heat of single crystals is shown on the right of Fig. 4.2. The phases labelled

I, III and IV correspond to the three magnetic phases reported in Ref. [60]. At

p = 0.8 GPa, an additional transition is observed at 15.3 K. The temperature of

this transition initially remains constant with increasing pressure, whereas TN1 is

suppressed until it meets the pressure induced phase at 1.5 GPa. The transition

temperature of this phase is suppressed as the pressure is increased further and it

merges with TN2 at around 2.4 GPa and with TN3 at around 2.9 GPa. After this

series of step-like decreases in TN , there is a more gradual dome like suppression of

the ordering temperature up until 4.4 GPa. The transition temperature of the new

magnetic phase which emerges at this pressure remains relatively constant at about

2.8 K until around pc = 5.5 GPa, where it sharply decreases and magnetic order is

suppressed.

These results show that CeCoGe3 has a complicated temperature-pressure

phase diagram with several competing phases. The results also indicate several

changes in magnetic structure between ambient pressure and pc. Much like the re-

sults for the CeCoGe3−xSix system, the ordering temperature is reduced in temper-

ature until magnetic order is fully suppressed at a quantum critical point. However,

a major difference from the doped system is that under applied hydrostatic pressure,

superconductivity is observed in resistivity measurements at p = 4.3 GPa and is

still present at 7.1 GPa [49, 104, 184]. Evidence for bulk superconductivity was

only observed in the specific heat in a narrower pressure range, up to 6.1 GPa [177].

The most novel feature of the superconducting state is the large, anisotropic values

of Hc2, in common with the other isostructural HFSC. At p = 7.1 GPa, where

the superconducting transition is at Tc = 0.64 K, Hc2 is estimated to be 3.1 T for

H ∥ [100] and 24 T for H ∥ [001] [184]. This strongly suggests an absence of

Pauli paramagnetic limiting for H ∥ [001]. Whether the Pauli paramagnetic limit
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is exceeded for H ∥ [100] depends on the magnitude of the superconducting gap

and therefore the strength of the superconducting coupling.

There are therefore similarities between CeCoGe3 and the pressure-induced

HFSC CeRhSi3, CeIrSi3 and CeIrGe3. The behaviour under chemical and hydro-

static pressures can be qualitatively described by the Doniach phase diagram with

the competition between the RKKY interaction and the Kondo effect. A super-

conducting dome emerges around the point where the magnetic phase transition is

suppressed by an applied hydrostatic pressure but not in silicon substituted samples.

However, there are still several properties of the magnetic states of CeCoGe3 at am-

bient pressure to be clarified. In this work polycrystalline and single crystal samples

of CeCoGe3 were studied at ambient pressure using magnetic susceptibility, INS,

single crystal neutron diffraction and µSR. Zero-field µSR measurements confirm

the onset of long range magnetic order at TN1 and the magnetic propagation vector

in all three magnetic phases is determined using single crystal neutron diffraction.

The INS measurements on polycrystalline samples allow the transitions between the

CEF levels to be directly probed and an alternative CEF scheme is proposed, com-

patible with both magnetic susceptibility and INS data. INS measurements are also

used to probe the low energy magnetic scattering which gives further information

about the magnetic states for T < TN1 and the Kondo interaction for T > TN1.

As well as further clarifying the physical properties of the magnetic states, infor-

mation is deduced about the degree of hybridization in CeCoGe3 and therefore the

proximity of the system to quantum criticality.

It should be noted for the rest of this chapter and in subsequent chapters,

the CGS system of electromagnetic units have been used.

4.2 Sample preparation and structural characterization

Polycrystalline samples of CeCoGe3 and the non-magnetic LaCoGe3 were produced

by arc-melting stoichiometric quantities of the constituent elements (Ce : 99.9%,

La : 99.9%, Co : 99.95%, Ge : 99.999%) in an argon atmosphere on a water

cooled copper hearth. The resulting boules were flipped and remelted to improve

homogeneity and were wrapped in tantalum foil and annealed at 900◦C for a week

under a dynamic vacuum, better than 10−6 Torr.

Powder x-ray diffraction measurements were perfomed using a Panalytical

X-Pert Pro diffractometer and the resulting patterns are shown in Fig. 4.3. The

crystal structure was refined using the Rietveld method using the TOPAS software

[151]. One extraneous peak at 28.2◦ was identified in CeCoGe3 which could not
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Figure 4.3: Powder x-ray diffraction measurements of CeCoGe3 and LaCoGe3 mea-
sured using a Panalytical X-Pert Pro diffractometer. The solid lines show the Ri-
etveld refinements performed using TOPAS. The results are given in Table 4.1.
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Table 4.1: Results of the refinements of powder x-ray diffraction measurements on
CeCoGe3 and LaCoGe3. The lattice parameters, weighted profile factor (Rwp) and
the atomic positions are shown.

CeCoGe3 LaCoGe3

a (Å) 4.32042(4) 4.35083(7)
c (Å) 9.83484(11) 9.87155(2)
Rwp(%) 10.33 8.86

Site x y z

Ce 2a 0 0 0
Co 2a 0 0 0.666(7)
Ge1 2a 0 0 0.4281(6)
Ge2 4b 0 0.5 0.7578(5)
La 2a 0 0 0
Co 2a 0 0 0.6628(7)
Ge1 2a 0 0 0.4285(6)
Ge2 4b 0 0.5 0.7556(5)

be indexed to any reflections for the BaNiSn3 structure while no extraneous peaks

were observed for LaCoGe3. The peak in the CeCoGe3 plot likely corresponds to an

impurity phase but as this peak had ∼ 1% of the intensity of the maximum sample

peak, this implies the samples are very nearly single phase.

The results of the Rietveld refinement are shown in Table 4.1, where the

site occupancies have been fixed to 100%. Due to the lack of symmetry along the

c axis, the z = 0 position could be arbitrarily chosen and therefore was taken to

be the position of the cerium atom. The lattice parameters are in good agreement

with those obtained in Ref. [174]. The nearest neighbour distances for cerium are

4.32042(4) Å for Ce - Ce, 3.28(7) Å for Ce - Co and 3.1358(13) Å for Ce - Ge.

Single crystals of CeCoGe3 were grown following the flux method described

in Ref. [60], as described in Sec. 3.1.2. An image of several crystals is shown in

Fig. 4.4. The typical dimensions of a large crystal were 6 × 2 × 1 mm. An x-ray

Laue image taken with the beam perpendicular to the largest face is shown on the

right of Fig. 4.5. On the left is a simulated Laue image along the [001] direction.

This confirms that the crystals are high quality and the large face is perpendicular

to [001]. In particular, the high symmetry point at the centre of the Laue image has

four-fold rotational symmetry and the only four-fold symmetric axis of the crystal

is along [001]. The composition was checked using EDAX and the average atomic

composition measured on nine sites was 20.7(2)% Ce, 19.0(2)% Co and 60.3(2)% Ge.
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Figure 4.4: Photograph of several CeCoGe3 crystals obtained using a flux method.
A ruler is shown for scale where one division is equal to 1 mm.

Figure 4.5: On the left is the simulated Laue image along [001] for CeCoGe3. On
the right is the x-ray Laue image of a plate shaped single crystal of CeCoGe3 taken
perpendicular to the face.

4.3 µSR measurements

The nature of the magnetic ordering of CeCoGe3 was studied using zero and longi-

tudinal field µSR. Polycrystalline CeCoGe3 was mounted on a silver plate and was

cooled in a standard cryostat down to 1.4 K. The experiment was performed on

the MuSR spectrometer at ISIS and the detectors were arranged in the longitudinal

configuration.

Zero-field µSR spectra at six temperatures are shown in Fig. 4.6. In the

range 13 K ≤ T ≤ 20 K, the spectra display oscillations in the asymmetry. Above

20 K and below 13 K oscillations are not observed and the asymmetry monotonically

decreases. As shown in the bottom two panels, there is a sharp drop in the initial

asymmetry between 21 and 20 K. These results indicate that CeCoGe3 has long-

range magnetic order below 21 K. The muons are implanted and precess about the
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Figure 4.6: µSR spectra of polycrystalline CeCoGe3 measured at six temperatures.
At 19 K two frequencies were observed whereas one was observed at 15 and 20 K
and none are present at 1.4, 13 or 21 K. The solid lines show the fits described in
the text.
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local field at the muon site. In the case of a perfect periodic arrangement of spins,

the muons at a given position in the magnetic lattice experience a single field and

the resulting asymmetry would consist of a single undamped oscillation. In a real

system there will be a finite variance in the field distribution at the muon site and

therefore the signal is a decaying oscillation. Assuming a random orientation of

grains in a polycrystalline sample, 2
3 of the implanted muons contribute towards the

oscillatory component upon the onset of magnetic order so there is a drop in initial

asymmetry. Therefore TN1 lies between 20 and 21 K.

The spectra were fitted with

Gz(t) =

n∑
i=1

Aicos(γµBit+ ϕ)e−
(σit)

2

2 +A0e
−Λt +Abg, (4.1)

which is the sum of an oscillating transverse component (Eq. 3.9), a fluctuating lon-

gitudinal component (Eq. 3.8) and a background term. With Abg fixed at 0.03089,

the spectra were fitted with n = 2 at 19 K and n = 1 for the remaining oscillatory

spectra. Below 13 K and above 20 K, the spectra were just fitted with the last two

terms. The observation of two frequencies at 19 K indicates there are at least two

muon stopping sites in the magnetic unit cell. Two stopping sites in the lattice were

identified in the µSR studies of CeCoGe3−xSix [183], but in that instance the sec-

ond muon site was attributed to a disordered region where there was an interchange

between Co and Ge. However, even if there is only one stopping site in the crystal

lattice, there may be more than one distinct site in the magnetic lattice [172].

The temperature dependence of Λ and the internal fields are shown in Fig. 4.7.

The sharp increase in Λ at TN1 indicates a transition between the paramagnetic and

the ordered states. However, Λ smoothly decreases in the ordered state and anoma-

lies are not observed at TN2 and TN3. It shall be seen in the following section that

these transitions correspond to a rearrangement of spins and change in magnetic

structure. These results indicate that these rearrangements are not accompanied

by a sharply increased spin fluctuation rate. The temperature dependence of the

internal fields are shown in Fig. 4.7(b). The field observed at 20 K is larger than

the lower of the fields observed at 19 K and is therefore associated with the higher

field B2. If the magnetic field at the muon site is taken to be proportional to the

magnetic moment of the cerium atom, the temperature dependence of the order

parameter can be obtained. The temperature dependence of B1 was fitted with

B(T ) = B(0)

[
1−

(
T

TN

)α]β
. (4.2)
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Figure 4.7: (a) The temperature dependence of the muon depolarization rate.
(b) The temperature dependence of the internal fields at the muon stopping site,
from the oscillation frequencies observed in zero-field µSR spectra. The solid line
shows a fit of B1 to Eq. 4.2 as described in the text.
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This expression is an empirical interpolation between Bloch’s law at low temper-

atures and critical behaviour at TN [185]. With β fixed at 0.5 for a mean field

magnet [109], values of B(0) = 889(16) G, α = 4.7(4) and TN = 20.12(8) K were

obtained. A good fit with β = 0.5 means the observations are consistent with that

of a mean field magnet. With a large value of α, there is a significant deviation from

a (1− c(T/TN)
2) dependence at low temperatures [186] and this could be due to a

gap in the magnon dispersion [187]. The data could also be fitted with β = 0.367

and 0.326 for a 3D Heisenberg and Ising model respectively [109]. Fits with both

these parameters gave TN < 20 K and poor fits were obtained for TN > 20 K. As

discussed previously, the observation of oscillations at 20 K constrains TN > 20 K,

so the data are incompatible with these models. Furthermore, Fig. 4.8 shows the

magnetic moments obtained from magnetic refinements at 2 and 14 K, as described

in Sec. 4.4. The solid lines show fits to the three models, with α and TN fixed to the

values from the µSR fits and B(0) was the only free parameter. The fitted curves

and values of χ2 show that only the mean free model is in agreement with the neu-

tron diffraction data. This also supports the applicability of the fit in Fig. 4.7 at

low temperatures, even though the µSR data only goes down to 13 K.

The dependence of the asymmetry on the longitudinal applied field is shown

in Fig. 4.9. The asymmetry has been normalized so that it is equal to one when it

reaches the full asymmetry of the MuSR spectrometer. At this point, the muon is

fully polarized in the forward direction and is fully decoupled from its local envi-

ronment. As expected for a polycrystalline magnet, the asymmetry is equal to 1
3 in

zero-field. The data were fitted with

A(b) =
3

4
− 1

4b2
+

(b2 − 1)2

8b3
ln

∣∣∣∣b + 1

b− 1

∣∣∣∣ , (4.3)

where b = Bapp/B1 is the ratio of the applied field to the internal field at the muon

stopping site [188]. B1 = 1080(40) G was obtained which is slightly higher that

the value of 889(16) G obtained from the mean field model. However the magnetic

structure at 1.4 K is different to the structure in the region where Equation 4.2 was

fitted.

4.4 Single crystal neutron diffraction

Single crystal neutron diffraction measurements were carried out on the D10 diffrac-

tometer in the paramagnetic state as well as the three ordered phases. In a previous

single crystal neutron diffraction study, the coexistence of two magnetic propaga-
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Figure 4.8: The solid lines show three models of the temperature dependence of
the order parameter and the magnitudes of the cerium moment obtained from the
refinements at 2 and 14 K described in Sec. 4.4. The fits were made to Eq. 4.2 with
β fixed the value for a given model and α and TN fixed to the values obtained from
fitting B1 in Fig. 4.7.

Figure 4.9: The dependence of the asymmetry on the applied longitudinal field
at 1.4 K. The asymmetry has been normalized so that it equals unity at the full
asymmetry of the spectrometer. The solid line shows a fit to Eq. 4.3.
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tion vectors was reported with the observation of the (101
2) and (101

4) reflections at

2.9 K [175]. The aim of the measurements presented in this section is to study the

temperature dependence of the magnetic structure and to characterize the nature

of the magnetic ordering up to TN1.

A plate like sample was glued on an aluminium pin and cooled in a helium-

flow cryostat to temperatures down to 2 K. Details of the instrument are described

in Sec. 3.5.1. The incident neutron wavelength was 2.36 Å which was selected using

a pyrolytic graphic monochromator. Scattered neutrons passed through a vertically

focused pyrolytic graphite analyzer and were detected with a single 3He detector.

Scans across (10l) are shown in Fig. 4.10 at 30, 14, 10 and 2 K. These show

that below 20 K, additional peaks are observed for non-integer l. Since no peaks are

observed in this range at 30 K, this indicates the onset of antiferromagnetic ordering

below TN1. At 2 K there is an additional peak at (101
2), which shifts to (103

8) at

10 K and (101
3) at 14 K. Further scans were taken from 22 to 3 K in 1 K increments

to check the temperature dependence of the magnetic propagation vector. Peaks

were observed at l = 1
2 for T ≤ TN3 , l = 3

8 for TN3 ≤ T ≤ TN2 and l = 1
3 for

TN2 < T < TN1. This confirms that the transitions at TN2 and TN3 correspond

to a change in the magnetic propagation vector and therefore a change in magnetic

structure. The (100) reflection is forbidden in the body-centered structure so the

propagation vectors are k = (0,0,12) below TN3, k = (0,0,58) for TN3 ≤ T < TN2,

and k = (0,0,23) for TN2 < T < TN1. The k = (0,0,12) propagation vector at 2 K

is in agreement with the dominant propagation vector reported for this phase in

Ref. [175]. However, the weaker peak reported at l = 1
4 is not observed at 2 K and

there is no evidence in any of these measurements for a two k structure. As shown

in Fig. 4.11, peaks are observed at l = 3
8 and at l = 1

2 at 8 K. This indicates that

there is a coexistence of two magnetic phases, which suggests a first order transition

at TN3. The peak at l = 3
8 has a much larger intensity indicating that TN3 is below

8 K. No coexistence of phases is observed at TN2, but it is not possible to conclude

the order of the transition from this alone.

The existence of ferrimagnetic phases were deduced for measurements of

polycrystalline samples in Ref [174] at 3 K. Although a different phase diagram is

proposed, the existence of a region with a ferrimagnetic phase is suggested upon

either increasing the field or temperature from the zero-field low temperature anti-

ferromagnetic state. To look for evidence of a ferromagnetic component, the tem-

perature dependence of the intensity of the (110) reflection was measured. This was

selected because the structural peak has a relatively low intensity. Of all the exper-
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Figure 4.10: Elastic scans of a single crystal of CeCoGe3 across (10l) at four tem-
peratures. Above TN at 30 K, no peak is observed.

Figure 4.11: Elastic scans of CeCoGe3 across (10l) at 8 K. There is a coexistence
between the peaks at l = 3

8 and at l = 1
2 .
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Figure 4.12: The integrated intensity of the (110) reflection as a function of temper-
ature. The vertical dashed lines show the three transition temperatures and there
is an increased intensity between TN1 and TN3.

imentally accessible, allowed structural reflections measured at 35 K, this reflection

had the smallest integrated intensity. In addition, (110) corresponds to a low value

of |Q|, so the intensity of the magnetic scattering will not have dropped off signifi-

cantly as a result of the magnetic form factor. The temperature dependence of the

integrated intensity of the (110) reflection is displayed in Fig. 4.12. The intensity

begins to increase below TN1 and reaches a maximum at TN2. Below this, the in-

tensity decreases and below TN3 the intensity is similar to that observed above TN1.

This is evidence for a ferromagnetic component for TN3 < T < TN1, in addition

to antiferromagnetic order.

Having identified three distinct magnetic phases, further data were collected

to solve the magnetic structure and to measure the magnitude and direction of the

cerium magnetic moments. At 35 K, the experimentally accessible nuclear reflec-

tions (hkl) were measured, excluding those forbidden by the crystal symmetry. In

each magnetic phase, reflections at (hkl) ± k were measured. A total of 104 mag-

netic reflections were measured at 2 and 14 K whereas 57 were measured at 10 K.

Reflections were not at observed at (00l) ± k in any phase, indicating that the mo-
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Figure 4.13: The calculated against the observed values of the structure factor
(Fhkl) for the refinements of (a) the crystal structure at 35 K, (b)-(d) the magnetic
structures at 2, 10 and 14 K. The solid lines show where Fcalc = Fobs.

ments point along the c axis in all three phases. A symmetry analysis of the possible

magnetic structures was carried out using SARAh [157]. This analysis shows that

there is only one irreducible representation of Gk with moments along the c axis for

all the propagation vectors. The crystal and magnetic structures were fitted using

FullProf [153]. Scale factors and extinction parameters were fixed from the results

of the structural refinement and therefore there was only one free parameter in the

refinement of the magnetic phases. This corresponds to the magnetic moment on

the cerium atoms, although it is always possible to introduce a global phase ϕ to a

magnetic structure while leaving the diffraction pattern unchanged. The values of

RBragg were 10.9% for the crystal structure refinement at 35 K and 21.5, 24.3 and

22% for the magnetic structure refinements at 2, 10 and 14 K respectively. Plots of

the structure factors, Fcalc against Fobs are shown in Fig. 4.13. The solid lines show

where the two are equal and represents the position of the points for a perfect fit.

Although ϕ can not be directly determined from diffraction measurements, selecting

ϕ = π/4 gives an equal moment on each Ce of 0.405(5) µB. This has a two-up

86



two-down spin configuration along the c axis and is displayed in Fig. 4.14(c). As

previously discussed, a ferromagnetic component is observed between TN1 and TN3.

With ϕ = 0 at 14 K, the structure consists of an up moment of 0.485(6) µB/Ce

followed by two down moments of 0.243(3) µB/Ce. The addition of a ferromagnetic

component of -0.125 µB/Ce gives an equal moment, two-up one-down structure of

0.360(6) µB/Ce. This is displayed in Fig. 4.14(a) and such a structure is consistent

with a magnetization plateau at Ms/3 reported in Ref. [60]. For the phase at 10 K

with k = (0,0,58), a combination of ϕ and ferromagnetic component that gives an

equal moment solution could not be found. This indicates that the structure in

this phase has unequal magnetic moments. The antiferromagnetic component with

ϕ = 0 is shown in Fig. 4.14(b). However there is also a ferromagnetic moment in

this phase, the magnitude of which can not be reliably determined from unpolarized

measurements of a single nuclear reflection.

4.5 Inelastic neutron scattering

In the previous section, the magnetic structure of the three magnetic phases of

CeCoGe3 was studied with neutron diffraction and an ordered moment of 0.405 µB/Ce

was deduced at 2 K. A straightforward explanation for this low moment would be

a CEF scheme where the ground state doublet of the J = 5
2 multiplet consists of

the | ± 1
2⟩ states, which has a c axis moment of gJmJ = 0.429 µB/Ce as suggested

in Ref. [60]. To test this proposed CEF scheme and to measure the magnetic scat-

tering both in the ordered state below TN1 and the quasielastic scattering in the

paramagnetic state due to the Kondo effect, INS measurements were carried out on

polycrystalline CeCoGe3 using the MARI and MERLIN spectrometers at ISIS.

INSMeasurements were carried out on polycrystalline CeCoGe3 and LaCoGe3.

LaCoGe3 does not magnetically order [174] and is isostructural to CeCoGe3. It was

therefore used to estimate the phonon contribution. The samples were wrapped in

Al foil, placed in an Al can and cooled to 4 K in a closed cycle refrigerator. Measure-

ments were made on MARI with Ei = 10 and 40 meV selected with a Fermi chopper.

Colour plots of the INS intensity in absolute units, measured with Ei = 40 meV are

shown in Figs. 4.15(a) and 4.15(b) for CeCoGe3 at 4 and 25 K respectively and in

Fig. 4.15(c) for LaCoGe3 at 5 K. The CeCoGe3 measurements in both the magnet-

ically ordered and paramagnetic states show two inelastic excitations at around 19

and 28 meV, with significant intensity at low |Q|. These excitations are absent in

the scattering of LaCoGe3, indicating a magnetic origin. These account for the two
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Figure 4.14: The crystal and magnetic structures of CeCoGe3 with Ce atoms in red,
Co atoms in blue and Ge atoms in grey. The arrows depict the magnetic moments
on the Ce atoms. (a) shows the magnetic structure at 14 K consisting of an anti-
ferromagnetic component with ϕ = 0 with a ferromagnetic component adjusted to
give an equal moment, two-up one-down structure. (b) shows the antiferromagnetic
component at 10 K with ϕ = 0. One half of the magnetic unit cell is displayed.
(c) shows the magnetic structure at 2 K with ϕ = π/4, to give an equal moment
two-up two down structure.
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Figure 4.15: Colour plots of the INS intensity measured on MARI with Ei = 40 meV
for (a) CeCoGe3 at 4 K, (b) CeCoGe3 at 25 K and (c) LaCoGe3 at 5 K. (d) shows
the magnetic scattering of CeCoGe3 at 4 K after subtracting an estimate of the
phonon contribution as described in the text.
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excited CEF doublets of the J = 5
2 multiplet. Furthermore, additional magnetic

scattering is observed at lower energy transfers in CeCoGe3. A different |Q| de-
pendence of the low energy magnetic scattering is observed, with a relatively weak

dependence at 25 K but with clear features in the dispersion at 4 K. The scattering

at 4 K is due to spin waves in the ordered state while the scattering at 25 K is

quasielastic scattering due to the Kondo effect. Although an antiferromagnetic spin

wave like dispersion might be expected to be observed at 4 K, this can not be re-

solved due to the measurements being performed on a polycrystalline sample. In this

case, the spin waves will be anisotropic and since all orientations will be measured,

a sharp dispersion will not be observed. There is also significant amounts of scatter-

ing observed at higher |Q| in Figs. 4.15(a)-(c) which is from phonons. Fig. 4.15(d)

shows the magnetic scattering obtained from subtracting the scattering of LaCoGe3

at 5 K from CeCoGe3 at 4 K using Eq. 2.73 with α = 0.9, the ratio of the neutron

scattering cross sections of CeCoGe3 and LaCoGe3. This has mostly removed the

high |Q| phonon scattering. The two CEF levels can be readily resolved as well as

the magnetic scattering at lower energies. Further analysis was carried out from

making cuts of the data by integrating across a range of |Q|. Cuts of low energy

INS measurements are first discussed followed by the high energy measurements.

4.5.1 Low energy inelastic neutron scattering

Figure 4.16: Cuts of S(Q, ω) with Ei = 10 meV for CeCoGe3 and LaCoGe3, inte-
grated across |Q| from 0-2 Å−1.

90



Fig. 4.16 shows cuts of S(Q, ω) of CeCoGe3 for Ei = 10 meV. The cuts are

integrated from 0-2 Å−1. The lack of inelastic scattering from LaCoGe3 shows there

are no phonon excitations at energy transfers less than 10 meV and the scattering

observed in CeCoGe3 has a magnetic origin. The cuts at 4 and 10 K show a well

defined peak at 4.5 meV due to spin wave excitations and this is the energy scale

of the zone boundary magnons. Very little difference is observed in the magnetic

scattering crossing TN3. However at 15 K, the magnon peak weakens and broadens,

as if some of the spectral weight has shifted from the magnon to quasielastic scat-

tering. Above TN1 the peak is no longer observed and there is broad quasielastic

scattering.

To study the temperature dependence of the quasielastic scattering above

TN1, further measurements were made on the MERLIN spectrometer with Ei = 15 meV.

This is shown for six temperatures in Fig. 4.17. Clear evidence of quasielastic scat-

tering is observed since the central peak is broader than the elastic resolution of

the instrument and it becomes increasingly asymmetrical with temperature. The

data were fitted using Eq. 2.72 and the temperature dependence of the half width

at half maximum is shown in Fig. 4.18. A linear fit was made to Γ up to 150 K and

Γ(0) = 1.0(3) meV was obtained. From this TK = 11(3) K is estimated. At 190 K

there is a significant deviation from linear behaviour. A T
1
2 dependence could also

be fitted to the data as has been observed in other heavy fermion systems [161, 189].

But this gives a negative Γ(0) for which there is not a clear physical interpretation.

At 190 K the value of Γ is unchanged from that at 140 K. A linear dependence is

predicted as long as the separation of the first excited doublet is sufficiently greater

than the thermal energy [160]. The first CEF level is at 19 meV (220 K), which

may explain the change in the temperature dependence.

4.5.2 High energy inelastic neutron scattering

Cuts were made of S(Q, ω) by integrating across |Q| and are shown for Ei = 40 meV

in Fig. 4.19. The low |Q| cuts are from integrating from 0-3 Å−1 and the high

|Q| from 5-8 Å−1. The high |Q| measurements of LaCoGe3 show two peaks at

around 12 and 20 meV which are also present in the high |Q| CeCoGe3 data. The

peak at 12 meV is almost entirely absent in the low |Q| measurements while a

peak is observed at around 20 meV in the low |Q| measurements of CeCoGe3 but

not LaCoGe3. The peak at 12 meV is more intense in LaCoGe3 while they are

approximately equal at 20 meV. This supports the presence of peaks due to phonons

at 12 and 20 meV in both compounds with an increased scattering intensity with

increasing |Q|. However, there is extra scattering at 20 meV for both low and high
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Figure 4.17: Cuts of S(Q, ω) for CeCoGe3 with Ei = 15 meV measured on the
MERLIN spectrometer. The solid lines show fits to the elastic line and a Lorentzian
quasielastic component.
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Figure 4.18: The temperature dependence of the quasielastic linewidth (half width
at half maximum) of CeCoGe3 measured on the MERLIN spectrometer. A linear
fit has been made to the data up to 150 K.

|Q| cuts of CeCoGe3, consistent with the presence of a CEF level at this energy

transfer. At ∼28 meV there is an additional peak at low |Q| for CeCoGe3 but

not for the other cuts. The scattering of CeCoGe3 is greater at this energy than

LaCoGe3 and the low |Q| intensity is greater than the high |Q| , indicating a second

CEF level at around 28 meV.

Having established the presence of two CEF excitations at low temperatures,

cuts of Smag(Q, ω) were made for Ei = 40 (Fig. 4.20) and 10 meV (Fig. 4.21). The

data were analyzed with a CEF Hamiltonian for a Ce3+ ion in a tetragonal crystal

field (Eq. 2.5), as described in Sec. 2.1.2. A CEF scheme was sought which was

compatible with both magnetic susceptibility and INS data. B2
0 was estimated using

Eq. 2.16 for isotropic exchange interactions and using the values for the Curie-Weiss

temperatures [60], B2
0 = − 0.376 meV was estimated. In particular, a negative

B2
0 is expected since θab < θc. A simultaneous fit was made to Smag above TN1.

Initially B2
0 was fixed but was allowed to vary in the final fit. Good fits to the data

are obtained, as shown by the solid lines in Figs. 4.20(b)-(d) and 4.21(b).

As discussed previously, at 4 K an extra peak is observed in the cut of Smag

at 4.5 meV. This was accounted for within the CEF model with the addition of

an internal magnetic field. This was carried out by adding a term −gJµBB · J
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Figure 4.19: Cuts of S(Q, ω) with Ei =40 meV of CeCoGe3 at 4 K and LaCoGe3
at 5 K from integrating across |Q|. The integration was from 0-3 Å−1 for low |Q|
and from 5-8 Å−1 for high |Q|.

to the Hamiltonian HCEF in Eq. 2.5. In the presence of a magnetic field, time

reversal symmetry is broken and the states of the ground state doublet are no longer

degenerate, leading to an additional peak in Smag. Since the magnetic moments lie

along the c axis, Smag was fitted with a finite internal field B = (0,0,Bz), with B
0
4

and B4
4 also being varied. Small changes in CEF parameters are allowed below TN

either due to small changes in the lattice parameters or due to the contribution of

conduction electrons to the CEF [190][191]. Figs. 4.20(a) and 4.21(a) show that

Bz = 340(20) kG gives a good fit to the data.

The inverse magnetic susceptibility of CeCoGe3 single crystals for H ∥ c and
H ∥ ab are shown in Fig. 4.22. Fits were made to Eqs. 2.14 and 2.15 with the

CEF parameters fixed from the fitted INS data. Molecular-field parameters and

temperature independent susceptibilities were allowed to vary and the resulting fit

is shown by the solid lines which shows reasonably good agreement. Similar CEF

parameters were obtained from simultaneously fitting the INS data at 25 K and the

magnetic susceptibility data. The results from fitting the data at 4 and 25 K are

shown in Table 4.2.

The corresponding wave functions above TN1 are
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Figure 4.20: Smag(Q, ω) of CeCoGe3 with Ei =40 meV at (a) 4 K, (b) 25 K, (c)
100 K and (d) 220 K. The subtraction was made following Eq. 2.73. The solid line
shows a fit to a CEF model described in the text and the dashed lines show the fit
components.

Figure 4.21: Smag(Q, ω) of CeCoGe3 with Ei = 10 meV at (a) 4 K and (b) 25 K.
The subtraction was made following Eq. 2.73. The solid line shows a fit to a CEF
model described in the text and the dashed lines show the fit components.
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Figure 4.22: The inverse magnetic susceptibility for single crystals of CeCoGe3
between 20 and 390 K in an applied field of 1 kOe. The solid lines show a fit to a
CEF model described in the text. The dashed lines show the best fit to a model
with the
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ψ1 is the ground state wave function, ψ2 is the first excited doublet at 19.3 meV and

ψ3 is at 26.4 meV. The ground state moments were evaluated using Eq. 2.11. ⟨µz⟩
and ⟨µx⟩ are calculated to be 1.01 µB and 0.9 µB. A calculation of the magnetocrys-

talline anisotropy energy for this CEF model using Eq. 2.10 gives K1 = 4.9 meV,
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Table 4.2: Results from fitting INS and magnetic susceptibility data to a CEF model
at 4 and 25 K. The CEF parameters, quasi-elastic and CEF linewidths, molecular-
field parameters and temperature independent susceptibilities are shown.

4 K 25 K

B0
2 meV −0.61 −0.61(4)

B0
4 meV −0.013(3) −0.007(2)

B4
4 meV 0.412(8) 0.463(8)

ΓQES (meV) – 1.9(3)
Γψ2 (meV) 2.5(2) 1.6(3)
Γψ3 (meV) 2.3(2) 2.9(3)

λab (mole/emu) – −40.9
λc(mole/emu) – −52.0

χab0 (×10−3 emu/mol) – −0.404
χc0 (×10−3 emu/mol) – −1.936

so the moment is predicted to lie along the c axis.

The CEF model predicts a ground state moment of 1.01 µB/Ce whereas as

previously discussed, the observed ordered moment is 0.405 µB. This suggests that

the moment is significantly reduced compared to that predicted from a single ion

CEF model. This is a markedly different conclusion to the one that would be drawn

if the ground state doublet was
∣∣∣±1

2

⟩
, where there would be no significant moment

reduction. Therefore, the possibility of there being a set of CEF parameters which

gives this ground state and is compatible with the data should be considered further.

Reasonable agreement with magnetic susceptibility data was found in Ref. [60] for

such a scheme. This is despite the proposed scheme having B0
2 ∼0.3 meV when a

negative value would be expected from Eq. 2.16. However, the excited doublets are

expected to be at 9.8 and 27.3 meV which are clearly incompatible with the INS

data. A CEF scheme was found that was compatible with such a ground state with

a larger positive value of B0
2 ∼1.1 meV. The best fit to the magnetic susceptibility

for this set of CEF parameters is shown by the dashed lines in Fig. 4.22. Reasonable

agreement is obtained for H ∥ ab although the fit is worse than the one shown by the

solid black line. However there is very poor agreement for H ∥ c, demonstrating that

this model is incompatible with the susceptibility data. Furthermore the pronounced

hump in χ−1 at low temperatures for H ∥ c is not observed in the data. A hump is

also present in the model in Ref. [60], albeit in a less pronounced form and has also

been observed in other compounds with such a ground state doublet [192]. However
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it is absent in CeCoGe3, which is further evidence that this is not the ground state

doublet. Therefore only one CEF model was found to fit the magnetic susceptibility

and INS data and this indicates a reduced cerium moment in CeCoGe3.

4.6 Discussion and summary

CeCoGe3 has been studied using µSR, single crystal neutron diffraction, magnetic

susceptibility and powder inelastic neutron scattering. Single crystals grown by

the flux method were measured using single crystal neutron diffraction in zero-field

and the magnetic propagation vector is observed to change at each transition with

k = (0,0,12) for T < TN3, k = (0,0,58) for TN3 ≤ T < TN2, and k = (0,0,23)

for TN2 < T < TN1. A ferromagnetic component is also inferred between TN3

and TN1 from an increase in the intensity of the (110) reflection in this region. The

results indicate the that the moments align along the c axis in all three phases

and are compatible with an equal moment, two-up, two down structure below TN3

and two-up one down between TN2 and TN1. For these equal moment solutions,

magnetic refinements give moments of 0.405(5) µB/Ce at 2 K and no equal moment

structure could be deduced for the middle phase. This indicates a solution with

unequal moments. Such spin-density wave type structures can arise in systems

with competing interactions [116]. Further information about the structure in this

phase would require a measurement of the magnitude of the ferromagnetic moment,

which could be found by performing polarized neutron diffraction measurements.

The k = (0,0,12) propagation vector agrees with the dominant component observed

in Ref. [175], but no evidence was found for the weaker k = (0,0,34). This shows

that there appears to be sample dependence for single crystals, even though both

samples were synthesized using the same method. This suggests that CeCoGe3 has

many competing magnetic phases and small variations in the crystal structure, site

ordering or stoichiometry may promote different ground states.

The observation of a sharp drop in asymmetry, increase in the fluctuation

rate and oscillations of the asymmetry in zero-field µSR spectra confirm the onset

of long range magnetic order between 21 and 20 K. The internal fields were deduced

from the frequency of the oscillations and the data were fitted with a model of the

order parameter. The value of β may give information about the dimensionality

of the system and order parameter [109]. The fact that the moments in all phases

order along the c axis and sharp metamagnetic transitions are observed in the c axis

susceptibility may suggest that the system is best described by an Ising model. The

role of dimensionality is a very important topic in heavy-fermion superconductivity,
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with the higher superconducting Tc in CeT In5 often being ascribed to a quasi-two-

dimensional electronic structure [13]. The CeTX3 superconducting states have lower

values of Tc and in this would be further supported by a model with β = 0.326 for

a three-dimensional Ising model. However, the only model which fitted the data

was β = 0.5 for the mean field case, which does not reveal the universality class of

the phase transition. This mean field model was also consistent with the size of the

magnetic moments deduced from refinements of the neutron diffraction data at 2

and 14 K.

INS measurements were used to measure the CEF scheme as well the temper-

ature dependence of low energy magnetic scattering. It is of particular use to com-

pare the response to other CeTX3 compounds. INS measurements have previously

been made on CeRhGe3 [162] and CeRhSi3 [56]. At 2 and 10 K a well defined peak

in cuts of Smag(Q, ω) at 4.5 meV gives the energy of the zone boundary magnons.

In CeRhGe3 a peak was observed at 3 meV and it orders at TN1 = 14.5 K. Both

the peak energy and TN1 scale similarly between CeRhGe3 and CeCoGe3 and the

higher values in the case of the latter indicate stronger intersite exchange interac-

tions. Possible evidence is seen for a second low energy peak in CeRhGe3 which

may be evidence for anisotropic dispersions. However no evidence for a second peak

is observed in CeCoGe3. Further characterization of the spin-waves and in partic-

ular anisotropic properties would be greatly aided by INS measurements of single

crystals. TK deduced from the zero temperature width of the quasielastic linewidth

was similar in both compounds, being 11(3) K in CeCoGe3 and 12.6(3) CeRhGe3.

However Γ is linear with temperature up to 140 K in CeCoGe3 while it is nearly

temperature independent above 20 K in CeRhGe3. Although the first excited CEF

doublet is at a lower level in the latter (∼87 K), it is not clear that this entirely

explains the difference in the temperature dependence at low temperatures.

From fitting single crystal magnetic susceptibility and INS data, a CEF

scheme for CeCoGe3 has been proposed for the splitting of the J = 5
2 multi-

plet. The ground state is an admixture of
∣∣∣±5

2

⟩
and

∣∣∣∓3
2

⟩
states and schemes with

a
∣∣∣±1

2

⟩
ground state are not compatible with the data. A similar ground state

was proposed for CeRhGe3, although the largest component was
∣∣∣±3

2

⟩
rather than∣∣∣±5

2

⟩
. In both cases a sizeable B4

4 leads to this mixing. B0
2 is negative for CeCoGe3

but positive for CeRhGe3.

The predicted moment is 1.01 µB/Ce along the c axis and therefore the

direction of the observed moment is correctly predicted but the magnitude is reduced

compared to that predicted from the CEF model. In both CeRhGe3 and CeRhSi3
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the moment is predicted to lie in the ab plane. This is correct for CeRhSi3 but for

CeRhGe3, the change in orientation was ascribed to two-ion anisotropic exchange

interactions. These are not necessary to account for the moment direction CeCoGe3,

but the presence of a similar anisotropic exchange would further increase the energy

cost of deviations of the moment from the c axis and may explain the strong Ising

like behaviour observed in the magnetic phases.

The significant moment reduction is evidence for hybridization of the cerium

4f and conduction electrons and there is partial screening of the moments. In the

case of CeRhGe3, a similar moment aligned along the c axis is observed through

neutron diffraction measurements but this is in agreement with the predicted ⟨µz⟩.
However, the moment reduction of CeCoGe3 is not as great as in CeRhSi3, where the

CEF model predicts a moment of 0.92 µB/Ce but 0.12 µB/Ce is observed in neutron

diffraction measurements [53]. A similar trend is observed in the linewidths of the

CEF excitations. As shown in Table 4.2, the linewidths at 25 K were 1.6(3) and

2.9(3) meV for transitions from the ground state to ψ2 and ψ3. The correspond-

ing values for CeRhGe3 were 1.4(2) and 2.2(3) meV and therefore the excitation

to ψ3 is broader in CeCoGe3. However the CEF excitations were broader still in

CeRhSi3, where 3.9(2) and 9.2(4) meV are obtained [193]. These results indicate

that CeCoGe3 displays a degree of hybridization in between that of CeRhGe3 and

CeRhSi3. This agrees with CeRhSi3 being closer to quantum criticality, becom-

ing superconducting at 1.2 GPa and CeRhGe3 being further away, not displaying

superconductivity up to 8.0 GPa.
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Chapter 5

CeTX3

5.1 Introduction

In the previous chapter, ground state properties of the antiferromagnetic, pressure

induced superconductor CeCoGe3 were reported. The magnetic structure was char-

acterized using single crystal neutron diffraction and a CEF scheme was deduced

from inelastic neutron scattering measurements. These results indicate that the ob-

served ordered moment is reduced, compared to that predicted from ground state

doublet. As discussed in Sec. 1.1.1, a range of ground state behaviours are observed

in CeTX3 series, many of which have not been fully characterized. In this section,

inelastic neutron scattering measurements of CePdSi3, CePtSi3 and CeRuSi3 are

reported. CePdSi3 and CePtSi3 both order antiferromagnetically at low tempera-

tures. CePdSi3 was reported to exhibit two magnetic transitions at 5.2 and 3 K from

specific heat measurements of polycrystalline samples, although an anomaly at the

lower transition is not observed in resistivity measurements [65]. CePtSi3 orders at

TN1 = 4.8 K and undergoes a subsequent transition at TN2 = 2.4 K [64]. Measure-

ments of single crystals grown by the flux method indicate that [100] is the magnetic

easy axis and an ordered moment of 1.15 µB/Ce is deduced from the value of the

saturation magnetization. In this chapter, both high and low energy inelastic neu-

tron scattering measurements are reported for polycrystalline samples of CePdSi3,

while low energy measurements are reported for CePtSi3. In the latter, spin wave

excitations are observed below the ordering temperature and quasielastic scattering

above, while the CEF excitations are observed in the high energy measurements.

Not all of the CeTX3 compounds have magnetically ordered ground states.

Single crystals of CeRuSi3 have previously been grown using the Czochralski method

and it has been reported to be non-magnetic with a broad peak in the magnetic
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susceptibility at around 150 K [194]. It has therefore been considered to be an

intermediate valence compound, where the Kondo interaction is sufficiently strong

that the system does not magnetically order [36]. In this section, magnetic sus-

ceptibility, specific heat and inelastic neutron scattering measurements are reported

for polycrystalline CeRuSi3. This allows the magnetic response to be compared to

systems where the 4f electrons appear to have a more localized nature.

5.2 CeRuSi3

5.2.1 Sample preparation and structural characterization

Polycrystalline samples of CeRuSi3 and the non-magnetic LaRuSi3 were produced

by arc-melting stoichiometric quantities of the constituent elements (Ce : 99.9%,

La : 99.9%, Ru : 99.99%, Si : 99.999%) in an argon atmosphere on a water cooled

copper hearth. The samples were flipped and remelted several times before be-

ing wrapped in tantalum foil, sealed in an evacuated quartz tube and annealed

at 900◦C for two weeks. Powder x-ray diffraction measurements were carried out

using a Bruker D5005 diffractometer. Rietveld refinements were carried out using

the TOPAS software [151] and the fitted patterns are shown in Fig. 5.1. Several

extraneous peaks are observed in both compounds which can not be indexed to any

reflections for the BaNiSn3 structure. The largest of these peaks for the CeRuSi3

pattern is at 25.4◦ which has an intensity ∼ 4% of the largest sample peak.

The results of the Rietveld refinements are given in Table 5.1. The lattice

parameters are in good agreement with the previously reported values [195]. There

is also reasonably good agreement for the atomic positions. However, it can be seen

in Fig. 5.1 that the intensity of the (004) reflection at 36.0◦ is significantly under-

estimated in both patterns. If a z position on the Si1 site of ∼ 0.42 from Ref. [195]

is used rather than the fitted value of ∼ 0.40, then this discrepancy is greatly re-

duced. More generally it should be noted that the Bruker D5005 diffractometer

has a lower angular resolution than the Panalytical X-Pert Pro diffractometer used

in Sec. 4.2. Higher resolution x-ray diffraction measurements may be required to

accurately determine the atomic positions.

5.2.2 Magnetic susceptibility

The magnetic susceptibility of CeRuSi3 in an applied field of 10 kOe is shown in

Fig. 5.2. The two main features are a broad peak at around 150 K and a sharp

increase in the susceptibility at low temperatures. Magnetic susceptibility measure-
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Figure 5.1: Powder x-ray diffraction measurements of CeRuSi3 and LaRuSi3 mea-
sured using a Bruker D5005 diffractometer. The solid lines show the Rietveld re-
finements performed using TOPAS. The results are given in Table 5.1.
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Table 5.1: Results of the refinements of powder x-ray diffraction measurements on
CeRuSi3 and LaRuSi3. The lattice parameters, weighted profile factor (Rwp) and
the atomic positions are shown.

CeRuSi3 LaRuSi3

a (Å) 4.2106(2) 4.2597(3)
c (Å) 9.9204(7) 9.9382(9)
Rwp(%) 24.2 21.4

Site x y z

Ce 2a 0 0 0
Ru 2a 0 0 0.6528(5)
Si1 2a 0 0 0.403(2)
Si2 4b 0 0.5 0.762(1)
La 2a 0 0 0
Ru 2a 0 0 0.6513(5)
Si1 2a 0 0 0.398(2)
Si2 4b 0 0.5 0.761(1)

ments of single crystals in Ref. [194] also show the broad peak at higher temper-

atures. However, although there is a slight upturn at low temperatures, it is far

smaller than that observed in this polycrystalline sample, which suggests that this

mainly originates from paramagnetic impurities. Although these may constitute a

relatively small fraction of the sample, in the absence of a Curie like susceptibility

from the main phase, such a contribution from an impurity may dominate at low

temperatures.

5.2.3 Inelastic neutron scattering

Inelastic neutron scattering measurements on polycrystalline CeRuSi3 and LaRuSi3

were performed on the MERLIN spectrometer at ISIS. The samples were wrapped

in Al foil and cooled to 7 K in a closed cycle refrigerator. Measurements were made

at 7 and 300 K with Ei = 30, 100 and 200 meV selected via a Fermi chopper.

Colour plots of the INS intensity in absolute units for Ei = 200 meV are shown in

Fig. 5.3. Figures 5.3 (a) and (b) show the low temperature scattering of CeRuSi3 and

LaRuSi3 respectively. Extra scattering at low |Q| can be identified in the CeRuSi3

plot. Although this is most intense at around 50 meV, it extends up close to 100 meV

whereas the scattering is negligible for LaRuSi3 at these energies, apart from at high

momentum transfers. The scattering of LaRuSi3 at 300 K (Fig. 5.3(d)) is similar to
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Figure 5.2: Magnetic susceptibility of CeRuSi3 as a function of temperature in an
applied field of 10 kOe.

that observed at low temperatures. However, although magnetic scattering can still

be identified in the measurements of CeRuSi3 at 300 K (Fig. 5.3(c)), it has shifted

to lower energies. The low |Q| scattering is significantly reduced above 50 meV,

suggesting a change in behaviour with increasing temperature.

Cuts of S(Q, ω) were made by integrating across low and high values of |Q|.
These are shown for Ei = 30 and 100 meV in Fig. 5.4. The low |Q| cuts were

integrated from 0-3 Å−1 for Ei = 30 meV and 0-5 Å−1 for Ei = 100 meV, while

the high |Q| cuts were integrated from 4-7 Å−1 for Ei = 30 meV and 8-13 Å−1

for Ei = 100 meV. For energy transfers less than 60 meV, the high |Q| scattering
is significantly stronger than that for low |Q| in both compounds, indicating the

dominance of phonon scattering at these energies, whereas above 60 meV very little

phonon scattering is seen within this range of momentum transfers. Three peaks

from phonons can be identified in the plot with Ei = 100 meV. The two higher energy

peaks occur in the same position for both compounds but the lowest energy peak

is at lower energies in CeRuSi3 compared to LaRuSi3. Clear evidence for magnetic

scattering in CeRuSi3 is observed in both plots. For Ei = 30 meV, the low |Q|
scattering of CeRuSi3 is larger than that of LaRuSi3 for energy transfers greater than

16 meV, despite similar scattering at high |Q|. For Ei = 100 meV, while the high

|Q| scattering is similar for both compounds at energies greater than 20 meV, the
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Figure 5.3: Colour plots of the INS intensity measured on MERLIN with
Ei = 200 meV for (a) CeRuSi3 at 7 K, (b) LaRuSi3 at 7 K, (c) CeRuSi3 at 300 K.
(d) LaRuSi3 at 300 K.
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low |Q| scattering is consistently larger for CeRuSi3. Above 60 meV, where very

little phonon scattering is observed, the low |Q| scattering of CeRuSi3 is greater

than the high |Q|. This is all evidence for the presence of magnetic scattering above

20 meV, up to energy transfers of just under 100 meV. This is quite different to the

magnetic scattering observed from CEF levels, where it is relatively well localized

to the energies of the excited doublets.

It is therefore desirable to estimate the magnetic scattering by subtracting

an estimate of the phonon contribution. A direct subtraction using Eq. 2.73 does

not provide a good estimate. An inadequate subtraction might be expected in the

region of the phonon peak at around 20 meV, since the peak position is different for

the two compounds. In fact, all three phonon peaks observed for Ei = 100 meV

are still clearly visible after making such a subtraction. As a result, Smag was

estimated using Eq. 2.74. This is shown at 7 and 300 K for Ei = 30 meV in

Fig. 5.5. At 300 K broad quasielastic scattering is observed. However, at 7 K

the magnetic scattering is greatly reduced, with Smag remaining nearly flat across

energy transfers up to 30 meV. The value is small but larger than that observed

for negative energy transfers. It would be of interest to determine whether the

magnetic scattering is entirely absent at low energies and therefore if the excitation

spectrum can be said to be entirely gapped as has been observed in several other

heavy fermion compounds [196]. The finite value may be the result of inaccuracies

in the subtraction of the phonon scattering, small quantities of magnetic scattering

from cerium-based impurity phases or the presence of low energy magnetic scattering

in CeRuSi3. It should be noted that in Fig. 5.4, the low |Q| scattering of CeRuSi3

exceeds that of LaRuSi3 above around 16 meV, while the high |Q| scattering of the

two compounds are similar in this region.

Figure 5.6 displays estimates of the magnetic scattering at 7 K for Ei = 100

and 200 meV. For Ei = 200 meV, a broad peak in the magnetic scattering is observed.

The data were fitted with a single Lorentzian convoluted with the resolution function

of the instrument. A peak centre of (58.5 ± 1.4) meV with a Lorentzian linewidth

of (31.5 ± 1.1) meV was obtained. This is considerably broader then the widths

generally observed for CEF excitations. The single peak appears to account well for

the magnetic scattering and any further structure in the data can not be resolved.

The magnetic scattering for Ei = 100 meV is also broad, with a maximum at around

60 meV. However, additional structure in the magnetic scattering can be observed at

lower energy transfers. Further maxima are observed at around 32 and 45 meV. The

feature at 32 meV appears particularly sharp and narrow compared to the rest of the

magnetic scattering. The data were fitted with two Lorentzian functions and data in
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Figure 5.4: Cuts of S(Q, ω) with Ei = 30 and 100 meV of CeRuSi3 at 7 K and
LaRuSi3 at 7 K from integrating across |Q|. For Ei = 30 meV, the integration was
from 0-3 Å−1 for low |Q| and from 4-7 Å−1 for high |Q| while for Ei = 100 meV
they were from 0-5 Å−1 and 8-13 Å−1.

Figure 5.5: The magnetic scattering of CeRuSi3 at 7 and 300 K for Ei = 30 meV,
estimated using Eq. 2.74.
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the region of the sharp feature were excluded from the fit. Peak centres of 60(5) and

39(3) meV were obtained. This accounts well for the magnetic scattering apart from

in the region excluded from the fit. The peak at 60 meV is approximately four times

more intense and the centre position agrees with the fitted value for Ei = 200 meV.

There are several other options for fitting the data. Firstly, a single peak

could be fitted either across the whole region of magnetic scattering or excluding

the narrow feature at around 32 meV. In both cases this was not a particularly good

fit to the data and the peak position was significantly lower than that obtained for

Ei = 200 meV. This suggests that there are additional features in the magnetic

scattering not accounted for by a single Lorentzian peak. Secondly, two peaks were

fitted but not excluding the sharp feature. This did not particularly fit the magnetic

scattering well between 40 and 60 meV and again the peak position of the higher

peak did not agree with the Ei = 200 meV data. The linewidth of the lower peak

was significantly narrower confirming its localized nature compared to the magnetic

scattering at higher energies.

It may be that there is a localized feature in the magnetic scattering of

CeRuSi3, which co-exists with the dominant broad scattering. Another possible

origin for this feature could be the incorrect subtraction of the phonon scattering.

In Fig. 5.4 there is a peak in the high |Q| scattering for both CeRuSi3 and LaRuSi3

at around 35 meV. However, the peak for CeRuSi3 is stronger and more pronounced

while the feature for LaRuSi3 is flattened. This suggests differences in the phonon

dispersion between the two compounds which may lead to an incorrect subtraction

in this region. The feature could also be a CEF level from an impurity phase.

As discussed in Sec. 5.2.1, the maximum magnitude of peaks in the powder x-

ray diffraction measurements corresponding to the impurity phases was ∼ 4% of

the largest sample peak, although the structure of these compounds could not be

identified. It may be that an impurity phase of this fraction is sufficient to cause

a sharp peak to appear on top of the broad magnetic scattering, although such a

compound would need to contain cerium atoms with localized 4f electrons.

The magnetic scattering at 300 K for Ei = 200 meV is shown in Fig. 5.7.

At this temperature, the magnetic scattering is centred on the elastic line but is

considerably broader than the instrument resolution. This quasielastic scattering

was fitted with Eq. 2.72 convoluted with the resolution of the instrument and a

linewidth of Γ = 30(3) meV is obtained. Therefore between 7 and 300 K the

magnetic scattering changes from a maximum at finite energy transfers to broad

quasielastic scattering. This is consistent with the shift in the magnetic scattering

towards lower energy transfers observed in Fig. 5.3.
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Figure 5.6: The magnetic scattering of CeRuSi3 at 7 K for Ei = 100 and 200 meV,
estimated using Eq. 2.74. The data has been fitted with a single Lorentzian function
for Ei = 200 meV and two Lorentzian functions for Ei = 100 meV.

Figure 5.7: The magnetic scattering of CeRuSi3 at 300 K for Ei = 200 meV, esti-
mated using Eq. 2.74. The data has been fitted with Eq. 2.72 convoluted with the
resolution of the instrument.
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5.2.4 Specific heat

The specific heat of CeRuSi3 and non-magnetic LaRuSi3 are shown in Fig. 5.8. At

low temperatures, C/T is finite in both compounds but is significantly larger in

CeRuSi3, indicating an enhanced value of γ. The inset shows C/T against T 2 and

a linear fit to the data gives γ = 62.5(1) mJ/mol K2. The specific heat of CeRuSi3

is consistently larger than that of LaRuSi3, indicating the presence of a magnetic

contribution. However, the difference in the values of C/T decreases with tempera-

ture, indicating that the enhanced value of γ does not persist at high temperatures.

The temperature dependence of the specific heat of LaRuSi3 is shown in Fig. 5.9.

A linear fit to C/T against T 2 shown in the inset gives γ = 6.5(1) mJ/mol K2,

suggesting an enhanced value of γ in CeRuSi3 due to heavy fermion behaviour. The

specific heat of LaRuSi3 was fitted with a single Debye model [143] in addition to a

γT contribution, with γ fixed from the fit in the inset with ΘD = 413(2) K being

obtained. ΘD = 439 K is calculated using Eq. 2.50 from the low temperature value

of β but although the calculated specific heat agrees well with the data and high

and low temperatures, there is poorer agreement at intermediate values.

It is therefore desirable to estimate the magnetic contribution to the specific

heat (Cmag) by subtracting an estimate of the phonon contribution (Cph). Cph was

estimated from the specific heat of LaRuSi3 by two methods. Firstly, Cph/T was

estimated by subtracting γ = 6.5(1) mJ/mol K2 from C/T of LaRuSi3. Secondly,

it was calculated using the fitted value of ΘD. Two estimates of Cmag/T are shown

in Fig. 5.10. In principle it is necessary to correct Cph for the difference in masses

between CeRuSi3 and LaRuSi3. Following Ref. [197], this corresponds to scaling

either the temperature axis or ΘD by a factor of ∼ 0.99, which has little effect

on the results. In both plots there is a peak in Cmag/T at around 45 K, which

is of greater intensity for the Debye subtraction. The dashed lines shows a fit to

a phenomenological two level model often employed for heavy fermion compounds

with a hybridization gap [198, 199], given by

C = R

(
∆E

kBT

)2 (2J + 1)e∆E/kBT

(2J + 1 + e∆E/kBT )2
, (5.1)

where J = 5
2 for a cerium ion and ∆E is the gap between the ground and excited

states, with a fitted value of ∆E = 15.3(2) meV. The magnetic entropy obtained

from integrating Cmag/T to 390 K is ∼ 1.1Rln(6)and ∼ 1.4Rln(6) for the direct and

Debye subtractions respectively. This of the same order as that expected for an

atom with a six fold degenerate ground state.

111



Figure 5.8: The temperature dependence of the specific heat of CeRuSi3 and
LaRuSi3. The inset shows C/T against T 2 of CeRuSi3 with a linear fit.

Figure 5.9: The specific heat of LaRuSi3 fitted with electronic and phonon contribu-
tions, using the Debye model. C/T against T 2 of LaRuSi3 with a linear fit is shown
in the inset.
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Figure 5.10: Two estimates of the magnetic contribution to the specific heat obtained
from subtracting Cph. The black circles show values calculated from calculating
Cph using the fitted Debye temperature of LaRuSi3 while the blue circles were
calculated from directly subtracting the LaRuSi3 data. The dashed lines show a fit
to a phenomenological two level model (Eq. 5.1).

5.2.5 Discussion and summary

Magnetic susceptibility, specific heat and neutron scattering measurements were

performed on polycrystalline CeRuSi3. The magnetic susceptibility displays a peak

at around 150 K, whereas the estimate for the magnetic contribution to the specific

heat peaks at a lower temperature of around 45 K. The peak in the magnetic sus-

ceptibility is in agreement with Ref. [194]. In intermediate valence compounds and

those displaying a hybridization gap, the maximum of the magnetic susceptibility

and Cmag/T often occur at similar temperatures. For example, CeFe4Sb12 displays

a peak in the magnetic susceptibility at 140 K and the specific heat at 125 K [200],

and similar agreement between the two is observed in the intermediate valence com-

pound CePd3 [201]. This may indicate the presence of more low lying excitations

in CeRuSi3 or alternatively the peak could be shifted to lower energies due to an

incorrect phonon subtraction. It can be seen in Fig. 5.9 that the peak position

corresponds to a region where the specific heat of both CeRuSi3 and LaRuSi3 are

both rapidly rising and therefore Cmag will be sensitive to small mismatches in Cph.
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The low temperature specific heat gives a value of γ = 62.5(1) mJ/mol K2. This

indicates an enhanced γ due to hybridization between 4f and conduction electrons.

The value is larger than that observed in CeCoSi3 of 37 mJ/mol K2 and is similar

to CeCoGe0.75Si2.25 [179]. This suggests that the hybridization strength is not as

strong as in CeCoSi3 and places CeRuSi3 closer to quantum criticality.

The magnetic inelastic neutron response at 7 K peaks at finite energy trans-

fers which shifts to a broad quasielastic response at 300 K. With Ei = 200 meV

the magnetic scattering is well described by a single Lorentzian peak centred at

(58.5 ± 1.4) meV, whereas the response at Ei = 100 meV reveals additional mag-

netic scattering at lower energies. The data were fitted with two Lorentzian peaks at

60(5) and 39(3) meV. Peaks in the magnetic response at finite energy transfers for

heavy fermion compounds have often been interpreted as originating from energy

gaps which open in the hybridized heavy bands of the Kondo lattice [196]. However,

a peak in the magnetic inelastic neutron scattering can also arise in the Anderson

impurity model (Eq. 2.21) [201, 202], where coherence effects are not taken into

account. Below about 20 meV, the magnetic scattering is greatly reduced, if not

entirely absent at low temperatures. Two particular features of the low temperature

magnetic scattering are of particular interest. In Ref. [196], it was shown that for a

wide range of heavy fermion compounds with a hybridization gap, the inelastic peak

position corresponds to three times the temperature at which the magnetic suscep-

tibility reaches a maximum. Exceptions to this rule are URu2Sn2, CePd3 and CeNi

where the peak position is anomalously high and YbAl2, where it is anomalously

low. Secondly, two peaks in the magnetic scattering are not commonly observed,

with CeOs4Sb12 [203] being another example. The magnetic scattering of CeRuSi3

also shows at least two peaks, with one corresponding to ∼ 450 K in agreement with

the aforementioned relation. The dominant peak at around 60 meV corresponds to

∼ 700 K, which is significantly larger. The peak at lower energies of CeOs4Sb12 also

agrees with the relation. However, in this compound the lower peak is of greater

intensity whereas the higher energy peak is stronger in CeRuSi3.

An additional narrower peak in the magnetic scattering is also observed at

around 32 meV. While this may arise from an incorrectly subtracted phonon peak

or an impurity CEF level, it may also be a a weaker localized magnetic excitation

that is coexistent with a stronger broader peak. Such behaviour has been observed

in YbAl3, where there is a broad peak at 44 meV and a narrow one at 34 meV [204].

The substitution of Lu for Yb weakens the periodicity of the Kondo lattice which

suppresses the localized excitation but not the broader one, indicating the former

arises due to the coherence of the Kondo lattice. Subsequently, the |Q| dependence
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of the magnetic scattering of YbAl3 has been examined using single crystals [205]. It

would therefore be desirable to perform inelastic neutron scattering measurements

on single crystals of CeRuSi3, both to clarify whether there is additional structure in

the magnetic scattering and whether there is a |Q| dependence arising from coher-

ence effects. Since the low temperature magnetic scattering is often interpreted as

corresponding to transitions between heavy, hybridized bands, these measurements

may give information about their structure and anisotropy.

5.3 CePdSi3

5.3.1 Sample preparation and structural characterization

Polycrystalline samples of CePdSi3 were produced by arc-melting stoichiometric

quantities of the constituent elements in an argon atmosphere on a water cooled

copper hearth. The samples were flipped and remelted several times. The CePdSi3

sample measured in this section was annealed for 18 days at at 950◦C under a

dynamic vacuum, better than 10−6 Torr. Powder x-ray diffraction measurements

were carried out using a Bruker D5005 diffractometer. Rietveld refinements were

carried out using the TOPAS software [151] and the fitted patterns are shown in

Fig. 5.11. Several unfitted peaks are observed due to the presence of impurity phases.

The largest unfitted peak is at around 34.2◦, which is around ∼ 6% of the largest

sample peak. However, the relative magnitude is difficult to estimate due to the

proximity of the two peaks. The results of the Rietveld refinement are shown in

Table 5.2. The lattice parameters are similar to those reported in Ref. [65].

5.3.2 High energy inelastic neutron scattering

Inelastic neutron scattering measurements on polycrystalline CePdSi3 and LaPdSi3

were performed on the MERLIN spectrometer at ISIS. The samples were wrapped

in Al foil and cooled to 5 K in a closed cycle refrigerator. Measurements were made

down to 5 K with Ei = 15 and 60 meV, selected via a Fermi chopper. Colour

plots of the inelastic neutron scattering intensity are shown for Ei = 15 meV in

Fig. 5.12. A strong excitation is observed in the plot for CePdSi3 (Fig. 5.12(a))

which is not observed for LaPdSi3 (Fig. 5.12(b)). This is most intense at low Q,

indicating the excitation is magnetic in origin and is a CEF excitation centred at

around 5 meV. The lack of any significant intensity in the LaPdSi3 plot for the full

range of momentum transfers suggests that phonon scattering is much weaker than

the magnetic scattering from the CEF at these energies.
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Figure 5.11: Powder x-ray diffraction measurements of CePdSi3 measured using a
Panalytical X-Pert Pro diffractometer. The solid lines show the Rietveld refinements
performed using TOPAS. The results are given in Table 5.2.

Table 5.2: Results of the refinements of powder x-ray diffraction measurements on
CePdSi3. The lattice parameters, weighted profile factor (Rwp) and the atomic
positions are shown.

CePdSi3

a (Å) 4.3206(4)
c (Å) 9.6089(5)
Rwp(%) 25.0

Site x y z

Ce 2a 0 0 0
Pd 2a 0 0 0.6448(6)
Si1 2a 0 0 0.371(2)
Si2 4b 0 0.5 0.775(1)
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Figure 5.12: Colour plots of the INS intensity measured on MERLIN with
Ei = 15 meV for (a) CePdSi3 at 5.4 K and (b) LaPdSi3 at 5 K.

Colour plots for Ei = 60 meV are shown for CePdSi3 at 5 and 75 K in

Fig. 5.13 (a) and (c) and for LaPdSi3 at 5.4 and 75 K in Fig. 5.13 (b) and (d)

respectively. Unlike the measurements with Ei = 15 meV, the intensity scale has

not been normalized to absolute units. In the CePdSi3 plots there is a narrow

strip of scattering at low Q which is absent in the LaPdSi3 measurements. This is

shown more closely in Fig. 5.14, where the scattering is shown for energy transfers

between 20 and 40 meV. This indicates the presence of a second CEF excitation

with a significantly weaker intensity at around 31 meV. Also in the plots displayed in

Fig. 5.13, a region of scattering is observed at around 20 meV, centred at momentum

transfers of ∼ 3 Å. The intensity of this scattering increases between 5.4 and 75 K. It

should be noted that scattering is also observed in this region for LaPdSi3. However,

the scattering is weaker below 4 Å and does not appear to peak at an intermediate

Q.

Cuts of the intensity were made by integrating across low and high values

of |Q|. These are shown at two temperatures in Fig. 5.15. The low |Q| cuts were

integrated from 0-4 Å−1, while the high |Q| cuts were integrated from 4-7 Å−1. The

low |Q| scattering of CePdSi3 shows a strong peak at around 5.5 meV, which is

absent in the other plots, indicating the presence of a CEF excitation. At around

31 meV, where a weak CEF excitation was identified from Fig. 5.14, there is a small

bump in the low |Q| scattering of CePdSi3 which is absent in the other plots. The

intensity of the peak is weaker at 75 K than 5.4 K. It should be noted there is

also a phonon peak at slightly lower energies, which can be identified in all four

plots. The high and low |Q| scattering of LaPdSi3 shows a peak at around 14 meV,
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Figure 5.13: Colour plots of the INS intensity measured on MERLIN with
Ei = 60 meV for (a) CePdSi3 at 5 K, (b) LaPdSi3 at 5.4 K, (c) CePdSi3 at 75 K
and (d) LaPdSi3 at 75 K.

Figure 5.14: Colour plots of the INS intensity measured on MERLIN for energy
transfers between 20 and 40 meV with Ei = 60 meV for (a) CePdSi3 at 5 K and (b)
LaPdSi3 at 5.4 K.
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Figure 5.15: Cuts of the INS intensity with Ei = 60 meV of CePdSi3 at 5 K and
LaPdSi3 at 5.4 K (top) and at 75 K (bottom), from integrating across |Q|. The
integration was from 0-4 Å−1 for low |Q| and from 6-10 Å−1 for high |Q|.
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Figure 5.16: Cuts of the INS intensity with Ei = 60 meV of CePdSi3 at 5 K and
LaPdSi3 at 5.4 K, and at 75 K, from integrating across |Q| . The integration was
from 0-4 Å−1 for low |Q| (top) and from 6-10 Å−1 for high |Q| (bottom).

120



resulting from phonon scattering. The corresponding peak in CePdSi3 is shifted to

higher energies and is considerably broader. The scattering in this region of LaPdSi3

appears to change little between 5 and 75 K and similarly there is little change in the

high |Q| scattering of CePdSi3. However, the low |Q| scattering of CePdSi3 displays

a broad shoulder at 5 K but at 75 K this sharpens and increases in intensity. The

anomalous temperature dependence of this excitation is displayed more clearly in

Fig. 5.16, where there is little change in the intensity between 5 and 75 K, apart

from in the low |Q| scattering of CePdSi3 in a region from around 13 to 24 meV.

The magnetic scattering of CePdSi3 was estimated using Eq. 2.74. The

estimates at four temperatures for Ei = 60 meV are shown in Fig. 5.17. At 5 K, two

peaks are observed at around 6 and 31 meV corresponding to the CEF excitations.

At this temperature, no magnetic scattering is observed at intermediate energies

corresponding to additional excitation. However, at 75, 150 and 250 K additional

magnetic scattering is observed, centred at around 21 meV. This reflects the strong

increase in the low |Q| scattering of CePdSi3 at these temperatures as discussed

previously. It might be expected that at 75 K an additional excitation would be

observed for the transition between the first and second excited doublets, since the

thermal energy would be approximately equal to the energy of the first excited

state. Since the intensity between the ground state and the second excited state is

weak, it is likely that the ground state doublet either consists of the | ± 1
2 > states

or predominantly the | ± 5
2 > states. In this case, the first excited doublet would

mainly consist of the |± 3
2 > states and the intensity of the excited transition would

be strong. However, at energy transfers of around 27 meV, the difference between

the first and second excited doublets, there is no evidence for such a transition. The

same is true for the scattering at 150 and 250 K. These results suggest that this

excitation is neither purely phonon scattering nor does it correspond to an excited

CEF transition.

5.3.3 Low energy inelastic neutron scattering of CePdSi3 and CePtSi3

In the previous section, inelastic neutron scattering measurements of CePdSi3 on the

MERLIN spectrometer were reported. While the existence of quasielastic scattering

could be inferred from these measurements, a greater resolution and smaller elastic

width are required to resolve its magnitude. In this section, low energy inelastic neu-

tron scattering measurements are reported on CePdSi3 and isostructural CePtSi3.

Both compounds order magnetically at low temperatures and the scattering above

and below and TN are compared.

Low energy measurements of CePdSi3 were performed on the IRIS instrument
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Figure 5.17: Estimates of the magnetic scattering of CePdSi3 at several tempera-
tures, obtained using Eq. 2.74.

at ISIS [206]. Unlike the other inelastic neutron scattering instruments described

in this work, IRIS is configured in the indirect geometry. Rather than the incident

neutron energy being fixed, a white neutron beam is incident on the sample and the

scattered neutrons pass through a graphite analyzer, so that neutrons of a single

energy are detected. In these measurements, the (002) reflection of a pyrolytic

graphite analyzer was used. With a chopper frequency of 25 Hz selected, energy

transfers from 0.6 to 3.5 meV could be measured with a full width at half maximum

of the elastic line of 17.5 µeV. Polycrystalline samples of CePdSi3 were wrapped in

Al foil and cooled in an Orange cryostat to 1.5 K.

The scattering as a function of energy transfer is shown for several temper-

atures down to 1.5 K in Fig. 5.18. At 1.5 K, there is a peak in the scattering at

inelastic positions, while at 7 K broad quasielastic scattering is observed which is

considerably wider than the elastic resolution of the instrument. The width of the

quasielastic scattering broadens with temperature and at 120 K and 200 K, the

scattering is nearly flat as a function of energy transfer. Measurements performed
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Figure 5.18: Inelastic neutron scattering measurements of CePdSi3 at several tem-
peratures measured on the IRIS spectrometer.

on the MERLIN spectrometer with Ei = 15 meV (not shown), show that at high

temperatures the quasielastic scattering merges with the first CEF excitation at

around 5.5 meV. The quasielastic scattering was fitted using Eq. 2.72, with a small

constant background fixed at all temperatures. Some of the fitted curves are dis-

played in Fig. 5.19. Measurements performed at 120, 200 and 250 K could not be

adequately fitted, since the quasielastic width is too large for the energy window of

the instrument. Upon entering the magnetically ordered state, a peak is observed

in the scattering as a result of spin wave excitations. Inspection of the scattering

suggests that a two peak structure may be present. The data were fitted to a single

and pair of Lorentzian functions. The single function is centred at 1.21(1) meV

while the pair of peaks are centred at 1.00(2) and 1.53(3) meV. While a reasonable

fit is obtained with a single peak, the peak centre appears to be shifted across from

the position of maximum scattering. This suggests that two peaks are required to

account for the low temperature scattering. The temperature dependence of Γ is

shown in Fig. 5.20. A linear fit to the data is displayed and Γ(0) = 0.52(2) meV

was obtained, giving TK = 6.0(2) K. This is of a similar order to the ordering

temperature TN1 = 5.2 K.

Low energy measurements of CePtSi3 and LaPtSi3 were performed on the

IN6 spectrometer at the ILL. Powdered polycrystalline material was placed in a

1 mm thick, disc shaped sample holder and cooled to 1.5 K in an Orange cryostat.
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Figure 5.19: Inelastic neutron scattering of CePdSi3 measured on the IRIS spec-
trometer. The solid lines show fits to a Lorentzian quasielastic component with the
exception of the data measured at 1.5 K, where fits with one and two Lorentzian
peaks centred on inelastic positions are shown.
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Figure 5.20: The temperature dependence of the quasielastic linewidth (half width
at half maximum) of CePdSi3 measured on the IRIS spectrometer. A linear fit has
been made to the data.

An incident energy of 3.1 meV was selected using a pyrolytic graphite monochro-

mator. Cuts of the scattering were made integrating from 0.5 to 1.9 Å and these are

displayed for CePtSi3 at several temperatures and LaPtSi3 at 1.5 K in Fig. 5.21. At

1.5 K, below TN2 , there is maximum in the scattering at inelastic positions while

above TN1 , the scattering centred on the elastic line is clearly broader than that of

LaPtSi3. This indicates the presence of quasielastic scattering above the ordering

temperature. At 4 K, between TN1 and TN2, a broadened elastic line is observed but

there is still a shoulder close to the position of the inelastic peak observed at 1.5 K.

This suggests the presence of both quasielastic scattering and a peak associated with

the spin wave excitation.

The magnetic scattering was estimated by directly subtracting the scattering

of LaPtSi3 and is displayed for six temperatures in Fig. 5.22. As with CePdSi3, either

one or two Lorentzian functions were fitted to the scattering at 1.5 K. A peak centre

of 1.14(1) meV was obtained for a single Lorentzian while 0.92(4) and 1.55(7) meV

were obtained for a pair of peaks. The measurements above TN1 were fitted using

Eq. 2.72. The temperature dependence of Γ is shown in Fig. 5.23. A linear fit was

made to the data giving Γ(0) = 0.479(4) meV and therefore TK = 5.56(5) K. This

is both very similar to TN1 and TK of CePdSi3.
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Figure 5.21: Cuts of S(Q, ω) of CePtSi3 and LaPtSi3 with Ei = 3.1 meV, measured
on the IN6 spectrometer.

5.3.4 Discussion and summary

Inelastic scattering measurements have been performed on CePdSi3 and CePtSi3.

High energy measurements of CePdSi3 and LaPdSi3 measured on the MERLIN

spectrometer with Ei = 15 and 60 meV reveal the presence of two CEF excitations

at around 5.5 and 31 meV. The intensity of the lower excitation is very strong

while the excitation to the second excited doublet is particularly weak. A possible

explanation for a small transitition amplitude is that the transitions between the

two states are largely forbidden. If the ground state consists of the |± 1
2 > states and

the excited doublet the |± 5
2 > states or vice versa, then there would be ∆mJ = ±2

between the levels and no scattering intensity would be observed. Therefore a small

amplitude indicates that the pair of doublets mostly consist of these levels with a

small mixing of the | ± 5
2 > and | ∓ 3

2 > states. However, this would suggest that

the first excited doublet would predominantly consist of |± 3
2 > states and therefore

at 75 K a strong excited CEF transition would be expected to be observed. No

such excited state is observed and instead at 75 K the low |Q| scattering strongly

increases in a broad region from around 13 to 24 meV while the high |Q| behaviour
is largely identical. This is not expected for either phonon scattering or that from

a CEF. In the isostructural compound CeCuAl3, three magnetic excitations were

observed at 4.7 K [207]. Two of these were ascribed to CEF excitations while it was
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Figure 5.22: Cuts of the magnetic scattering of CePtSi3 with Ei = 3.1 meV measured
on the IN6 spectrometer, with a direct subtraction of the scattering of LaPtSi3. The
solid lines show fits to a Lorentzian quasielastic component with the exception of the
data measured at 1.5 K, where one and two Lorentzian functions have been fitted.
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Figure 5.23: The temperature dependence of the quasielastic linewidth (half width
at half maximum) of CePtSi3 measured on the IN6 spectrometer. A linear fit has
been made to the data.

proposed that the third excitation arises from coupling between phonons and a CEF

level. In this instance the magnetic scattering could be fitted using a Hamiltonian

which is the sum of Eq. 2.5, a phonon term and a term which couples phonons to

the CEF levels. It would be of interest to determine if the measurements of CePdSi3

can be accounted for with such a model although unlike CeCuAl3, the additional

scattering is not observed at low temperatures but in CeCuAl3 it is. Since the

anomalous excitation is diffuse and appears to have an unusual |Q| dependence,
measurements of single crystals may be useful in determining its nature.

Low energy inelastic neutron scattering measurements were performed on

CePdSi3 and CePtSi3 using the IRIS and IN6 spectrometers respectively. Both

measurements below the ordering temperature reveal a peak corresponding to spin

wave excitations and quasielastic scattering in the paramagnetic state. Interest-

ingly a double peak structure may be present in the spin wave excitations of both

compounds which may result from anisotropic magnetic exchanges. Above TN1 a

linear temperature dependence of Γ is observed up to at least 100 K in CePtSi3

and 70 K in CePdSi3. This despite the first CEF excitation being at around 53 K

in the former [64] and 64 K in the latter. This is different to the behaviour ob-

served in CeCoGe3 and CeRhGe3, as discussed in Sec. 4.5.1. Kondo temperatures

of TK = 6.0(2) and 5.56(5) K were obtained for CePtSi3 and CePdSi3 respectively.
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This is very similar to the ordering temperature for both compounds and indicates

that the coupling between conduction and f electrons is weaker than in CeRhSi3,

CeIrSi3, CeCoGe3 and CeRhGe3. This suggests that neither CePtSi3 nor CePdSi3

are good candidates for becoming superconducting at readily accessible pressures

and in the case of CePtSi3, this is supported by the fact that TN is almost pressure

independent up to at least 8 GPa [66]. This further supports the observation that

the transition metal group gives a greater indication of the hybridization strength

of the CeTX3 compounds than the period.
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Chapter 6

LaTSi3

6.1 Introduction

In the preceding two sections, ground state properties of several compounds in the

CeTX3 series of compounds at ambient pressures are reported. As discussed in

Sec. 1.1.1, there are significant experimental and theoretical difficulties in under-

standing the superconducting states of heavy fermion non-centrosymmetric super-

conductors. Therefore there has been considerable research efforts towards charac-

terizing weakly correlated, non-centrosymmetric superconductors, where the effects

of inversion symmetry breaking may be more readily discerned. This is the subject

of the next two chapters.

In this chapter, the superconducting properties of non-centrosymmetric LaPdSi3

and LaPtSi3 are reported. Both compounds crystallize in the BaNiSn3 type struc-

ture, isostructural to the non-centrosymmetric CeTX3 compounds. LaPdSi3 was

previously reported to be a superconductor with Tc = 2.6 K [65]. Apart from

reporting a jump in the specific heat at the transition of ∆C/γTc = 1.16, the

remaining superconducting properties have not been clarified. LaPtSi3 has pre-

viously been measured as a non-magnetic analogue, where it was reported to be

non-superconducting down to 2 K [208]. In this chapter, it is reported that LaPtSi3

is a superconductor with Tc = 1.52(6) K. Magnetization, specific heat, resistiv-

ity and µSR measurements are reported for the superconducting states for both

compounds.

130



6.2 LaPdSi3

6.2.1 Sample preparation and structural characterization

Polycrystalline samples of LaPdSi3 were produced by arc-melting stoichiometric

quantities of the constituent elements in an argon atmosphere on a water cooled

copper hearth. The samples were flipped and remelted several times before being

wrapped in tantalum foil, sealed in an evacuated quartz tube and annealed at 900◦C

for two weeks. Powder x-ray diffraction measurements were performed at room

temperature using a Panalytical X-Pert Pro diffractometer and are shown in Fig. 6.1.

A Rietveld refinement was carried out using TOPAS and the results are displayed

in Table. 6.1.

Figure 6.1: Powder x-ray diffraction measurements of LaPdSi3 measured using a
Panalytical X-Pert Pro diffractometer. The solid lines show the Rietveld refinements
performed using TOPAS and the crosses indicate impurity peaks. The results are
displayed in Table 6.1.

The values of the lattice parameters are in good agreement with those given

in Ref. [65]. Several peaks corresponding to impurity phases are indicated by the

crosses in Fig. 6.1. The first and third most intense peaks corresponding to a

secondary phase in LaPdSi3 are consistent with an impurity phase of LaSi2, with

the orthorhombic α-GdSi2 structure and a weight fraction smaller than 5%.
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Table 6.1: Results of the refinements of powder x-ray diffraction measurements on
LaPdSi3. The lattice parameters, weighted profile factor (Rwp) and the atomic
positions are shown.

LaPdSi3

a (Å) 4.3542(4)
c (Å) 9.6642(12)
Rwp(%) 30.1

Site x y z

La 2a 0 0 0
Pd 2a 0 0 0.6437(11)
Si1 2a 0 0 0.374(4)
Si2 4b 0 0.5 0.778(3)

6.2.2 Magnetization and resistivity measurements

The magnetic susceptibility of LaPdSi3 as a function of temperature in an applied

field of 10 Oe is shown in Fig. 6.2(a). A sharp superconducting transition is observed

at 2.6 K. An estimate of the demagnetization factor was made by approximating

the sample as a rectangular prism using Ref. [123]. The zero-field cooled (ZFC)

curve reaches 4πχ = − 1.03 at 1.8 K, where χ is in cgs units. This indicates

complete flux expulsion and bulk superconductivity in the sample. A magnetization

loop measured at 2 K is shown in Fig. 6.2(b). The sample was ZFC, before the

magnetization as a function of applied field was measured from 0 to 100 Oe, 100

to -100 Oe and -100 to 100 Oe as indicated by the arrows. A calculation of χ

using the low field value of dMdH of the virgin curve gives 4πχ ∼ −1, again indicating

bulk superconductivity. At an applied field of 80 Oe, there is an abrupt change

in the gradient of the magnetization and a loss of diamagnetism which suggests

that superconductivity has been suppressed. Upon reducing the field from 100

to below 80 Oe, the magnetization is reversible down to about 70 Oe. There is

a partial recovery of diamagnetism as magnetic flux is expelled from the sample.

This is different behaviour to the magnetization curves typically observed in type-II

superconductors [11] but has been observed in type-I materials. In an ideal type-I

superconductor, a jump in the magnetization is expected at Hc (Fig. 2.4) but this

is not observed due to demagnetization effects.

The temperature dependence of the resistivity between 0.4 and 3 K in fields

up to 400 Oe are shown in Fig. 6.3. In the normal state, the resistivity reaches a

constant value at low temperatures of ρ0 ∼ 3.9 µΩ-cm. A sharp superconducting
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Figure 6.2: (a) Magnetic susceptibility of LaPdSi3 as a function of temperature in an
applied field of 10 Oe. Zero-field cooled (ZFC) and field-cooled (FC) measurements
are displayed. (b) Magnetization of LaPdSi3 as a function of applied field at 2 K.
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Figure 6.3: Temperature dependence of the resistivity of LaPdSi3 in applied fields
up to 400 Oe.

transition is observed in zero-field which onsets at T onset
c = 2.70(3) K and reaches

zero resistivity at T zero
c = 2.63(3) K. In an applied magnetic field, T zero

c is rapidly

suppressed, whereas there is relatively little change in T onset
c . As a result, there is a

significant broadening of the transition. When 400 Oe is applied, zero resistivity is

not observed down to 0.4 K but T onset
c is around 1.7 K.

6.2.3 Specific heat measurements

The specific heat in zero and applied fields up to 200 Oe are shown in Fig. 6.4(a).

In zero-field, there is a jump in the specific heat, indicating the onset of bulk su-

perconductivity. If the transition temperature is defined to be the midpoint of the

transition, Tc = 2.65(5) K is obtained. A fit to the normal state is shown by the

dashed line using Eq. 2.49. The fitted values are γ = 4.67(4) mJ/mol K2 and

β = 0.155(5) mJ/mol K4. Using Eq. 2.50 and Eq. 2.45, ΘD = 397(4) K and

λe−ph = 0.51 are obtained. This puts LaPdSi3 in the weak coupling limit. Tc is

suppressed by the application of a magnetic field and bulk superconductivity is not

observed above 0.4 K in an applied field of 200 Oe. The shape of the transition

is also dramatically different to that in zero-field. The transition sharpens and the

jump is larger in fields up to 75 Oe. This suggests that there is a change from

a jump to a divergence in the specific heat and therefore the transition is second

134



order in zero-field but first order in an applied field. This is consistent with type-I

superconductivity.

The temperature dependence of the electronic contribution to the specific

heat is shown in Fig. 6.4(b), from subtracting βT 3 from the total specific heat.

At 0.4 K, Cel/T starts to flatten but it is still offset from zero. This indicates a

non-superconducting fraction, most likely resulting from the presence of impurity

phases. The solid line shows a fit to an isotropic BCS model. The specific heat

in the superconducting state was modelled using Eq. 2.51 and Eq. 2.52. To take

into account the presence of a non-superconducting component, the superconducting

entropy was scaled with a parameter asc, the superconducting fraction. Furthermore,

although γ = 4.67(4) mJ/mol K2 is obtained in the normal state, if there is a

significant impurity fraction the value of γ for the superconducting phase (γsc) may

be different from the measured value in the normal state. The data were fitted with

two free parameters, giving ascγsc = 3.366(11) mJ/mol K2 and α = 1.757(4)

(Eq. 2.44). The value of α is very close to the BCS value of 1.764. If γsc is taken to

be the fitted value in the normal state, asc = 0.72 is obtained. Alternatively, using

asc = 0.765 from the estimate of the volume fraction from µSR measurements in

Sec. 6.2.4, γsc is calculated to be 4.40(1) mJ/mol K2. ∆C/γTc is calculated to be

0.99 using the observed values but taking into account the fitted parameter ascγsc,

the value is 1.37 which is closer to the BCS value. In Ref. [65], γ = 5.4 mJ/mol K2

and ∆C/γTc = 1.16 are reported. The fact that these are different to the values

reported here indicates the effect that the presence of impurity phases may have on

the observed values of these parameters.

6.2.4 µSR measurements

µSR measurements of LaPdSi3 in zero-field at 0.5 and 3 K are shown in Fig. 6.5. The

data were fitted with a Kubo-Toyabe function (Eq. 3.7) multiplied with an exponen-

tial decay term (Eq. 3.8). At 3 K, σ = 0.0692(14) µs−1 and Λ = 0.012(2) µs−1

are obtained and σ = 0.071(2) µs−1 and Λ = 0.011(2) µs−1 are obtained at

0.5 K. Since there is no significant difference between the values in the normal and

superconducting states, there is no evidence for spontaneous magnetic fields below

Tc and the breaking of time reversal symmetry.

Transverse field µSR measurements were performed using the MuSR spec-

trometer, with the sample field cooled in applied fields up to 300 Oe down to temper-

atures of 50 mK using a dilution refrigerator. Additional measurements were made

at 0.5 K in applied fields of 110, 140 and 160 Oe, where the sample was not cooled

through the transition in the fields at which the sample was measured. Typically
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Figure 6.4: (a) Specific heat of LaPdSi3 in zero and applied fields up to 200 Oe.
The dashed line shows a fit to the normal state described in the text. (b) Electronic
contribution to the specific heat in zero-field, obtained from subtracting an estimate
of the phonon contribution. The solid line shows a fit to a BCS model described in
the text.
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Figure 6.5: Zero-field µSR measurements of LaPdSi3 measured at 0.5 and 3 K. The
solid lines show fits to the Kubo-Toyabe function multiplied by an exponential decay.

when transverse µSR measurements are performed using the MuSR spectrometer,

the 64 detectors are grouped into two sets, perpendicular to each other and the

applied field. These are in the ‘forward’ and ‘backward’ positions along the axis of

the muon beam and the ‘top’ and ‘bottom’ positions above and below. it. In these

measurements, only the spectra calculated from the ‘top’ and ’bottom’ detectors are

displayed and analyzed.

Figures 6.6(a) and (c) show the µSR spectra measured in an applied trans-

verse field of 150 Oe at 3 and 0.8 K, above and below Tc. There is a sharp increase

in the depolarization rate and reduction in the initial asymmetry upon entering the

superconducting state. The magnetic field probability distributions are shown by

the maximum entropy spectra [209] in Figs. 6.6(b) and (d). At 3 K, a sharp peak

is observed centred on 150 G. At 0.8 K this peak at the applied field has broadened

and an additional peak is present at a field greater than the applied field. This peak

appears asymmetric with a longer tail in the low field direction. The presence of an

internal field greater than the applied field is further evidence for type-I supercon-

ductivity. For an applied field of B < Bc, demagnetization effects may mean that

some regions of the superconductor have a field applied greater than Bc, in which

case magnetic flux can penetrate the bulk of the sample. Muons implanted in these

normal regions of the intermediate state will precess at a frequency corresponding
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Figure 6.6: Transverse field µSR spectra of LaPdSi3 at (a) 0.8 K and (c) 3 K for
an applied field of 150 Oe. Panels (b) and (d) show the maximum entropy spectra
for the respective temperatures. The insets show the maximum entropy spectra at
low values of B.
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to the field at the muon site which must be at least equal to Bc. Muons implanted

in regions in the Meissner state, where magnetic flux is expelled will only be affected

by nuclear moments. This accounts for the peak present at low fields in the inset

of Fig. 6.6(b) but absent in the inset of Fig. 6.6(d). It can be seen that the low

field peak at 0.8 K is considerably lower than the peak corresponding to the normal

regions of the intermediate state. This is despite the fact that apart from regions of

the H − T phase diagram close to the phase boundary, the fraction of the sample

in the Meissner state is not expected to be much smaller than that in the normal

state. However, the effect of using the ‘top’ and ’bottom’ detectors is to significantly

reduce the signal from muons implanted in the Meissner regions. A muon implanted

in a region with zero magnetic field will have its moment parallel to the muon beam

and the resulting decay positron has an equally probability of being detected at one

of the ‘top’ or ‘bottom’ detectors. Therefore, there will be no overall contribution

to the asymmetry of this detector pairing. The effect of nuclear moments would be

to introduce a Kubo-Toyabe term to the asymmetry of the forward and backward

detectors as is observed in Fig. 6.5. This is mostly removed when using the top

and bottom detectors and as a result, the drop in the initial asymmetry upon en-

tering the superconducting state corresponds to the presence of regions from which

magnetic flux is expelled.

The asymmetries were fitted using Eq. 3.9 with a constant background. Three

oscillatory components were fitted with B2 = B3 and σ3 = 0. This means there are

two components with weights A2 and A3 precessing about the applied field, one with

a decaying component and one without. The non-decaying component corresponds

to muons implanted in the silver sample holder. In the initial fit, the weightings

were all fitted freely but in the final fit A2 and A3 were fixed to 0.0528 and 0.0326

respectively. The former are likely to correspond to a non-superconducting fraction

of the sample. By comparing A2 to the initial asymmetry from the sample in the

normal state of 0.225, the non-superconducting volume fraction is estimated to be

23.5 %. This is the origin of the estimate of asc = 0.765 used in Sec. 6.2.3. The

n = 1 component (A1) corresponds to muons precessing about a field B1 higher

than the applied field. The temperature dependence of A1 for several applied fields

is shown in Fig. 6.7(a). For each field, the points appear to lie on a curve which

is relatively flat at low temperatures but turns up sharply at higher temperatures.

This indicates that upon approaching the phase boundary, there is a strong increase

in the fraction of the intermediate state consisting of normal regions. Fig. 6.7(b)

shows A1 as a function of Bapp/Bc, where Bc has been taken to be equal to B1.

Interestingly, whereas distinct curves were obtained for each field in Fig. 6.7(b), the
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Figure 6.7: The weighting of the second oscillatory component of the fitted trans-
verse µSR spectra of LaPdSi3. This corresponds to the fraction of implanted muons
precessing about a field higher than the applied field. A2 is shown (a) as a function
of temperature for several applied fields and (b) as a function of the ratio of the
applied and critical fields. Filled circles indicate measurements where the sample
was cooled through the transition in the field that it was subsequently measured in.
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Figure 6.8: Temperature dependence of the critical field of LaPdSi3 obtained from
specific heat, µSR and resistivity measurements. The dashed lines show the calcu-
lated critical field using Eq. 2.54 whereas the solid lines show a fit to Eq. 2.31.

points collapse onto a single curve as a function of Bapp/Bc. The only exceptions are

two points where the measurements were not taken after field cooling. This suggests

that the normal fraction of the intermediate state when the system is field-cooled is

only a function of the ratio of the applied and critical fields. It also indicates that

the normal fraction of the intermediate state can be sensitive to the field history of

the system once the superconducting state has been entered, although the non-field

cooled measurement taken in 110 Oe appears to lie on the curve.

The temperature dependence of Bc is shown in Fig. 6.8. Values are shown

obtained from µSR and specific heat measurements as well as those from the mid-

points of resistive transition and where ρ = 0. Specific heat and µSR are both bulk

probes and there is good agreement between the values of Bc, whereas those from

the resistivity are higher and display a different shape. The solid line shows a fit to

the µSR data using Eq. 2.31, with Bc(0) = 182.7(7) G and Tc = 2.54(1) K. The

dashed line shows a calculation of Bc(T ) using Eq. 2.54 with γsc = 4.40 mJ/mol K2

and α = 1.757 from Sec. 6.2.3. Bc(0) = 182.1 G is calculated and there is good

agreement between the two curves and the data.
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6.3 LaPtSi3

6.3.1 Sample preparation and structural characterization

Polycrystalline samples of LaPtSi3 were produced by arc-melting stoichiometric

quantities of the constituent elements in an argon atmosphere on a water cooled

copper hearth. The samples were flipped and remelted several times before being

wrapped in tantalum foil, sealed in an evacuated quartz tube and annealed at 900◦C

for two weeks. Powder neutron diffraction measurements were carried out using the

General Materials Diffractometer (GEM) at ISIS [210]. Around 12 g of powdered

LaPtSi3 was placed in a thin walled cylindrical vanadium can, 6 mm in diameter.

GEM utilizes the time-of-flight technique to collect the diffraction pattern in six

banks of detectors, each at a fixed value of 2θ and distance from the sample. The

banks are numbered one to six, corresponding to increasing values of 2θ. As a re-

sult, bank 1 has the poorest resolution but covers the largest range of d spacings

while the opposite is true for bank 6, which is situated close to the backscattering

position. Room temperature diffraction data for four of the banks is displayed in

Fig. 6.9. The solid lines show the results of Rietveld refinements performed using

GSAS [152]. The results of the refinements are shown in Table. 6.2. The values of

the lattice parameters are close to those reported in Ref. [208]. The crosses show

the position of unfitted peaks, corresponding to impurity phases. The relative mag-

nitudes of these impurity peaks compared to those of the sample are smaller than

those in LaPdSi3 (Sec. 6.2.1). These peaks could not be indexed to any La-Pt-Si

compounds in the 2013 ICDD Powder Diffraction File [211].

6.3.2 Magnetization and resistivity measurements

The magnetic susceptibility of LaPtSi3 as a function of temperature in an applied

field of 10 Oe is shown in Fig. 6.10(a), which displays a sharp superconducting

transition at 1.58 K. After correcting for demagnetization effects after Ref. [123],

4πχ = − 1.05 is obtained at 0.5 K, indicating complete flux expulsion. This

demonstrates that LaPtSi3 is a bulk superconductor. Figure 6.10(b) shows a mag-

netization loop measured at 0.5 K between ± 300 Oe. Unlike the abrupt change

of gradient observed in the magnetization of LaPdSi3 (Fig. 6.2(b)), the magnetiza-

tion of LaPtSi3 smoothly flattens with increasing field. This much more resembles

the magnetization of a type-II superconductor shown in Fig. 2.4. Furthermore un-

like LaPdSi3, upon decreasing the field there is no reentrance of diamagnetism and

the loop appears much more like that expected for a type-II superconductor in the

presence of flux pinning [11].
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Figure 6.9: Powder neutron diffraction measurements of LaPtSi3 measured on se-
lected banks of the GEM diffractometer at ISIS. The solid lines show the Rietveld
refinements performed using GSAS and the crosses indicate impurity peaks. The
results are given in Table 6.2.

Table 6.2: Results of the refinements of powder neutron diffraction measurements of
LaPtSi3. The lattice parameters and atomic positions are shown. Rwp for selected
banks are shown in Fig. 6.9.

LaPtSi3

a (Å) 4.3474(2)
c (Å) 9.6368(6)

Site x y z

La 2a 0 0 0
Pd 2a 0 0 0.6498(2)
Si1 2a 0 0 0.3986(3)
Si2 4b 0 0.5 0.2622(3)
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Figure 6.10: (a) Magnetic susceptibility against temperature for LaPtSi3 in an ap-
plied field of 10 Oe. Zero-field cooled (ZFC) and field-cooled (FC) measurements
are displayed. (b) Magnetization of LaPtSi3 as a function of applied field at 0.5 K.
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The temperature dependence of the resistivity as a function of field is shown

in Fig. 6.11. The resistivity in the normal state flattens at low temperatures at

around ρ0 ∼ 24.5 µΩ-cm. The transition in zero-field is sharp, with an onset at

T onset
c = 1.58(2) K and zero resistivity at T zero

c = 1.43(2) K. As with LaPdSi3,

there is a significant broadening of the transition in field as T zero
c is suppressed much

more rapidly than T onset
c . In fact, the broadening is more significant than LaPdSi3

and in an applied field of 500 Oe, T zero
c is less than 0.4 K but T onset

c is around

1.4 K. The relative robustness of T onset
c can be seen in the plot of resistivity against

applied field at 0.4 K, shown in Fig. 6.12. As displayed in the inset, the resistivity

is no longer zero in an applied field of µ0H ∼ 0.05 T but only reaches the normal

state value at around 1.5 T. This robust superconducting component would only

correspond to a small fraction of the sample, so a contribution from an impurity

superconducting phase can not necessarily be excluded.

The upper critical fields obtained from T zero
c and the midpoint of the transi-

tion (Tmid
c ) are shown in Fig. 6.13. Bulk values of Bc2 obtained from µSR measure-

ments (Sec. 6.3.4) are also displayed. The values obtained from T zero
c are slightly

larger than those in the bulk but this is generally expected since resistivity measure-

ments probe the surface superconductivity, which is expected to be more robust [11].

The solid line shows a fit to the WHH model using Eqs. 2.62 and 2.61. From fitting

this, αM = 0.0280(3) is obtained, indicating that orbital pair breaking is the dom-

inant mechanism for destroying superconductivity. As discussed in Sec. 2.2.8, λso

reduces the influence of the paramagnetic limiting effect, so has little effect on Bc2

for low values of αM . It was therefore fixed to zero when fitting. This is consistent

with the fact that Bc2(0) = 526 G was obtained from the model but HP = 28.3 kOe

is calculated using Eq. 2.60 for a BCS superconductor. This indicates that Bc2 de-

duced from T zero
c follows the expected BCS behaviour. However, those obtained

from Tmid
c show very different behaviour and there is a positive curvature of Bc2

down to 0.4 K. This demonstrates the increasing broadening of the transition in

field. The inset of Fig. 6.13 shows the critical field calculated using Eq. 2.54 and the

results of the analysis of the specific heat in Sec. 6.3.3. The value Bc(0) = 104.3 G

is lower than that obtained for LaPdSi3, due to the lower transition temperature of

the compound.

6.3.3 Specific heat

The specific heat of LaPtSi3 in zero and applied fields up to 1000 Oe are shown

in Fig. 6.14(a). In zero field, there is a bulk superconducting transition with

Tc = 1.52(6) K. The dashed line shows a fit to the normal state using Eq. 2.49 with
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Figure 6.11: Temperature dependence of the resistivity of LaPtSi3 in applied fields
up to 1000 Oe.

Figure 6.12: Field dependence of the resistivity of LaPtSi3 at 0.4 K.
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Figure 6.13: Temperature dependence of the upper critical field obtained from re-
sistivity and µSR measurements. The solid line shows a fit made to the latter with
a WHH model as described in the text. The blue points show the bulk values of
Bc2 obtained from µSR measurements as described in Sec. 6.3.4. A calculation of
the critical field using equation 2.54 is shown in the inset.

γ = 4.41(4) mJ/mol K2 and β = 0.238(5) mJ/mol K4, giving ΘD = 344(2) K

(Eq. 2.50). Using this value of ΘD with Eq. 2.45, λe−ph = 0.47 is obtained, putting

LaPtSi3 in the weak coupling limit. The in-field measurements show significant

broadening compared to those taken in zero field, particularly with applied fields

of 100 and 200 Oe. Furthermore, the jump in the specific heat at the transition is

smaller than in zero-field, unlike the sharp in-field transitions observed in LaPdSi3.

This suggests that the transition is second-order in field, as expected for type-II su-

perconductors. Although the superconducting transition is not apparent in the plot

of the specific heat with an applied field of 1000 Oe, the inset of Fig. 6.14(b) shows

that there is a deviation from linear behaviour in C/T against T 2 at around 1.1 K.

This may correspond to a superconducting transition with a significantly reduced

volume fraction.

The electronic contribution to the specific heat is shown in Fig. 6.14(b).

The solid lines shows a fit to a BCS model (Eq. 2.51 and 2.52) with asc = 0.93

and α = 1.735(5). The larger value of asc and smaller offset indicate a larger
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Figure 6.14: (a) Specific heat of LaPtSi3 in zero and applied fields up to 1000 Oe.
The dashed line shows a fit to the normal state described in the text. (b) Electronic
contribution to the specific heat in zero-field, obtained from subtracting an estimate
of the phonon contribution. The solid line shows a fit to a BCS model described in
the text. The inset shows C/T against T 2 in an applied field of 1000 Oe.

148



Figure 6.15: Zero-field µSR measurements of LaPdSi3 measured at 0.2 and 2 K.
The solid lines show fits to the Kubo-Toyabe function multiplied by an exponential
decay.

superconducting fraction than in the LaPdSi3 sample, which is consistent with the

smaller impurity peaks observed in diffraction data. The observed jump in the

specific heat is ∆C/γTc ∼ 1.33 and the BCS value of ∼ 1.43 is obtained, taking

into account the fitted value of asc. Along with α being close to the BCS value, this

shows the data are compatible with an isotropic, BCS model. However, C/T has

not flattened at 0.4 K and therefore the specific heat measurements are not able to

confirm or rule out gapped behaviour.

6.3.4 µSR measurements

µSR measurements of LaPtSi3 in zero-field at 0.2 and 2 K are shown in Fig. 6.15,

fitted with a Kubo-Toyabe function multiplied with an exponential decay term

(Eqs. 3.7 and 3.8). σ = 0.079(1) µs−1 and Λ = 0.013(2) µs−1 are obtained

at 2 K and σ = 0.078(2) µs−1 and Λ = 0.014(2) µs−1 are obtained at 0.2 K.

Therefore there is no evidence that TRS is broken in the superconducting state of

LaPtSi3.

Transverse field µSR measurements were carried out in several applied fields

up to 400 Oe. The spectra at 0.1 and 2 K in an applied transverse field of 150 Oe

are shown in Figs. 6.16(a) and 6.16(c) respectively. There is a significant increase
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Figure 6.16: Transverse field µSR spectra of LaPtSi3 at (a) 0.1 K and (c) 2 K for
an applied field of 150 Oe. Panels (b) and (d) show the maximum entropy spectra
for the respective temperatures.

in the depolarization upon entering the superconducting state, indicating the onset

of bulk superconductivity. The corresponding maximum entropy spectra are shown

in Figs. 6.16(b) and 6.16(d). In the normal state, the spectra show a peak in P (B)

centered around an applied field. In the superconducting state, the peak around the

applied field broadens and an additional shoulder in the distribution is observed at

lower fields. This is very different to the field distribution observed in the super-

conducting state of LaPdSi3 (Fig. 6.6) and indicates bulk type-II superconductivity.

This is the field distribution of the flux-line lattice in the mixed state, where most

of the contribution to P (B) is at fields less than the applied field. No significant

increase in depolarization is observed in an applied field 400 Oe, indicating that

bulk superconductivity has been suppressed.

The asymmetries were fitted using Eq. 3.9. Three oscillatory components

were used apart from in a field of 300 Oe, where only two could be fitted. σ3 was

fixed to zero and this component corresponded to muons stopping in the silver sam-

ple holder. The first and second moments of the field distribution of the sample
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Figure 6.17: The temperature dependence of σsc for LaPtSi3.

were calculated using Eqs. 3.10 and 3.11, where the component corresponding to

muons implanted in the silver holder was not included in any of the summations.

The superconducting contribution to the second moment (⟨B2⟩sc) was obtained from

subtracting the value obtained in the normal state. The field dependence of ⟨B2⟩sc
at a given temperature was fitted using Eq. 2.37 for b > 0.25. This was selected

rather than the more commonly used Eq. 2.38 due to the value of κ < 5 ob-

tained in Sec. 6.3.2. However, it should be noted that similar results were obtained

using the latter expression. Equation 2.37 can be expressed in terms of two free

parameters, λeff and Bc2. The temperature and field dependence of σsc are shown

in Figs. 6.17 and 6.18, where σsc =
√

⟨B2⟩sc/γ2µ. The field dependence was fitted

for temperatures between 0.1 and 1 K. The values of Bc2 are shown in Fig. 6.13 and

as discussed in Sec. 6.13, the bulk values are slightly lower than those deduced from

T zero
c and Bc2 = 360(10) G is obtained. This is consistent with the lack of bulk

superconductivity in an applied field of 400 Oe.

The temperature dependence of λeff is shown in Fig. 6.19. The data were

fitted using Eq. 2.55, with Tc fixed to 1.52 K from the analysis of the specific heat.

The fit was made to an isotropic gap, so ∆(T, ϕ) = ∆(T ) which is given by

Eq. 2.43 but with a variable prefactor ∆0. ∆0 = 0.209(7) meV was obtained, giving

∆0/kBTc = 1.60(8). This is slightly below the BCS value of 1.764 and the data are

compatible with a fully gapped, weakly coupled superconductor. λeff(0) = 239(3) nm
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Figure 6.18: The field dependence of σsc for LaPtSi3 at four temperatures. The
solid lines show fits to Eq. 2.38 over the appropriate range of fields.
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Figure 6.19: The temperature dependence of the effective penetration depth of
LaPtSi3. The solid line shows a fit made using Eq. 2.55

was also obtained and using ξ = 96(1) nm from Eq. 2.33, κ = 2.49(4) is cal-

culated. Alternatively κ can be calculated using Eq. 2.34. Using Bc(0) = 104.3 G

from Sec. 6.3.2 and Bc2 = 360(10) G, κ = 2.44(7) is obtained. There is therefore

agreement between the two values which both indicate that LaPtSi3 is in the low κ

regime.

6.4 Discussion and summary

The superconducting properties of two non-centrosymmetric superconductors with

the BaNiSn3 structure, LaPtSi3 and LaPdSi3 have been reported. Various super-

conducting parameters are shown in Table 6.3. Magnetization, specific heat and

µSR measurements reveal that LaPdSi3 is a bulk type-I superconductor. The spe-

cific heat measurements reveal that the superconducting transition is second-order

in zero-field but first-order in an applied field, as expected for a type-I supercon-

ductor. µSR measurements confirm the presence of bulk type-I superconductivity.

With an applied transverse field, a fraction of muons are implanted in an environ-

ment with a local magnetic field larger than the applied field. This is consistent with

probing macroscopic normal regions of the intermediate state. The critical field (Bc)

is deduced from the value of this field and is in excellent agreement with those mea-
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Table 6.3: Superconducting parameters of LaPdSi3 and LaPtSi3.

LaPdSi3 LaPtSi3
Tc (K) 2.65(5) 1.52(6)
λe−ph 0.51 0.47

∆0/kBTc 1.757(4) 1.735(5) - specific heat
1.60(8) - µSR

λeff(nm) 239(3)
ξ(nm) 96(1)
κ 2.49(4)

Bc(0) (G) 182.1 - calculated 104.3 - calculated
182.7 - µSR

Bc2(0) (G) 360(10) - µSR
526 - resistivity (ρ = 0)

sured from the specific heat measurements and Bc(0) = 182.7(7) G is obtained from

the analysis of the temperature dependence of Bc(T ), in excellent agreement with

the calculated value of 182.1 G. This is slightly higher than that observed in the

isostructural type-I superconductor LaRhSi3, where Bc(0) = 172.7 G was observed

[103].

In contrast to LaPdSi3, magnetization, specific heat and µSR measurements

reveal type-II superconductivity in LaPtSi3. Specific heat measurements reveal that

the superconducting transition is second-order in both zero and applied fields. µSR

measurements are used to probe the field distribution of the mixed state and the tem-

perature dependence of λeff and Bc2(0) are obtained from the field dependence of the

second moment of magnetization. Zero temperature values of λeff(0) = 239(3) nm

and ξ(0) = 96(1) nm give κ = 2.49(4), whereas 2.44(7) is obtained using Eq. 2.34.

A similar value of κ = 2.6 is reported for BaPtSi3 [100], while larger values of

8.3 and 11 were reported in CaIrSi3 and CaPtSi3 respectively [102]. It should be

noted that the value for BaPtSi3 was deduced from µSR measurements fitted with

Eq. 2.38, while the latter were calculated using Eq. 2.34 with upper critical fields

deduced from ac susceptibility measurements.

The effect of substituting Pt for Pd in the LaTSi3 system is to increase κ and

drive the system from type-I to type-II behaviour. It would be useful to determine

whether the observed values of κ can be calculated or whether the trend from type-I

to type-II can be reproduced. The calculation of κ requires knowledge of whether

the system is in the clean or dirty limits. This depends on the relative magnitudes

of ξ0 and the mean free path l. ξ0 can be calculated using Eq. 2.56. It is necessary
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to estimate vF which can be calculated after Ref. [212] using

vF =
2π2h̄3

m∗2Vcell
N(EF), (6.1)

where m∗ = me(1 + λe−ph), Vcell is the unit cell volume and N(EF) is calculated

from γsc using Eq. 2.48. The factor of two arises because there are two formula

units per unit cell. Values of vF = 8.3× 105 and 7.8× 105 ms−1 are calculated for

LaPtSi3 and LaPdSi3 respectively. Using these, ξ0 = 762 and 407 nm are calculated

from Eq. 2.56. l can be obtained from the expression [212]

l =
3π2h̄3

ρ0

(
1

m∗evF

)2

. (6.2)

For LaPtSi3 and LaPdSi3, l = 4.5 and 30.7 nm are obtained respectively. This

suggests that l ≪ ξ0 for both compounds, placing them in the dirty limit. This

justifies the use of Eq. 2.61 for evaluating the upper critical field of LaPtSi3. Given

that the systems are in the dirty limit, κ should be calculated using Eq. 2.59 rather

than 2.58. This may also be expected due to the fact that κ is experimentally

larger in LaPtSi3 than in LaPdSi3. However, LaPtSi3 has a lower Tc and therefore

a smaller ∆0 so would be expected to have a smaller value of κ in the clean limit.

λL can be estimated from calculating the plasma frequency (ωp) using [212]

ω2
p =

4m∗2e2v3F
3πh̄3

(6.3)

λL =
c

ωp
, (6.4)

giving 32.6 nm for LaPtSi3 and 34.7 nm for LaPdSi3. Using Eq. 2.59, κ = 5.2

and 0.8 are estimated for the two compounds. The value of 5.2 for LaPtSi3 is

larger than the value of 2.49 deduced from µSR measurements and the value of

0.8 would imply that LaPdSi3 is a type-II material. Therefore the values are too

large for both materials. One source of error may be that in using ρ0 to calculate

l, it is assumed that the low temperature resistivity is determined entirely by the

scattering rate of electrons in the bulk of the material, rather than there being

significant contributions from dislocations and grain boundaries. If this is the case,

the mean free path will be higher than that calculated using the observed ρ0. This

would be expected to be particularly true for polycrystalline samples and therefore it

would be of interest to examine the resistivity of single crystals. A similar calculation

for polycrystalline LaRhSi3 did correctly predict type-I behaviour [103], but a lower
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value of ρ0 = 1.08 µΩ-cm was obtained rather than 3.9 and 24.5 µΩ-cm for LaPdSi3

and LaPtSi3 respectively. Even though this method does not correctly reproduce

the observed values of κ, it does suggest that the change from type-I to type-II

behaviour is due to a reduced electronic mean free path. This is unlike the clean

limit calculation (Eq. 2.58), which fails to reproduce the trend of increasing κ. It is

noted that both LaRhSi3 [103] and LaPdSi3 with a 4d transition metal are type-I

while the reported type-II materials all contain 5d transition metals. It remains to

be seen if it is a general feature of the NCS RTSi3 compounds that those where T

has a 4d outer shell are type-I and those with a 5d configuration are type-II.

The analysis of the specific heat of the compounds reveal that both are weakly

coupled superconductors with λe−ph of around 0.5. The electronic contribution of

the specific heat of both compounds was fitted with an isotropic s-wave model, with

gap ratios of α = 1.757(4) and 1.735(5) obtained for LaPdSi3 and LaPtSi3 respec-

tively. The electronic contribution of C/T for LaPdSi3 (Fig. 6.4(b)) flattens at low

temperatures and the value of α is very close to the BCS value of 1.764, indicating

that the data are consistent with an isotropic, fully-gapped BCS superconductor.

The specific heat LaPtSi3 (Fig. 6.14) is only measured to ∼ Tc/4 which may not be

low enough to observe the flattening out of the electronic contribution of C/T asso-

ciated with fully gapped behaviour. However, the data above 0.4 K are compatible

with an isotropic model with α being very close to the BCS value. µSR measure-

ments were made down to 0.1 K, which should be sufficient to determine whether

the system is gapped by examining whether λ−2
eff reaches a constant level at low tem-

peratures. As shown in Fig. 6.19, the data are consistent with an isotropic s-wave

model with α = 1.60(8). It should be noted that although such a model is com-

patible with the data, there are a relatively small number of points with relatively

large error bars. This reflects the need to model the field dependence of σsc which

was fitted with two free parameters, Bc2 and λeff . There is also a relatively large

error in α which may also reflect the lack of points close to Tc, where an insufficient

number of points were measured to fit the field dependence. It may also be desirable

to model the two gap structure which is believed to arise in non-centrosymmetric

superconductors from Eq 2.47, as observed in several compounds [95, 82, 105]. How-

ever, if the triplet component is small then not only will both gaps be fully gapped

but also of similar magnitudes. Since a one gap model can fit the data well, the

addition of two additional parameters in a two gap model would not be justified.

Therefore, it would be desirable to perform more detailed and precise measurements

of λeff across the full range of temperatures below Tc. This may be best performed

using a tunnel diode oscillator. This technique does not require the measurement
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of the field dependence of the signal or modelling the field distribution of the flux

line lattice, so may be most appropriate for extracting more precise measurements

of the temperature dependence of the penetration depth.

The (upper) critical fields extracted from resistivity measurements of LaPdSi3

(LaPtSi3) are larger than the values obtained from the bulk. In the case of LaPdSi3,

there is a pronounced difference in the shape of the temperature dependence of the

critical field values deduced from T zero
c and Tmid

c , whereas for LaPtSi3 the values

from T zero
c could be fitted to the WHH model but those from Tmid

c have a positive

curvature. A positive curvature in Bc2 has been observed in some two-band su-

perconductors [213], this has been reported close to Tc where it is not observed in

LaPtSi3. Similar behaviour in the values of Bc2 deduced from resistivity measure-

ments has also been observed in CaIrSi3, CaPtSi3 [102] and BaPtSi3 [101]. In all

these materials, a relatively sharp transition in zero field is observed which increas-

ingly broadens in applied fields. The sharp zero field transition and lack of step like

features in field means that it is unlikely that this robust superconducting fraction

is from an impurity phase. Three further suggestions were offered for CaIrSi3 and

CaPtSi3 in Ref. [102]. One possibility was that the upper critical field could be

highly anisotropic with a narrow peak along one particular direction. It is not clear

what the mechanism behind such an enhancement would be and the specific heats

of both compounds were compatible with an isotropic gap. However, single crys-

tals may be necessary to determine the presence of anisotropy. Pressure induced

enhancement of the superconductivity at grain boundaries was also proposed but in

Ref [214], the superconductivity of CaIrSi3 and CaPtSi3 was found to be suppressed

with pressure. It was also suggested that there may be regions of defected material

where l is much less than ξ0. As discussed previously, both LaPdSi3 and LaPtSi3

appear to be in the dirty limit and therefore a variation in l in certain regions due

to defects or site disorder may lead to different values of l and therefore κ. This

may also explain the small increase in C/T of LaPtSi3 observed in an applied field

of 1000 Oe in the inset of Fig. 6.14(b).

There is therefore considerable interest in studying single crystals of the

weakly correlated superconductors in the RTSi3 series. The measurements of poly-

crystalline samples of LaPdSi3 and LaPtSi3 are consistent with both compounds

being isotropic, s-wave superconductors. The study of single crystals would allow

the anisotropy to be probed directly. Furthermore if the broadening in the resistiv-

ity is due to the presence of inhomogenous or defected regions the effect would be

expected to be reduced or absent in high quality single crystals.
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Chapter 7

Nb0.18Re0.82

7.1 Introduction

Superconductivity was reported in several compounds with the non-centrosymmetric

α-Mn structure (space group I 4̄3m) in the 1960’s [9, 10, 215], which are rich in

rhenium or other heavy elements belonging to the sixth period of the periodic table.

The NbxRe1−x system forms homogeneously in the α-Mn structure across a wide

compositional range (0.13 < x < 0.38) [216, 217]. The unit cell contains 58 atoms

with four crystallographically distinct sites. Two of these have Wyckoff positions of

2a and 8c which are believed to be entirely occupied by niobium atoms, while the

remaining two are labelled 24g and contain a distribution of niobium and rhenium

[218]. Of the four sites, only the 2a site has an inversion centre and therefore the

rhenium atoms are all in non-centrosymmetric positions. The crystal structure is

displayed in Fig. 7.1, where both of the 24g sites are entirely occupied with rhenium

atoms, corresponding to x = 0.17.

Although the lack of inversion symmetry does not appear to have been noted

in the early studies, in light of recent interest in non-centrosymmetric supercon-

ductors, the properties of polycrystalline NbxRe1−x have recently been reported

[217, 219, 220]. These studies indicate that NbxRe1−x displays an isotropic s-wave

superconducting state. Tc ranges from around 8.8 K for x = 0.18 to around 3.5 K

for x = 0.38. NMR measurements on Nb0.17Re0.83 indicate a value of α very close

to the BCS value (Eq. 2.42), while Refs. [219] and [217] report a moderately en-

hanced gap in Nb0.18Re0.82. As discussed in Sec. 2.2.5, when the triplet component

in non-centrosymmetric superconductors is small, the two gaps may be fully gapped

and of a similar magnitude. Resolving the gap structure in these materials may

require the measurement of single crystals.
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Figure 7.1: Crystal structure of NbxRe1−x. Nb atoms belonging to the 2a and 8c
sites are shown in blue and red respectively, while Re atoms occupying two 24g sites
are shown in green and orange. This corresponds to x = 0.17.

In this chapter, measurements of single crystals of Nb0.18Re0.82 are reported.

The composition with x = 0.18 was chosen due to this having the largest value of

Tc [217]. Single crystals were grown using the floating zone technique, as described

in Ref. [221]. The crystals were checked using x-ray Laue and aligned along the

[100] direction. The superconducting properties were investigated using magnetic

susceptibility, resistivity and specific heat measurements.

7.2 Magnetic susceptibility

The magnetic susceptibility of a single crystal of Nb0.18Re0.82 is shown in Fig. 7.2.

The geometry of the aligned sample was such that the demagnetization factor could

not be readily estimated. However, the inset shows the magnetic susceptibility of

an unaligned piece with a more regular geometry, where the demagnetization factor

was estimated from Ref. [123]. The fact that the zero field cooled curve reaches

4πχ = −1.05 at 2 K indicates complete flux expulsion from the sample. Therefore

for the measurement of aligned sample, the demagnetization factor was adjusted so

that 4πχ = − 1 at 1.8 K. All the curves indicate an onset of superconductivity at

around 8.8 K. The magnitude of the field cooled signal at low temperatures is larger

than that reported in polycrystalline samples [219].

The magnetization as a function of field for low fields applied along [100] at

several temperatures are shown in Fig. 7.3. The curves are initially linear with a
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Figure 7.2: Temperature dependence of the magnetic susceptibility of a single crystal
of Nb0.18Re0.82 in an applied field of 10 Oe. Zero-field cooled (ZFC) and field-cooled
(FC) measurements are displayed. The inset shows the magnetic susceptibility of
an unaligned piece with a regular geometry from which the demagnetization factor
could be estimated.

gradient that indicates complete flux expulsion. When flux penetrates the sample,

perfect diamagnetism is lost and the gradient decreases before the curves eventually

turn up, as discussed in Sec. 2.2.3. On the right, the temperature dependence of

Hc1 is shown, obtained from the field at which the curves deviate from the initial

slope. This field was scaled by a factor of (1 − D)−1 to calculate Hc1. The data

were fitted to Eq. 2.31 and Hc1 = 55(2) Oe is obtained, in good agreement with

Ref. [219].

A magnetization loop at 1.8 K is shown in Fig. 7.4. The main plot shows the

magnetization between ±6.5 kOe while the inset shows it to ±50 kOe. For applied

fields up to 50 kOe, a large diamagnetic signal is observed indicating that the system

is still in the bulk superconducting state. However the magnetization becomes

reversible in this region and remains so until around 5 kOe, when a hysteresis loop

typical of a type-II superconductor opens. This indicates a significant weakening of

the pinning in larger applied magnetic fields.

7.3 Resistivity and specific heat measurements

The resistivity of the single crystal of Nb0.18Re0.82 in fields up to 90 kOe applied

along [100] are shown in Fig. 7.5. In zero-field, there is a sharp onset of supercon-
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Figure 7.3: The left shows the magnetization as a function of field of a single crystal
of Nb0.18Re0.82. Lower critical fields as a function of temperature are shown on the
right, corrected with a demagnetization factor.

Figure 7.4: Magnetization as a function of applied field for a single crystal of
Nb0.18Re0.82 at 1.8 K. The inset shows the measurements up to ±50 kOe
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ductivity at 8.85 K, in good agreement with the magnetic susceptibility data. The

transition is relatively sharp in zero-field apart from a distinct step feature with a

width of about 0.05 K, beginning at 8.74 K. The resistivity of this plateau is at ap-

proximately 30% of the normal state value. Below this, the resistivity again sharply

drops and zero resistivity is observed at around 8.6 K. Since Tc is very sensitive to

the stoichiometry, this may reflect the presence of two regions with small composi-

tional differences. For low applied fields, the step feature appears less distinct as the

transition broadens. However, at large applied fields, an additional kink emerges

which is strongest in the applied field of 90 kOe. This is observed at a different

position to the previously discussed feature, occurring at around 80% of the normal

state resistivity. It may be that there is a second step at low fields but this was not

resolved due to the sharpness of the transition near the onset.

The upper critical field was estimated from the temperature of the onset of

superconductivity (T onset
c ). This was performed by linearly extrapolating above and

below the transition and T onset
c was taken as the point at which these lines intersect.

The upper critical field for fields along [100] are shown in Fig. 7.6. The data were

analyzed with the WHH model in the dirty limit. The dashed line shows a calcula-

tion of the WHH model with αM = 0. From Eq. 2.60, HP = 164.6 kOe for a BCS

gap or 177.6 kOe using the gap from Ref. [217] are calculated. Therefore if the data

were compatible with αM = 0, it may indicate an absence or significant suppression

of Pauli paramagnetic limiting. The dashed curve was calculated using Eqs. 2.61

and 2.62 with αM = 0 and Bc2(0) is solely determined by the orbital limiting field

(Eq. 2.63) of 169 kG. However, it can be seen that while there is good agreement

with the values close to Tc, the observed values become increasingly lower than the

dashed curve with decreasing temperature. This indicates that Pauli paramagnetic

limiting is not absent in Nb0.18Re0.82. The data could be fitted with a non-zero αM

and λso using Eqs. 2.61 and 2.64 and αM = 1.51(2), and λso = 2.2(6) are obtained.

This compares to the calculated value of αM = 1.45 obtained from the previously

calculated values of Borb
c2 and HP. From the fitted curve, Bc2(0) = 148.4 kG is

calculated.

The specific heat of the Nb0.18Re0.82 crystal is shown in Fig 7.7 in zero field

and an applied field of 90 kOe. A jump in the specific heat in zero field indicates

the onset of bulk superconductivity with Tc = 8.8 K. In an applied field of 90 kOe,

Tc is suppressed but a bulk superconducting transition is still observed indicating

the robustness of the bulk superconductivity. C/T against T 2 is shown in the in-

set. Linear behaviour is not observed in the zero field data above Tc but could

be fitted to the 90 kOe data from 5.8 to 8.8 K, giving γ = 5.40(6) mJ/mol K2
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Figure 7.5: Resistivity against temperature of a single crystal of Nb0.18Re0.82 across
the superconducting transition in applied fields up to 90 kOe along [100].

Figure 7.6: Temperature dependence of the upper critical field of a single crystal
of Nb0.18Re0.82 for fields applied along [100]. The values were obtained from the
onset of the resistive transition. The dashed line shows a calculation of Bc2 using
the WHH model with αM = 0, while the solid line shows a fit with non-zero αM
and λso.
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Figure 7.7: Temperature dependence of the specific heat of a single crystal of
Nb0.18Re0.82 in zero field and an applied field of 90 kOe. The red curve shows
a fit to a single gap, BCS model. The inset shows C/T against T 2 with a linear fit
to the 90 kOe data in the normal state.

and β = 0.0668(13) mJ/mol K4. The solid curve shows a fit to the specific heat

with an isotropic, one gap model. The electronic contribution to the specific heat

was calculated using Eqs. 2.51 and 2.52. The β value was fixed from the fit to the

90 kOe data but γ was allowed to vary. Fitted values of γ = 4.94(2) mJ/mol K2 and

α = 2.054(8) are obtained. A small constant background term of 0.015 was also fit-

ted, which corresponds to a non-superconducting fraction of around 0.3 %. The jump

in the specific heat at the transition is estimated to be ∆C = 82.53 mJ/mol K, from

which ∆C/γTc is calculated to be 1.91 and 1.75 for γ = 4.94 and 5.40 mJ/mol K2

respectively. Using Eq. 2.53, α would be estimated to be 2.04 or 1.84 respectively.

The former is close to the fitted value and slightly larger than that reported in

Ref. [217].

7.4 Discussion and summary

The superconducting properties of a single crystal of Nb0.18Re0.82 have been charac-

terized using magnetization, resistivity and specific heat measurements. Magnetic

susceptibility measurements reveal the onset of bulk superconductivity at 8.8 K. The

temperature dependence ofHc1 was measured from low field magnetization data and
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Hc1(0) = 55(2) Oe was obtained. Magnetization loops as a function of field at 1.8 K,

up to 50 kOe reveal that the magnetization becomes reversible above 5 kOe. This

only corresponds to ∼ 4% of the estimated value of Bc2 at this temperature. This

suggests that there is significantly weaker pinning of flux lines at higher fields. Simi-

lar behaviour was observed in the isostructural non-centrosymmetric phase of Re3W,

whereas the magnetization of the centrosymmetric phase only becomes reversible at

higher fields [98].

The resistivity in zero-field shows a superconducting transition which onsets

at around 8.85 K. Although the transition is relatively sharp, a step-like feature

is observed. In field, the transitions broaden and the prominence of this feature

is reduced. Under applied magnetic fields, an additional ‘kink’ is also observed

which becomes more prominent at high fields. It may be that both these features

arise from small inhomogeneities in the composition but it is not clear why one

becomes more prominent and the other less prominent with increasing field. The

temperature dependence of the upper critical field was obtained from the onset of

the resistive transition. A calculation of the orbital limiting field overestimates Bc2

at lower temperatures, indicating that Pauli paramagnetic limiting is not absent or

greatly reduced. The data were fitted to the WHH model in the dirty limit and

αM = 1.51(2), and λso = 2.2(6) were fitted, giving Bc2 = 148.4 kG. A good

fit could not be obtained with λso = 0, suggesting that the reduction of the Pauli

limiting field due to spin-orbit scattering needs to be accounted for. However, the

maximum field which could be applied was 90 kOe, which means that Tc could

only be suppressed to ∼60% of the zero-field value. To more accurately determine

the role of Pauli paramagnetic limiting and the applicability of the WHH model, it

would be necessary to perform measurements in larger magnetic fields.

The specific heat was fitted with single gap BCS model. One difficulty is

in accurately determining the normal state contribution of the specific heat. For

example in Ref [217], Cph was fitted with two higher order terms while in Ref. [219]

linear behaviour was reported in C/T against T 2 up to temperatures of 50 K. In this

work, linear behaviour was not observed in zero field measurements and as such Cph

was estimated from a linear fit to data in 90 kOe. γ was allowed to vary in the final

fits of specific heat in the superconducting state, to allow for the possibility of an in

field enhancement. A reasonable fit was obtained for one gap with α = 2.054(8),

slightly larger than the value of 1.93 found in Ref [217]. Both values are consistent

with moderately enhanced electron-phonon coupling. The fitted values of γ are

5.40 mJ/mol K2 for the normal state in 90 kOe and 4.94 mJ/mol K2 was fitted for

the superconducting state, indicating a small enhancement.
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It may be expected that a two gap structure would be present in non-

centrosymmetric superconductors from Eq. 2.47, where the triplet component is

sufficiently small that both gaps are fully gapped. Attempts were made to freely fit

the data to a two gap model but a meaningful two band fit could not be obtained.

However, point contact spectroscopy measurements of our single crystals indicate

the presence of two superconducting gaps. An advantage of these measurements is

that the presence of an additional gap is determined from fitting spectra at a given

temperature, rather than from fitting the temperature dependence of a thermody-

namic quantity. The two band model used to analyze the specific heat contained

the sum of two terms from Eq. 2.52, each weighted by a fraction. Such a model

neglects any interactions between the separate bands but has been successfully used

to analyze several two gap systems [213]. Additional analysis is currently underway

to look for a gap structure compatible with both specific heat and point contact

spectroscopy measurements.
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Chapter 8

Summary and conclusions

Non-centrosymmetric superconductors have been the subject of intense research due

to the possibility of mixed parity pairing, where the superconducting state is not

purely spin singlet or triplet but an admixture of the two. There has been particular

focus on cerium based non-centrosymmetric superconductors such as the CeTX3

(T = transition metal, X = Si or Ge) series where unconventional superconductivity

has been observed in some compounds under pressure. In this work, examples of

two approaches for understanding the behaviour of these compounds are given.

Firstly, ground state properties of the CeTX3 compounds have been ex-

amined at ambient pressure. In chapter 4, µSR and inelastic neutron scattering

measurements of polycrystalline CeCoGe3, and neutron diffraction and magnetic

susceptibility measurements were made on single crystals. CeCoGe3 orders an-

tiferromagnetically at TN1 = 21 K with two further transitions at TN2 = 12 K,

TN3 = 8 K and becomes superconducting for p > 5.5 GPa, a higher pressure than

for the isostructural CeRhSi3 and CeIrSi3. The appearance of oscillations of the

asymmetry in the µSR spectra indicate the onset of long range order in CeCoGe3

between 20 and 21 K. Oscillations were observed down to 13 K and the temperature

dependence of the internal field was fitted with a mean field model.

The magnetic structure in the three magnetic phases of CeCoGe3 was clar-

ified using single crystal neutron diffraction measurements. Propagation vectors of

k = (0,0,12) below TN3, k = (0,0,58) for TN3 ≤ T < TN2, and k = (0,0,23) for

TN2 < T < TN1 were deduced. An increase in intensity of the (110) reflection

between TN1 and TN3 indicate a ferromagnetic component in these phases. The

neutron diffraction data are compatible with an equal moment, two-up, two-down

structure for T < TN3 and a two-up, one-down structure for TN2 < T < TN1,

with the magnetic moments lying along the c axis in all three phases.
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INS measurements were used to study the CEF as well as the temperature

dependence of the quasielastic scattering. A CEF scheme was found which was

compatible with both the INS and magnetic susceptibility data. Previously a CEF

scheme was suggested for CeCoGe3, with the ground state doublet consisting of the

|± 1
2 > states [60]. The INS data are incompatible with this scheme and our proposed

CEF scheme has a ground state which is an admixture of
∣∣∣±5

2

⟩
and

∣∣∣∓3
2

⟩
states and

the magnetic moment is predicted to be 1.01 µB/Ce along c. However, the refined

moment at 2 K is only 0.405(5) µB/Ce and this is evidence for a reduced ordered

moment due to the Kondo effect. This is compared with CeRhGe3, where there is

agreement between the predicted and observed moments [162] and with CeRhSi3,

where there is a greater moment reduction. This suggests that the hybridization

strength of CeCoGe3 is between that of CeRhSi3, which becomes superconducting

for p > 1.2 GPa and CeRhGe3, which does not become superconducting up to

8 GPa, which is supported by comparing the linewidths of the CEF excitations. The

Kondo temperature was estimated to be TK = 11(3) K from the zero temperature

value of the quasielastic linewidth.

In chapter 5, INS measurements are reported for CePtSi3, CePdSi3 and

CeRuSi3. CePtSi3 and CePdSi3 both order antiferromagnetically and were stud-

ied using low energy INS. CePdSi3 has previously been reported to exhibit two

magnetic transitions at 5.2 and 3 K from specific heat measurements [65], while

magnetization, specific heat and resistivity measurements have been performed on

CePtSi3. In this work, a linear dependence of the quasielastic linewidth was observed

for both compounds and TK = 6.0(2) and 5.56(5) K were obtained for CePtSi3 and

CePdSi3 respectively. Higher energy INS measurements of CePdSi3 were performed

and CEF levels were identified at around 5.5 and 31 meV. An unusual temperature

dependence is also observed in the scattering of CePdSi3 in a broad region from

about 13 to 24 meV. Between 5 and 75 K, there is very little change in the high |Q|
scattering of CePdSi3 or the scattering of non-magnetic LaPdSi3. However, the low

|Q| scattering of CePdSi3 significantly increases in this region and the origin of this

behaviour is not clear.

CeRuSi3 is non-magnetic and the hybridization between the conduction and

f electrons is believed to be sufficiently strong that magnetic order is entirely sup-

pressed. Single crystals have previously been grown using the Czochralski method

and the magnetic susceptibility displays a broad peak at around 150 K [194]. In

this work, INS measurements of CeRuSi3 are also reported. At low temperatures, a

maximum in the magnetic scattering is observed at inelastic positions which shifts

to quasielastic scattering at 300 K. This behaviour is commonly observed in inter-
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mediate valence compounds. The magnetic scattering for Ei = 200 meV could be

well fitted with a Lorentzian function centred at (58.5 ± 1.4) meV with a linewidth

of (31.9 ± 1.3) meV. The size of this hybridization gap relative to temperature

of the peak in the magnetic susceptibility is larger than that observed in many

heavy fermion compounds [196]. Interestingly, the data with Ei = 100 meV displays

evidence of additional structure to the magnetic scattering. The estimate of the

magnetic scattering displays additional maxima at around 40 and 32 meV, with the

latter feature being particularly narrow. Confirmation of additional structure would

be particularly interesting as this may reflect the structure of the heavy hybridized

bands believed to arise in Kondo lattice systems. There would be particular interest

in studying the INS response of single crystals to confirm the presence of additional

structure of the magnetic scattering and to characterize any |Q| dependence.
These results give some indication of the use of characterizing the ground

states of compounds in the CeTSi3 system at ambient pressure. Even though none

of the aforementioned compounds become superconducting at ambient pressure,

these measurements can help characterize the position of the compounds in the Do-

niach phase diagram and their proximity to the superconducting dome and quantum

criticality. This has previously been understood for several compounds by plotting

TN and γ against unit cell volume and relating this behaviour to that expected from

the Doniach model [63] (reproduced in Fig. 1.5). As discussed in Sec. 1.1.1, this does

not correctly account for several CeTX3 compounds and does not give much infor-

mation about the relationship between magnetic order and the Kondo effect. For

instance, it is interesting that previous studies of CeCoGe3 appeared entirely consis-

tent with antiferromagnetism with an entirely localized cerium moment. However,

our INS measurements indicate that at this position of the phase diagram, there is a

significant reduction in the ground state moment and broadening of the CEF levels

due to the Kondo effect. It would be of interest to fully compare the INS response

of CeCoGe3 to that of CeRhSi3 and CeIrSi3, which are closer to quantum criticality

and display incommensurate spin density wave magnetic structures.

A second approach towards understanding the superconducting behaviour

of cerium based NCS is to study NCS without strong electronic correlations. The

advantage of this approach is that the superconducting states of many of these

systems are both easier to access and the effects of strong electronic correlations

need not be taken into account. Although the mixing of singlet and triplet states

should occur generically in NCS, the measurements of many weakly correlated NCS

are consistent with single gap, s-wave BCS superconductivity. This is the case for

both the measurements of LaPdSi3 and LaPtSi3 in chapter 6, and a single crystal
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of Nb0.18Re0.82 in chapter 7. In the case of Nb0.18Re0.82, the upper critical field

is consistent with the WHH model in the presence of Pauli paramagnetic limiting,

while the specific heat was fitted with an isotropic, single gapped model with a

moderately enhanced gap ratio of α = 2.054(8). The results are similar those from

polycrystalline samples, but the availability of single crystals means that a broader

range of techniques such as point contact spectroscopy and small angle neutron

scattering can be performed.

LaPdSi3 and LaPtSi3 are both NCS isostructural to the CeTX3 compounds.

Superconductivity had previously been reported in LaPdSi3, although the super-

conducting properties were not extensively characterized [65]. LaPtSi3 had been

reported to be non-superconducting down to 2 K. In this work LaPtSi3 is reported

to be a new superconductor with Tc = 1.52(6) K and the superconducting proper-

ties of both materials are investigated using magnetization, specific heat, resistivity

and µSR measurements. The specific heat of both compounds are consistent with

isotropic, s-wave superconductivity with an energy gap very close to that of weakly

coupled BCS theory. A slightly smaller value of α = 1.60(8) is obtained from µSR

measurements of LaPtSi3. Magnetic susceptibility, specific heat and µSR measure-

ments reveal that LaPdSi3 is a type-I superconductor, while LaPtSi3 is a type-II

material, with κ = 2.49(4). Since both materials are believed to be dirty limit su-

perconductors, this crossover from type-I to type-II may be driven by differences in

the mean free path. Unlike the massive values observed in the isostructural cerium

based compounds, the bulk upper critical field of LaPtSi3 is much lower than the

Pauli limiting field, indicating the dominance of orbital pair breaking. The investi-

gation of the properties of single crystals of single crystals of the weakly correlated

RTSi3 superconductors would be desirable, both to directly look for evidence of

anisotropy in the superconducting properties and because it would allow techniques

such as point contact spectroscopy to be utilized.
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K. Shimizu, and Y. Ōnuki, Physica C 470, Supplement 1, S536 (2010).

[105] J. Chen, M. B. Salamon, S. Akutagawa, J. Akimitsu, J. Singleton, J. L. Zhang,

L. Jiao, and H. Q. Yuan, Phys. Rev. B 83, 144529 (2011).

[106] G. Amano, S. Akutagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Jour-

nal of the Physical Society of Japan 73, 530 (2004).

[107] S. Kuroiwa, Y. Saura, J. Akimitsu, M. Hiraishi, M. Miyazaki, K. H. Satoh,

S. Takeshita, and R. Kadono, Phys. Rev. Lett. 100, 097002 (2008).

[108] P. K. Biswas, A. D. Hillier, M. R. Lees, and D. M. Paul, Phys. Rev. B 85,

134505 (2012).

[109] S. Blundell, Magnetism in Condensed Matter, Oxford Master Series In Con-

densed Matter (Oxford University Press, Oxford, 2001).

[110] M. Matsumoto, M. J. Han, J. Otsuki, and S. Y. Savrasov, Phys. Rev. Lett.

103, 096403 (2009).

[111] K. W. H. Stevens, Proceedings of the Physical Society. Section A 65, 209

(1952).

[112] M. Hutchings, in Solid State Physics: Advances in Research and Applications,

Vol. 16, edited by F. Seitz and D. Turnbull (Academic Press, 1964) pp. 227 –

273.

[113] G. Marusi, N. V. Mushnikov, L. Pareti, M. Solzi, and A. E. Ermakov, J.

Phys. Condens. Matter 2, 7317 (1990).

[114] A. Thamizhavel, H. Nakashima, T. Shiromoto, Y. Obiraki, T. D. Matsuda,

Y. Haga, S. Ramakrishnan, T. Takeuchi, R. Settai, and Y. Ōnuki, J. Phys.
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