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Abstract

In this thesis, the superconducting properties of some unconventional su-
perconductors have been investigated using low temperature magnetic, thermal
and transport measurements, small angle neutron scattering, and muon spin ro-
tation/relaxation techniques. The aim was to correlate the symmetry and structure
of the superconducting gap with the unusual properties in these superconductors.

These studies have required the preparation of high quality samples using
different growth techniques. Good quality polycrystalline and single crystal samples
of FeSe1−xTex and FeTe1−xSx were grown using a self-flux method. Polycrystalline
samples of Lu2Fe3Si5 and Re3W were made using the arc furnace. We have also
grown single crystals of ZrB12 using the optical floating zone method in a 4 mirror
image furnace, and CaAlSi crystal using the Bridgman method. All the compounds
have been characterized with a combination of X-ray, neutron diffraction, EDX,
magnetization, resistivity or specific heat measurements.

In order to investigate the pairing symmetry of the iron chalcogenide super-
conductors, low temperature muon spin rotation/relaxation (µSR) measurements
have been performed on FeTe0.5Se0.5. The temperature dependence of the in-plane
magnetic penetration depth is found to be compatible with either a two gap s+ s-
wave or an anisotropic s-wave model. This result is consistent with our heat capacity
data collected on the same sample. µSR results of FeTe1−xSx show an antiferromag-
netic transition at low temperature and also suggest the presence of excess S in the
samples. A similar magnetic transition has also been observed in the magnetization
measurements.

The symmetry of the superconducting gap of Lu2Fe3Si5 with Tc = 6.1 K has
been investigated using low-temperature transverse-field µSR and specific heat mea-
surements. The temperature dependence of the magnetic penetration depth, λ (T )
is consistent with a two gap s+ s-wave model. Low-temperature specific heat mea-
surements on the same sample also show evidence of two distinct superconducting
gaps and hence support the muon results.

To resolve whether CaAlSi is a single band or multiband superconductor, we
have studied the flux line lattice in CaAlSi using small angle neutron scattering. A
well defined hexagonal flux line lattice is seen just above Hc1 in an applied field of
only 54 Oe. A 30◦ reorientation of this vortex lattice has been observed in a very
low field of 200 Oe. This reorientation transition appears to be of first-order and

xviii



could be explained by non-local effects. The magnetic field dependence of the form
factor is well described by a single penetration depth and a single coherence length.
The penetration depth anisotropy has also been estimated with the field applied at
different angles to the c-axis.

The B -T phase diagram of superconducting ZrB12 has been investigated by
means of µSR spectroscopy using a mosaic of single crystal. The local field distri-
bution for different applied fields and temperatures shows evidence of the Meissner,
mixed, and intermediate states in ZrB12. The intermediate state indicates that this
material has some of the characteristics of a type-I superconductor, while the mixed
state is typical of a type-II superconductor. Regions of coexistence have also been
observed between the different states. We have not observed any distinct features
of two-band or two-gap superconductivity in this material.

Two different superconducting phases of Re3W have been found with dif-
ferent physical properties. One phase crystallizes in a non-centrosymmetric cubic
(α-Mn) structure and has a superconducting transition temperature, Tc, of 7.8 K.
The other phase has a hexagonal centrosymmetric structure and is superconduct-
ing with a Tc of 9.4 K. Switching between the two phases is possible by annealing
the sample or remelting it. The zero-field µSR results indicate that time reversal
symmetry is preserved for both structures of Re3W. For both phases of Re3W, the
temperature dependence of the penetration depth can be explained using a single-
gap s-wave BCS model. Low temperature specific heat data also provide evidence
for an s-wave gap-symmetry for the two phases of Re3W. Both the µSR and heat ca-
pacity data show that the CS material has a higher Tc and a larger superconducting
gap ∆(0) at 0 K than the NCS compound.

The experimental work detailed in this thesis provides new information on the
superconducting properties of FeSe0.5Te0.5, FeTe1−xSx, Lu2Fe3Si5, CaAlSi, ZrB12,
and two different superconducting phases of Re3W and contributes to our overall
understanding of the physics of the different exotic superconducting features in these
systems.
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Chapter 1

Introduction

1.1 Introduction to Superconductivity

1.1.1 On a Historical Note

Superconductivity is among the most fascinating properties that a material can

show. A superconducting material exhibits zero electrical resistance and the ex-

pulsion of magnetic fields below a certain temperature, called the superconducting

transition temperature, Tc. Superconductivity was first discovered in April of 1911

by the Dutch physicist Heike Kamerlingh Onnes of Leiden University. He and his

co-workers cooled mercury to the boiling temperature of liquid helium (4.2 K) and

observed the abrupt vanishing of its electrical resistance [1]. He was awarded the

Nobel Prize in Physics for low-temperature investigations in 1913. Since then, it

has been a key interest to understand the mechanism behind superconductivity and

find superconducting materials with higher Tc values. In the following 100 years,

many superconductors were discovered [see Fig. 1.1].

The next great discovery in understanding superconductivity occurred when

the expulsion of magnetic field was discovered by Meissner and Ochsenfeld in 1933 [2].

This phenomenon of superconductivity is now known as the Meissner effect. Over

the next few decades, theorists struggled to find a microscopic theory for supercon-

ductivity. Major advances were made toward such a theory for superconductivity

with the development of the London theory [3] in 1935 and the Ginzberg-Landau

theory [4] in 1950. The complete microscopic theory of superconductivity was fi-

nally proposed in 1957 by Bardeen, Cooper, and Schrieffer [5] and is called the BCS

theory. The authors were awarded the Nobel Prize in Physics in 1972. In gen-

eral, the BCS theory limits superconducting transition temperatures to below 30 K.

The limiting value of Tc was calculated as a function of the electron-phonon and
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Figure 1.1: The chronology of the discoveries of superconductors with higher crit-
ical temperatures. The figure was taken from the website of the Coalition for the
Commercial Application of Superconductors (CCAS).

electron-electron coupling constants within the framework of the strong-coupling

theory [6]. Indeed, no superconducting compounds with Tc values higher than 30 K

were known for a long time. In this context, the most important low-temperature

superconductors are the metallic A15 compounds (Nb3Ge, Tc = 23 K) [7] and the

Chevrel phases (PbMo6Se8, Tc = 18 K) [8].

A genuine breakthrough was achieved in superconductivity research when

high-temperature superconductivity was discovered in the cuprates in 1986 [9].

These ceramic superconductors show Tc higher than 77 K (the boiling point of liquid

nitrogen), with 93 K in YBa2Cu3O7 [10]. The highest confirmed value of Tc at am-

bient pressure so far is 133 K observed in HgBa2CaCu2O6+x [11]. In 1994, another

class of superconductor, rare-earth borocarbides were discovered with a highest Tc

of 23 K for YPd2B2C [12]. There was another surprise in the superconductor world

when a metallic superconductivity with a Tc value of 39 K was found in a simple

binary compound MgB2 in 2001 [13].

In March 2008, a new era in superconductivity research began with the

discovery of high-Tc superconductivity in an iron based compound with a Tc of

26 K [14]. Many families of Fe-based superconductors have been discovered within
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the last couple of years. To date, the maximum value of Tc found in the Fe-based

superconductors is 56.3 K for Gd1−xThxFeAsO (x = 0.2) [15]. The discovery of

high-Tc superconductivity in these Fe-based materials has emerged as a huge sur-

prise to the scientific community, since the compound contain the most familiar

ferromagnetic atom Fe and there is a historical antagonistic relationship between

superconductivity and magnetism. This has opened a new path of research driven

by the fact that our fundamental understanding of the origins of superconductiv-

ity needs significant improvement. A great deal of work is in progress around the

world to explore the similarities of this new class of Fe-based superconductors with

the cuprate superconductors and thereby pave the way towards understanding the

superconducting mechanism behind these high temperature superconductors.

1.1.2 Types of Superconductivity

Superconductors can be divided into two classes depending on their behaviour in

an applied magnetic field. These are: Type-I and Type-II superconductors. In

Type-I superconductors, there is a complete expulsion of an internal magnetic field

from the bulk of a superconductor below Tc and this state is called the Meissner

state [see Fig. 1.2]. As a result of this field expulsion, the magnetization (M) of

a superconductor and the field (H) applied on it must be equal but opposite in

sign. This implies that Type-I superconductor exhibits perfect diamagnetism, i. e.,

χ = M/H = −1 in cgs unit. Superconductivity can be destroyed by the application

of a large enough field called the critical field (Hc). The value of Hc needed to drive

a superconductor into the normal state is calculated as a function of temperature

(T ):

Hc(T ) ≈ Hc(0)

[
1−

(
T

Tc

)2
]
, (1.1)

where Hc(0) is the critical field at absolute zero. The effect of Hc depends on

the shape of the sample. For a sample with zero demagnetizing factor (a long

cylinder or thin sheet with the field applied parallel to its length), the value of Hc

everywhere along the surface is equal to the applied field, Ha. For samples with

other geometries, where the demagnetizing factor is not zero, the actual field over

some parts of the sample will exceed Ha, causing some normal regions to appear

while Ha is still less than Hc. In this stage, there is always a coexistence between

the superconducting and normal regions. This state is called the intermediate state

of a Type-I superconductor.

In Type-II superconductors, the complete expulsion of the magnetic field ex-
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Figure 1.2: H-T and M -T phase diagrams for a Type-I (left) and Type-II (right)
superconductor.

ists up to a certain critical field, called the lower critical field (Hc1). Above Hc1, the

magnetic field enters into the bulk of a superconductor in the form of quantized flux

lines (also called Abrikosov vortices after their discoverer [16]). The cores of these

vortex are normal, surrounded by superconducting material. Each vortex carries a

quantum of magnetic flux, φ0 = h/2e. These tiny vortices of magnetic flux repel

each other and tend to arrange themselves in a periodic triangular flux line lattice

(FLL) to lower their energy configuration. In general, we see a triangular/hexagonal

FLL symmetry in the vortex state of a Type-II superconductor. However, since the

energy difference between triangular and square FLL symmetries is only 2%, in

some superconductors, the FLL also show cubic symmetry. For more details about

the FLL, read the review article by E. H. Brandt [17]. As the field is increased

further, more flux vortices enter the sample until a critical flux density is reached

at another critical field. This second critical field is called the upper critical field

(Hc2), above which the superconductor become a normal conductor. The behaviour

of both types of superconductors under the application of field is shown schemati-

cally in Figure 1.2. For more details, see Introduction to Superconductivity by M.

Tinkham [18].

The types of a superconductor can also be understood in terms of Ginzburg-

Landau (GL) theory. A superconducting state has two characteristic lengthscales,
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the penetration depth, λ, and the coherence length, ξ. The penetration depth is

the distance over which an applied magnetic field will extend into the superconduc-

tor, and the coherence length is the minimum distance over which the density of

superconducting carriers (electrons) can change. The ratio of these two lengthscales

(λ/ξ) is called the GL parameter, κ. Although both λ and ξ depend strongly on

temperature, κ is roughly temperature independent for most superconductors as the

temperature effect cancel out in the ratio. κ is the key parameter in determining the

nature of the behavior of a superconductor in a magnetic field. The limiting value

of κ = 1/
√

2 separates Type-I and Type-II superconductors. In Type-I supercon-

ductors, κ is less than 1/
√

2 and the surface energy associated with the boundary

between superconducting and normal regions is positive. To maintain the lowest

energy state, the surface energy i.e. the boundary area has to reduce as much as

possible. Hence an external applied field is expelled from the bulk of a Type-I su-

perconductor. However in Type-II superconductors, κ is greater than 1/
√

2 and

the surface energy is negative. To gain the lowest energy state, this will favour the

field penetrating the superconductor in the form of quantized flux lines as discussed

earlier to give a maximum possible boundary area.

In general, superconductors are classed as either Type-I or of Type-II. How-

ever, there are reports of low-κ Type-II superconductors like pure Nb, TaN (see

Ref. [19]), where the authors describe the unusual behaviour in the vortex state

due to an attractive interaction between flux lines. Recently a similar feature has

possibly been observed in MgB2, where a totally new state called “Type 1.5 super-

conductivity” is claimed by Moshchalkov et al. [20]. There is also the possibility

of coexistence between Type-I and Type-II superconductivity which we have found

with the low κ superconductor ZrB12. For the results and discussion about the

coexistence between Type-I and Type-II superconductivity in ZrB12, see chapter 6.

1.2 Theory of Superconductivity

Developing the theory of superconductivity was one of the hardest problems in the-

oretical physics during the 20th century. Many great physicists have spent their

time investigating the origin of superconductivity since its discovery in 1911. Those

include the initial work by Cornelius Gorter and Hendrik Casimir in 1934 [21] fol-

lowed by the outstanding phenomenological theories of Heinz and Fritz London in

1935 [3] and Vitaly Ginzburg and Lev Landau in 1950 [4]. All these efforts made

significance advances in understanding how superconductivity works. Throughout

these processes, several empirical relations had also been observed that hinted at
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the importance of the crystal lattice to superconductivity. The Tc of a Type-I super-

conductor and its room temperature resistivity were found to be inversely related.

Most interestingly, the best normal conductors such as Cu, Ag and Au did not even

show a sign of a superconducting transition down to the lowest measurable temper-

ature. It was also noticed that the Tc varied with the isotope. All this evidence

indicated that there was a deep connection between the electron and the lattice

vibration (phonon) of a material and this may be related to its superconductivity.

This was finally revealed by Bardeen, Cooper and Schrieffer in a theory, called the

BCS theory of superconductivity.

1.2.1 BCS Theory

The basic idea of the BSC theory is that electrons in a superconductor form a pair

(known as a Cooper pair) via the electron-phonon interaction. In the simplest case,

the electron-phonon interaction gives rise to a Cooper pair in the most symmetric

form, i.e. vanishing relative orbital angular momentum and spin singlet configura-

tion, called s-wave pairing symmetry. Electrons are fermions which means that no

two electrons can be in the same quantum state. However, there is no such constraint

for a Cooper pair. The Cooper pairs are more similar to bosons; they may condense

into a quantum ground state and travel together collectively and coherently.

For a pair of electrons, the binding energy will be maximal if they have

opposite momenta (k, -k), and the exchange correlation energy will be a minimum

if they have opposite spins. Therefore, to minimize the ground state energy of a

superconducting state, the Cooper pairs will have zero relative angular momentum

and spin. This pairing state is called the singlet state with k ↑ and k ↓ electrons.

BCS took the ground state wave function of a Cooper pair as

|ΨBCS〉 =
∏
k

(u∗k + v∗kc
†
k↑c
†
−k↓) |0〉 , (1.2)

where c†k↑, c
†
−k↓ are the electron creation operators that create a pair of electrons

of zero relative momentum and opposite spin. |0〉 is the vacuum state. u∗k, v
∗
k are

complex wavefunctions with |uk|2 + |vk|2 = 1. The probability of the pair (k ↑, k ↓)
being occupied is |vk|2, and the probability that it is not occupied is |uk|2 = 1−|vk|2.

In the language of second quantization, the reduced Hamiltonian of such a

Cooper pair is
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H =
∑

k,σ=↑,↓

(
h̄2k

2m
− µ

)
c†kσc

†
−kσ +

1

2

∑
k,k′

c†k↑c
†
−k↓Vk,k′c

†
k′↑c
†
−k′↓, (1.3)

The first term describes the Bloch electrons,
(
h̄2k
2m − µ

)
is the band energy dispersion

with the chemical potential µ, and Vk,k′ is an attractive interaction. The attractive

interaction between the electrons is necessary for creating the Cooper pairs and

hence superconductivity. Electrons normally repel each other due to the electrostatic

Coulomb force. However, it is possible for the motion of ions to screen the Coulomb

repulsion between the electrons and produce a net attractive interaction. The details

of how this may happen is described by Tinkham [22].

The ground state of the system can be obtained by minimizing the expecta-

tion value of the sum by setting

〈ΨBCS |
∑

k,σ=↑,↓

(
h̄2k

2m
− µ

)
c†kσc

†
−kσ +

1

2

∑
k,k′

c†k↑c
†
−k↓Vk,k′c

†
k′↑c
†
−k′↓ |ΨBCS〉 = 0, (1.4)

Minimization yields the expression for an excitation of wave vector k in a

superconductor with energy

Ek =

√(
h̄2k

2m
− µ

)2

+ ∆2, (1.5)

where ∆ is the energy gap in the excitation spectrum and represent the expectation

value of of the second term of Eq. 1.4.

1.2.2 Energy Gap

According to the BCS theory, the energy gap depends on the temperature and can

be calculated by solving the self-consistent BCS equation [23]

∫ ∞
0

dE

tanh
(

1
2T

√
E2 + ∆2

)
√
E2 + ∆2

− 1

E
tanh

(
E

2Tc

) = 0, (1.6)

An approximation to Eq. 1.6 can be written as

∆(T ) = 1.76 tanh

{
1.82

[
1.018

(
Tc
T
− 1

)]0.51
}
, (1.7)
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Figure 1.3: Temperature dependence of the normalised BCS gap function,
∆(T )/∆(0).

The temperature dependence of the BCS gap function, ∆(T ) of Eq. 1.7 is shown in

Figure 1.3.

A superconductor with BCS gap symmetry is known to have s-wave pairing

symmetry. All the superconductors with s-wave pairing symmetry are generally

called conventional BCS superconductors. In this pairing symmetry, electrons with

opposite spin (singlet) form the cooper pairs. This is manifested as a finite-sized

energy gap called superconducting gap in single particle excitations throughout the

entire Fermi surface. Here, the orbital state of the Cooper pair can be a spheri-

cally symmetric analogous to an atomic s orbital. A deviation from this symmetry

is considered as unconventional. For many unconventional superconductors, since

Coulomb repulsive interaction between electrons is often rather strong, Cooper pairs

favour a non-zero angular momentum to minimize the total energy. For example,

Cooper pairs with relative orbital angular momentum L = 1 form the p-wave pairing

symmetry (triplet), as we have seen for Sr2RuO4 [24]. The cuprate high temperature

superconductors take the d-wave pairing symmetry (singlet) with relative orbital an-

gular momentum L = 2 [25]. These cause superconducting gap diminishes at certain

locations called nodes on the Fermi surface. The orbital state of the Cooper pairs

with p and d -waves are analogous to atomic p and d orbitals, respectively. The
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Pauli exclusion principle restricts spin-singlet pairs to s or d orbital states and the

spin-triplet state to a p orbital state.

Two times the energy gap is the binding energy of a Cooper pair (energy

required to break the paired state), and the gap magnitude at zero temperature,

∆(0) is related to the superconducting transition temperature Tc by

2∆(0) = 3.52kBTc, (1.8)

where kB is the Boltzmann constant. At low temperature (below Tc), kBT is smaller

than the gap and hence the superconducting electrons are not excited by the thermal

vibrations of the lattice. The temperature dependence of the BCS energy gap shows

that ∆(T ) falls to zero at Tc, analogous to the behaviour of the GL order parameter

ψ. For this reason, the terms “order-parameter” and “gap function” are often used

with the same meaning.

The temperature dependence of the energy gap at temperatures near the

critical temperature is described by the formula [26]

∆(T )

∆(0)
≈ 1.74

√
1− T/Tc, (1.9)

1.2.3 Clean and Dirty BCS Model

The BCS model can be applied both on clean and dirty limits depending on the

purity of the superconducting materials. The terms clean and dirty originate from

the comparison of the isotropic BCS energy gap 2∆ with the normal-state scattering

rate 1/τ , where τ is the mean free time between ionic collisions. For 1/τ � 2∆,

the superconducting system is considered in the clean limit, while for the dirty

limit, 1/τ ≥ 2∆. The scattering rate increases as the system becomes more and

more disordered. This disorderness may come from the presence of any impurity or

inhomogeneity in the system. The clean and dirty limits may also be expressed as

l � ξ and l ≤ ξ, respectively, where l is the quasiparticle mean-free path and ξ is

the BCS coherence length. So far, we have discussed the BCS gap function in the

clean limit only [see section 1.2.1]. The details about the temperature dependence

of the gap function in the dirty limit are described in section 7.8.

1.2.4 Multiband Superconductivity

According to the BCS theory of superconductivity, all the electrons on an isotropic

Fermi surface (FS) contribute equally to the superconducting pairing, giving a con-

stant superconducting gap ∆. However, different scenarios can arise when the FS
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has multiple bands, i.e., different bands with more or less itinerant electrons over-

lapping on the FS. In this case, electrons from different bands of the FS contribute

to the superconductivity of a material. The simplest form of multiband super-

conductivity arises when electrons on different FS have different electron-phonon

coupling strengths leading to different superconducting energy gaps. The different

values of ∆ on different sheets of the FS was considered theoretically back in the

late 1950s [27]. Recently, this has emerged as a possible explanation for the unusual

physical properties observed in different unconventional superconductors, such as

MgB2 [28], YNi2B2C [29, 30], and Lu2Fe3Si5 [31].

Figure 1.4: Superconducting gap parameters for (a) weak, (b) intermediate, (c) rela-
tively strong coupling multi-band superconductor. The red and green lines represent
the larger and the smaller bands, respectively.

According to the two-band model, the coupling strength between the bands

depends on their relative compatibility for pair exchange. For weak inter-bands

coupling, the superconducting bands will behave independently and have separate

critical temperatures [see Fig. 1.4 (a)]. On the other hand, if the coupling strength

is strong, the smaller band will prefer the Tc of the larger band. This behaviour is

shown in Fig. 1.4 (c). An intermediate scenario can also be imagined and shown in

Fig. 1.4 (b). We have investigated all these different multiband/multigap natures of

the superconducting order parameters in different unconventional superconducting

systems using low temperature specific heat and muon spin spectroscopy measure-

ments.

In this thesis we have investigated the unusual properties of different su-

perconducting systems. These are FeTe0.5Se0.5, FeTe1−xSx (0.10 ≤ x ≤ 0.50),

Lu2Fe3Si5, CaAlSi, ZrB12 and two different superconducting phases of Re3W. All

these superconductors are unconventional in nature as they show different exotic

properties which cannot be explained by a simple BCS model. Each of these mate-

rials has been briefly introduced in the starting of the corresponding chapters. We
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have prepared single crystal or polycrystalline samples of all these material and per-

formed in house measurements to study magnetic, thermodynamic and transport

properties. Using magnetization, resistivity and specific heat, we can detect the

superconducting transition temperature, Tc. However, finding out the exact Tc of

a superconductor is more difficult from magnetization and specific heat compared

to the resistivity measurement. For example, in magnetization measurements, we

always need to apply some small field, hence we do not get the exact Tc which is

defined as the ordering temperature in zero field. We have primarily used the mag-

netization data to calculate the lower and upper critical fields and also to check the

amount of magnetic impurities. For specific heat meausrements, we can take the

data in zero field. However, the superconducting transition peaks tend to be very

broad, making it very difficult to judge the exact value of Tc. We have principally

used the low-temperature specific heat data to find out the symmetry of the super-

conducting gap and to calculate the superconducting volume fraction of a material.

We have also used international large scale research facilities such as ISIS, ILL and

PSI for neutron scattering and muon spin spectroscopy studies. We have performed

the muon spin spectroscopy measurements to observe the symmetry of the supercon-

ducting gap and compare it with the specific heat results. This technique can also

be used to calculate the London magnetic penetration depth at absolute zero. Small

angle neutron scattering measurements have been done to observe directly the FLL

and to investigate its symmetry in the mixed state of a Type-II superconductor.

1.3 Thesis Overview

Chapter 2 introduces all the experimental techniques we have used through out this

thesis. In chapter 3, we show the superconducting properties of the iron chalco-

genide superconductors. Good quality polycrystalline and single crystal samples of

FeSe1−xTex (0 ≤ x ≤ 0.75) and FeTe1−xSx (0.10 ≤ x ≤ 0.50) have been grown

successfully using the self-flux method. These compounds have been characterized

through X-ray diffraction, EDX, transport, magnetization and specific heat mea-

surements. We have successfully performed a transverse-field muon spin rotation

(TF-µSR) study on a polycrystalline sample of superconducting FeTe0.5Se0.5 using

MuSR at ISIS. The temperature dependence of the magnetic penetration depth,

λ(T ), of FeTe0.5Se0.5 is compatible with a two gap s + s-wave or an anisotropic

s-wave model. We have also performed µSR studies on polycrystalline samples of

FeTe1−xSx (0.10 ≤ x ≤ 0.50) and found the coexistence between superconductivity

and antiferromagnetism in this system.
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In Chapter 4, superconducting properties of Lu2Fe3Si5 have been investi-

gated using low-temperature TF-µSR and specific heat measurements. The mag-

netic penetration depth at zero temperature, λ(0), is estimated to be 353(1) nm.

λ(T ) of Lu2Fe3Si5 is consistent with a two gap s+s-wave model. Low-temperature

specific heat measurements on the same sample also show evidence of two distinct

superconducting gaps.

In chapter 5, the flux line lattice in CaAlSi has been studied by small angle

neutron scattering. A 30o lattice reorientation has been observed between fields of

97 and 294 Oe. This reorientation transition appears to be first-order in character

and can be explained well by non-locality effects. The microscopic parameters such

as λ and ξ of CaAlSi have been estimated by fitting the field dependence of the form

factor data.

In chapter 6, the superconducting phase diagram of ZrB12 has been mapped

out using µSR measurements. The local field distribution for different applied fields

and temperatures shows evidence of the Meissner, mixed, and intermediate states in

ZrB12. The intermediate state indicates that the material has the characteristics of a

Type-I superconductor, while the mixed state is typical of a Type-II superconductor.

Regions of coexistence have also been observed between the different states.

Chapter 7 presents the superconducting properties of the two superconduct-

ing phases of Re3W by powder neutron diffraction, magnetization, resistivity, spe-

cific heat and µSR measurements. One phase crystallizes in a non-centrosymmetric

α-Mn structure and has a superconducting transition temperature, Tc, of 7.80±0.05

K. The other phase has a hexagonal centrosymmetric structure and is supercon-

ducting with a Tc of 9.40± 0.05 K. Switching between the two phases is possible by

annealing the sample or remelting it. All these properties make Re3W a very useful

system in which to explore any differences in the superconducting states generated

by the different crystallographic structures.
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Chapter 2

Experimental Techniques

2.1 Sample Growth Techniques

2.1.1 Polycrystalline Sample Growth

All the samples were grown using the in-house facilities available at Warwick. To

grow a new material, people generally start with growing a polycrystalline sample.

It is also possible to perform lot of bulk measurements using polycrystalline sam-

ples. To grow a single crystal, it is essential to grow good quality polycrystalline

samples for the starting material. We have used two different techniques to grow

polycrystalline samples:

Solid State Reaction Method

In the solid state reaction method, the sample growth is carried out by mixing

and grinding together all the required elemental powder materials in stoichiometric

ratios, followed by making a pellet and then furnace heating at a controlled tem-

perature. Sometimes, the pellet was sealed in a quartz tube under high vacuum to

reduce any reaction with air, especially oxygen. Typically, the process of grinding

and heating is repeated several times to make sure that the sample is homogeneous.

Arc Melting Method

Polycrystalline samples were also made using a tri-arc furnace. In this method,

all the elemental materials are placed on a water cooled copper hearth. An arc

is created by applying a very high DC current to the electrode of the furnace.

The melting process is carried out under an Ar atmosphere. The ambient inert-

gas atmosphere is Ti-gettered before melting the sample to absorb any remaining
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oxygen. The samples are flipped and remelted several times in order to improve the

uniformity. Sometimes, individual materials (of low vapour pressure) are melted

separately before melting together to check if there is any weight loss during the

melting process. We have successfully grown polycrystalline samples of Lu2Fe3Si5

and Re3W using this method.

2.1.2 Single Crystal Growth

In polycrystalline materials, the properties of the grain boundaries often manifest

themselves more strongly than the properties of the material itself. Hence, it is

sometimes crucial to obtain a good quality single crystal to study the properties of

a material more precisely. It is also very useful to study any anisotropic behaviour

of a material and this can only be performed in single crystals. Additionally, for

neutron scattering studies, large single crystals are necessary. We have used three

different methods to grow single crystals:

Flux Growth Method

The flux growth method is in principle very simple. The material in a polycrystalline

form is mixed with a suitable solvent and melted. Then the solution is slowly cooled

and the material crystallizes with spontaneous nucleation without any preferential

nucleation sites. However, there are a few drawbacks in growing a crystal using this

method. The crystals which are obtained by this method are commonly very small

and very often it is difficult to separate the crystals from the solvent. It is also very

important to avoid contamination from the crucible material and the solvent.

Crystals can be grown even without any external flux, where part of the ma-

terials work as a self-flux. This method is called the self-flux growth method. Single

crystals of FeTe0.5Se0.5 and FeTe1−xSx were grown using this method. Here, FeSe

and FeS are used as a self-flux in the growth process of FeTe0.5Se0.5 and FeTe1−xSx,

respectively.

Bridgman Method

The Bridgman method is a technique for growing a single crystal from a molten solid.

The method involves heating a polycrystalline material above its melting point and

slowly cooling it from the lower end of its container to start nucleation. Figure 2.1

shows a schematic of a Bridgman furnace. It works with three temperature zones.

The temperature in the upper zone is the highest. The polycrystalline samples are

melted in this zone. The temperature in the lower zone is kept below the melting
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point of the materials. An adiabatic zone is established in the middle to stabilize

the melt.

Hot zone 

Cold zone 

T 

Z 

Za 

Ta 

Quartz 

tube 

Ampoule 

Sample 

Adiabatic 

zone 

Figure 2.1: Schematic of a vertical Bridgman furnace. The graph in the left is the
temperature profile of the Bridgman furnace along the vertical axis.

An ampoule with a conical shape bottom containing the polycrystalline ma-

terials is raised into the upper zone. The conical shape of the bottom is to help

nucleation during crystal growth. The sample is melted in the upper zone with high

enough temperature and then allowed to stabilize for about 24 h. The ampoule

is slowly lowered into the cold zone with lowering speeds of the order of 1 to 10

mm/h. The crystal starts growing from the bottom of the ampoule. Single crystals

of CaAlSi were grown by Dr. Da-Qian Liao using this method.

Optical Floating Zone Method

The optical floating zone technique is based on the zone melting principle. This

method is the cleanest for growing single crystals as it does not use a crucible and

hence reduces possible contamination. Figure 2.2 shows a schematic of a 2 mirror

image furnace used in an optical floating zone method. We have also used a 4 mirror

image furnace.

The heat supplied to the molten zone is provided by two/four halogen lamps.

Light from these lamps are focused by the semi-ellipsoidal mirrors onto a central zone
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Figure 2.2: Schematic of an optical floating zone furnace. The light is focused by
the semi-ellipsoidal mirrors onto a central zone where the seed and feed rods are
brought into contact. Rotations of the two rods are performed to obtain a more
homogeneous melt.

between two solid rods (called the seed and the feed rods) to make a molten zone

which is held in place by its own surface tension. Normally, both the seed and the

feed rods are made of polycrystalline materials. However, sometimes, a small part

of a single crystal (if available) is used as the seed rod for better crystal quality. The

growth process takes place inside a quartz tube, which allows for the use of different

inert, oxidizing or reducing atmospheres. Movements of the mirrors, seed rod, feed

rod and rotation of both seed and feed rods can be controlled independently. The

melt temperature during growth can be precisely controlled by the applied lamp

power but can not be measured directly. The stability of the molten zone is usually

controlled by visual observation and manual adjustments of the lamp power. We

have used this method to grow the single crystal of ZrB12. An image of the single

crystal of ZrB12 is shown in section 6.2.

This method also enables the growth of materials which do not melt congru-

ently. In order to grow such materials, a solution (flux) with low melting point is

used between the feed material and the seed rods. Thus, the processing temperature
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can be kept well below the decomposition point of the material grown. During the

process, the feed and seed rods are slowly moved downwards. The feed material is

dissolved in the melting zone and deposited in the form of a single crystal onto the

seed rod.

We have grown polycrystalline and single crystal samples of different super-

conducting materials using the above mentioned methods. Characterizations of all

these materials have been performed using the following techniques.

2.2 Characterization Techniques

2.2.1 Powder X-ray Diffraction

The X-Ray diffraction pattern of a crystalline substance is a unique signature for a

material. Powder X-ray diffraction is primarily used to check phase identification

and to determine the crystal structure of a crystalline material.

d 

Figure 2.3: The diffraction process in real (left) and reciprocal (right) space. Parallel
monochromatic x-rays (red) are incident on planes of atoms (purple spheres). The
in-phase scattered rays are shown in blue. In reciprocal lattice space, a plane of
atoms are denoted by a single point (pink sphere). Only those reciprocal lattice
points that are intersected by the Ewald sphere (yellow spheres) satisfy the Bragg
condition.

Incident X-rays are scattered by a sample [see Fig. 2.3] according to Bragg’s

law

nλ = 2d sin θ, (2.1)

where n is an integer, λ is the wavelength of the X-ray beam, θ is the acute angle

between the incident ray and the scattering planes, and d is the distance between
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the crystal planes. A diffraction pattern is obtained by measuring the intensity of

scattered waves as a function of scattering angle (2θ). For more details, see Ref. [32].

The diffraction process can also be described in terms of a reciprocal space

lattice which is simply the Fourier transform of the real space lattice. Planes of atoms

(with inter planar distance d) in real space are described by points in reciprocal space

at a distance of 2π/d from the origin in a direction perpendicular to the original

reflecting planes. If the incident beam is plotted in a direction parallel to its real

space equivalent, with a length of k = 2π/λ Å−1, terminating at the origin of the

reciprocal crystal lattice, the three dimensional locus of the wave vectors with the

same length and origin as ki will indicate kf as the outgoing wave vector. The

scattering vector is then q = kf - ki. For elastic scattering, the magnitudes of ki

and kf are equal and all possible configurations of kf will construct a sphere, called

the Ewald sphere. A two dimensional image of an Ewald sphere is shown on the

right hand side of Figure 2.3. Only the reciprocal lattice points that intersect with

the Ewald sphere will satisfy the Bragg condition and contribute to the scattering.

A Panalytical X’Pert Pro multipurpose X-ray diffraction system (MPD) [33],

with monochromated Cu Kα1 radiation was used to record the diffraction patterns

presented in this thesis. The detector is rotated during the measurement. Infor-

mation on powder diffraction data for most compounds can be obtained from the

Powder Diffraction File (PDF) database of the International Centre for Diffraction

Data (ICDD) [34]. A program searches the sample diffraction pattern for a list of

peaks, which is compared to the PDF library. The purity of the sample under study

can then be ascertained. A calculation of the volume fraction of any impurities

is made possible by comparing the intensity ratios of the strongest peaks in the

diffraction patterns.

2.2.2 Laue Diffraction

The Laue method is mainly used to determine the orientation of a single crystal. The

Laue diffraction pattern can be obtained by two different methods, back-reflection

and transmission Laue method. We have used the back-reflection Laue method.

Here, a polychromatic source with a range of wavelengths is used to probe the

whole plane of reciprocal space in a single measurement. An incident X-ray is fired

onto the single crystal through the centre of a scintillator screen. The crystal then

backscatters the X-ray towards the screen. Images on the screen are recorded using

a Photonic-Science charge-coupled device (CCD) connected to a computer. Samples

are mounted on a triple-axis goniometer which allow rotation and translation in each

axis/direction to be remotely controlled from a computer. The exposure times and
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number of images recorded can also be manipulated from the computer using the

Image-Pro Express software. For more details about this technique, see Ref. [35].

2.2.3 Single Crystal X-ray Diffraction

Figure 2.4: An Oxford Diffraction CCD single crystal diffractometer. The figure
shows the sample on a four-circle goniometer, the cryo-jet, X-ray source, CCD and
beam stop.

Single-crystal X-ray Diffraction is a non-destructive analytical technique which

provides detailed information about the internal lattice of crystalline substances, in-

cluding unit cell dimensions, bond-lengths, bond-angles, and details of site-ordering.

At Warwick, we have used a Gemini R diffractometer [see Fig. 2.4] [36] with Mo Kα

radiation to study the superstructure of the single crystal of CaAlSi [results are

discussed in section 5.3]. The detector is a 135 mm diameter Ruby CCD area de-

tector, which allows for extremely fast data collection of the entire Ewald sphere.

A kappa-geometry goniometer moves the sample so that the majority of reciprocal

space can be accessed. The parameters for a run, including the step size and X-ray

voltage are optimized for a particular sample by performing a pre-experiment. Mea-

surements at temperatures from 80 to 400 K are possible through use of a cryo-jet.
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Data reduction and cell refinement were carried out using CrysAlisPro [37].

2.2.4 Energy Dispersive Analysis using X-rays

Energy Dispersive X-Ray spectroscopy (EDX), also referred to as EDS or EDAX,

is an x-ray technique used in conjunction with scanning electron microscopy (SEM)

to identify the elemental composition of a materials. A beam of electrons interacts

with the sample and an electron from an inner atomic shell may be excited to an

outer shell while creating an electron hole where the electron was. A higher energy

electron then fills the hole and energy is given off in the form of an X-ray. The

energy of that X-ray will be characteristic of the energy difference between the

two energy levels, and so characteristic of the electronic structure of the element

involved. The data generated by EDX analysis consist of energy spectra showing

peaks corresponding to the elements making up the true composition of the sample

being analyzed. For more details, see Ref. [38]. We have used this technique to

analyze the composition of different constituents in the FeTe1−xSx system.

2.3 Magnetic and Physical Properties Measurements

2.3.1 Magnetization

The bulk magnetization measurements presented in this work were performed using

a SQUID (Superconducting Quantum Interference Device) magnetometer, part of

Quantum Designs Magnetic Property Measurement System (MPMS) [39], shown

schematically in Figure 2.5. This instrument is very sensitive to a tiny magnetic

signal, making it ideal for measuring subtle changes in the magnetic behaviour of a

sample when it is subjected to different temperatures, magnetic fields or pressures.

The temperature dependence of the magnetization can be measured in two

different applied field situations. These are called zero-field cooled (ZFC) and field

cooled (FC) modes. A ZFC measurement involves the sample being cooled from the

high temperature paramagnetic state to base temperature before a magnetic field

is applied to the sample. In a FC measurement, the field is applied beforehand.

There can be a significant difference between the ZFC and FC data depending on

the nature of the magnetic order present in a material.

The SQUID Magnetometer

The SQUID magnetometer comprises of a second-order gradiometer (counter-wound

pick-up coils) connected to two parallel Josephson junctions in a superconducting
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Figure 2.5: A schematic diagram of a Quantum Designs SQUID magnetometer. The
sample is scanned along the z direction through the pick-up coils. The change in
current is detected by the SQUID sensor, based on superconducting loops containing
Josephson junctions and yield a voltage response. The measured voltage response
curve is fitted and a value of the magnetization computed from the fitting.

ring. The sample is mounted in a non-magnetic sample holder and then placed on the

end of a non-magnetic sample rod between the pick up coils. The movement of the

sample through the gradiometer induces a current in the coils due to Faraday’s law

of electromagnetic induction. The SQUID then functions as an extremely sensitive

current to voltage converter, outputting the change in magnetic flux measured by the

pick-up coils as a dipole voltage response. The SQUID voltage is then measured at

a number of sample positions along the scan length. This SQUID response is fitted

to the theoretical signal from a point-source magnetic dipole using either iterative

or linear regression algorithms, and the moment of the sample is then extracted.

SQUID magnetometers are capable of measuring very small magnetic moments.

The instrument used in this work has a resolution of 5×10−8 emu. Magnetization

measurements can be performed with an external magnetic field up to 70 kOe (using

a superconducting magnet) and a temperature range between 1.9 to 400 K.
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Figure 2.6: A schematic of the Mcell10 hydrostatic pressure cell.

Magnetization Under Pressure

Magnetization measurements under external pressures of up to 10 kbar were made

using the easyLab Mcell 10 hydrostatic pressure cell. The cell is designed specially

for use with the Quantum Design MPMS SQUID magnetometer. A schematic dia-

gram of the pressure cell is shown in Figure 2.6. The sample is loaded in a PTFE

capsule filled with Daphne oil (the pressure transmitting medium). The hydrostatic

pressure is generated inside the capsule via two ceramic pistons using a hydraulic

press, and maintained by tightening the end locking nuts. The sample space is

approximately 1.9 mm in diameter and 10 mm long. A small piece of Sn is also

placed in the capsule. The superconducting Tc of Sn is well known as a func-

tion of pressure, and therefore the in-situ pressure can be measured using the Sn

manometer. Background signals are subtracted simultaneously using the automatic

background subtraction feature of the MPMS magnetometer, in which the voltage

response curves for the empty cell recorded at the relevant temperatures and fields

are subtracted from the total voltage response from the cell plus the sample. The

fit of the difference curve therefore gives the value of the moment of the sample. In
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order to carry out this subtraction procedure effectively, a dummy capsule shorter

in length than the real capsule is used in the background measurements to mimic

the change in length with applied pressure. Using this method, magnetic moments

as low as 1×10−5 emu can be measured.

2.3.2 Resistivity

I+ I- V+ V- 

L 

A 

Figure 2.7: A schematic of the experimental arrangements for resistivity measure-
ments using a four probe method.

Resistivity measurements were performed in a Quantum Design Physical

Properties Measurement System (PPMS) under applied fields of up to 90 kOe and

a temperature range of 1.8 - 400 K, using a standard four-probe method. Four

electrical contacts on the sample were made with fine silver wires fixed to the surface

of the sample by silver epoxy. A schematic of a four probe technique is shown in

Fig. 2.7. Here, L and A are the seperation length between the two inner probes and

cross section area, respectively. The resistivity ρ, of a long parallelopiped can be

defined as

ρ =
RA

L
, (2.2)

where, R = V/I, V is the voltage and I is current measured through the sample.

2.3.3 Heat Capacity

Specific heat measurements were performed using a two-tau relaxation method in a

Quantum Design PPMS. An image of the sample holder (puck) is shown in Fig. 2.8.

The sample is attached to the stage by standard cryogenic grease such as Apiezon

N or H Grease to ensure good thermal contact. The sample platform (stage) is

suspended in the centre of the puck by eight thin wires that serve as the electrical

23



wire 
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stage 

Figure 2.8: An image of the experimental arrangements of the sample puck for heat
capacity measurements using relaxation method.

Heat injection Relaxation 

Figure 2.9: The black line is the plot of the heat injection to the sample and the
relaxation over time. The red dotted line is the two-tau model fit to temperature
relaxation curve.

leads for an embedded heater and thermometer. The wires also provide a well-

defined thermal connection between the sample platform and the puck. The puck

is then inserted into the PPMS, which is equipped with a 90 kOe magnet and

capable of a temperature range of 1.8 to 400 K. To minimize the heat lost via
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exchange gas, the sample chamber is maintained at a very low pressure (≈ 0.01

µbar). First, the temperature of both sample platform and puck are stabilized at

an initial temperature, T0. Power is then supplied to the platform heater for a given

amount of time in order to raise the temperature (around 1 %) of the platform

to T1. Once the heater is switched off, the temperature of the sample platform

relaxes back to the puck temperature, T0. Figure 2.9 shows the plot of the heat

injection to the sample and the relaxation as a function of time. The decay of

the platform temperature is exponential, with a time constant that depends upon

the heat capacity of the sample and the thermal conductance of the wires through

which the heat flow is transmitted. The heat capacity at a particular temperature

is determined by fitting the temperature relaxation curve.

The two-tau model for measuring heat capacity assumes the sample may not

be in good thermal contact with its surroundings [40]. Two time constants are taken

from the relaxation times between the sample and sample stage and the sample stage

and puck. This is then compared to a relaxation model involving perfect thermal

contact between the sample and stage. An addenda heat capacity measurement of

the sample stage and the heat capacity of the grease is also subtracted from the

measured signal to give the sample heat capacity [40].

Heat Capacity with Helium-3 System

The Helium-3 (3He) refrigeration system extends the temperature range of the

PPMS below the standard temperature limit (1.8 K) to 0.4 K. Figure 2.10 shows

the image of the Quantum Design 3He system. It has two gas-handling lines which

run through the length of the probe: the pump line and the return line. 3He gas

flows down the pump line by a turbo pump and condenses into the reservoir in the

base of the probe and cools down the sample stage as they are thermally connected.

After a sample is mounted onto the sample stage and the 3He-refrigerator is inserted

into the sample chamber, the PPMS cools the sample chamber to 1.8 K. Once the

sample chamber is cold, the 3He-refrigerator is automatically activated and begins

to condense 3He. It is a continuously circulating system as it implements a return

line that allows 3He to continuously flow back into the reservoir. Hence, there is no

limitation on how long the refrigerator will stay cold.

The experimental techniques we have discussed so far are mainly used to

study the bulk properties of a material in a macroscopic level. However, to observe

the magnetic field distribution inside a material in a microscopic level, we have used

µSR technique.
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Helium-3 System with probe,  

diaphragm pump, and cart 
Helium-3 probe 

Figure 2.10: An image of the Quantum Design Helium-3 system. This option is
compatible with the Heat Capacity, Resistivity, and AC Transport measurement
capabilities.

2.4 Muon Spin Rotation/Relaxation

µSR stands for Muon Spin Rotation/Relaxation/Resonance, where the R is deter-

mined by the nature of application of the muon. A muon is a charged spin-1/2

particle with a mass about 200 times that of an electron (or 9 times less than that

of a proton). A muon can be considered as a heavier version of the electron. Due

to the large magnetic moment (3.18 times bigger than a proton), when a muon

is implanted into matter it becomes an extremely sensitive microscopic probe of

magnetism. Positive muons (µ+) are mainly used in condensed matter physics ex-

periments (magnetism, superconductivity, etc). µ+ avoid the positively charged

nuclei in the host material, whereas negative muons (µ−) implant close to atomic

nuclei. Hence µ− is generally much less sensitive to the phenomena of condensed

matter physics, which are essentially the physics of electrons, rather than nuclei.

Here, we will only talk about µ+ as we are only interested in investigating the elec-

tronic behaviour of a material. To learn more about µSR and its applications, read

the books by Schenck 1985, Schenck and Gygax 1995 [41, 42] and review articles by
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Dalmas and Yaouanc 1997, Amato 1997, Hillier and Cywinski 1997, Blundell 1999

and Sonier et al. 2000 [43, 44, 45, 46, 47].

Figure 2.11: Production of muons by firing high-energy protons into a light target
(usually graphite).

Low energy muons are produced from ordinary pion decay. High energy pro-

tons p (produced using a synchrotron) are fired into a light target (usually graphite

or beryllium) to make pions (π+) [shown in Fig. 2.11] via

p+ p→ π+ + p+ n, (2.3)

and the π+ decay into µ+ via

π+ → µ+ + νµ, (2.4)

where νµ is a muon-neutrino. In the rest frame of the π+, the µ+ and the νµ

must have equal and opposite momentum to fulfill the momentum conservation law.

The π+ has zero spin and νµ has spin 1/2 which is aligned antiparallel with its

momentum due to negative helicity. This implies that the µ+ spin must be opposite

to the neutrino spin and hence similarly aligned. Thus by selecting pions which stop

in the target, one must produce 100% spin-polarized muons. The muons are stopped

in the bulk of a sample and decay after a time t with probability proportional to
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exp(t/τµ), where τµ = 2.2 µs is the lifetime of the muon. The muon decays into

three particles as

Detectors 

Beam in 

Helmholtz 
magnet 

Figure 2.12: One of the suite of µSR spectrometers based at ISIS, RAL. The red
cylinders are the detectors and the yellow part is the magnet made of Helmholtz
coils. The sample is placed inside the two Helmholtz coils. Beam enter the sample
along the axis (of the coils and cylindrically arranged detectors) for the longitudinal
field and perpendicular to the axis for the transverse field measurements.

µ+ → e+ + νe + ν̄µ, (2.5)

where e+ is a positron. The decay involves the weak interaction and thus conserves

parity [48]. This phenomenon leads the emitted positron to emerge predominantly

along the direction of the muon spin when it decayed. In an experiment, one de-

tects this decay product (basically e+) and the orientation of the e+ spin tells

one essentially which way each muon-spin was pointing as it decayed. We cannot

be certain from a single positron decay along which direction the muon spin was

pointing in the sample. However, by measuring the anisotropic distribution of the

decay positrons from a collection of muons deposited under the same conditions, one

can determine the statistical average direction of the spin polarization of the muon

ensemble. Experimentally, this can be detected using scintillation detectors placed
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Figure 2.13: An image of the µSR spectrometers based at ISIS, RAL.

around the sample. The MuSR instrument at ISIS, RAL contains 64 such detectors,

each consisting of a piece of plastic scintillator joined by an acrylic light-guide to a

photomultiplier tube. The detectors are arranged in two arrays around the sample

position on a cylinder concentric with the Helmholtz coils of a magnet. A pulse of

positive muons is produced every 20 ms with a FWHM of ∼ 70 ns. A schematic

of the MuSR instrument at ISIS, RAL is shown in Fig. 2.12. A photograph of the

spectrometer is shown in Fig. 2.13. When using µSR spectroscopy to study matter,

depending on the direction of the applied magnetic field, one has the flexibility of

choosing from a number of different experimental configurations. Here, we will only

discuss transverse field Muon spin rotation (TF-µSR) and longitudinal field Muon

spin relaxation (LF-µSR) as the others are not relevant to my work.

TF-µSR

In this configuration, an external magnetic field is applied perpendicular (transverse)

to the initial direction of the muon spin polarization. A schematic of this configura-

tion is shown in the left of Fig. 2.14. The muon spin precesses about the transverse

field with a frequency proportional to the strength of the field at the muon site in

the material. We have used this technique to measure the internal magnetic-field

distribution in the vortex state of a type-II superconductor with a resolution of 0.1

mT. A pulse of positive muons is implanted into the bulk of the superconductor with

their initial spin polarization perpendicular to the applied magnetic field. They stop
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at interstitial sites due to electrostatic repulsion by atomic nuclei and precess about

the local magnetic field B(r) with a Larmor frequency

ωµ = γµB(r), (2.6)

where γµ/2π = 135.5342 MHz/T is the muon gyromagnetic ratio. In the vortex

state of a type-II superconductor, the muons implanted close to the vortex cores

experience a larger magnetic field than those implanted between vortices. Due to

this variation of magnetic field strength from site to site, different muons will precess

at different frequencies and become progressively dephased so that oscillation signals

will be damped. The larger the penetration depth, the smaller the magnetic field

variation and the less pronounced the depolarization/relaxation rate. Thus the

relaxation rate of the precession signal can be used to obtain directly the magnetic

penetration depth of a superconductor.
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Transverse Field Longitudinal Field 

Muon Spin Rotation Muon Spin Relaxation 

Figure 2.14: Field arrangement in the two MuSR geometries. F and B are the
detectors positioned before and after the sample.

LF-µSR

Here, the direction of the external magnetic field is parallel or antiparallel to the

initial direction of the muon spin polarization. A schematic of this configuration

is shown in the right hand panel of Fig. 2.14. Using this configuration, one can

measure the time evolution of the muon polarization along its original direction.

Measurements can also be performed in the absence of an external field, called zero

field muon spin relaxation (ZF-µSR). ZF-µSR is a very sensitive method of detecting

weak internal magnetism, that arises due to ordered magnetic moments, or random
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fields that are static or fluctuating with time. The capability of studying materials

in zero external field is a tremendous advantage over other magnetic resonance

techniques such as nuclear magnetic resonance (NMR) and electron paramagnetic

resonance (EPR).

In LF-µSR experiments, positrons are detected and time stamped in the

detectors which are positioned before (F ) and after (B) the sample. The positron

counts NF,B (t) have the functional form

NF,B (t) = NF,B (0) exp

(
−t
τµ

)
[1±GZ (t)] , (2.7)

where GZ (t) is the longitudinal relaxation function. GZ (t) is determined using

NF (t)− αNB (t)

NF (t) + αNB (t)
, (2.8)

where α is a calibration constant which is determined by applying a transverse-field

(TF) of 20 mT. TF and LF modes of muon spectroscopy were used to study the

magnitudes and symmetries of the superconducting gaps and also to detect any

spontaneous magnetic field in the superconducting state of different systems.

2.5 Small Angle Neutron Scattering

The neutron is one of the fundamental particles (such as proton, electron) that make

up matter. A neutron is slightly heavier than a proton with zero charge. It has an

internal structure with a distribution of positive and negatively charged particles.

The neutron is highly penetrating and has a magnetic dipole moment and spin.

These properties make the neutron a very useful tool in solid state physics research.

Small angle neutron scattering (SANS) is an elastic neutron scattering technique

that measures the deviation to small angles (fractions of a degree) of a neutron

beam due to the structure of various substances on a mesoscopic scale of about 10 -

1000 nm. The Abrikosov vortex lattice, also called the flux line lattice (FLL), is one

of the example systems that fits within this length scale. Due to flux quantization,

one unit cell must contain one flux quantum. For a hexagonal FLL, this gives:

d =

√
2φ0√
3B

, (2.9)

where B and d are the internal induction field per unit area and flux line lattice

constant, respectively.
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d 

Figure 2.15: Hexagonal FLL symmetry with the unit cell and flux line spacing.

Figure 2.15 shows the hexagonal symmetry of the FLL, including unit cell

and flux line spacings. For a relatively high induction, e.g. 1 T, the d -spacing is

≈ 40 nm. This is at least two orders of magnitude larger than that of the atomic

lattice spacings of the host crystal, and indicates that cold neutrons are required to

probe this periodicity. To cope with the extremely small momentum transfers (due

to the large d -spacing) involved in this type of scattering, SANS instruments utilize

long-wavelength (λn = 1 nm) neutrons. Even after using long-wavelength neutrons,

the angle of scatter, 2θ, which is given by Bragg law [see Eq. 2.1] is still only of the

order of a degree. Hence SANS instruments are also characterised by their large

sample-detector distances to separate out diffracted neutrons from the undiffracted

main beam.

SANS measurements were performed using the D22 instrument at the Insti-

tut Laue-Langevin (ILL), Grenoble, France and the SANS I instrument at the Paul

Scherrer Institut, Villigen, Switzerland. Fig. 2.16 shows a schematic diagram of the

instrument. Neutrons with a range of wavelengths lying between 3 and 40 Å are

used in these experiments. Thus the examination of materials is possible on length

scales which are inaccessible with the methods of light scattering. In principle the

setup of a small angle experiment is the same as for light scattering. The distance

between source and detector, the height of the scattered beam and the resulting
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Figure 2.16: A schematic of D22, a SANS instrument at ILL, France. The neutrons
are extracted from the cold source by a neutron guide and a wavelength is selected
by a mechanical velocity selector. The two other important instrument parameters
are the collimation length and the detector distance.

scattering angle characterise the scattering geometry. To monochromate the neu-

tron beam a mechanical velocity selector is used. It consists of a rotating cylinder

with helical gaps. Because of the constant velocity of rotation, only neutrons with

a specific wavelength are able to pass the cylinder. A collimation section is used to

reduce the beam divergence, and is comprised of two pinholes of varying size and

separation. The diameter is typically of 16 or 25 mm. At PSI, the collimation length

can be varied from 1 to 18 m in one meter increments. For D22, this can be done in

steps with size of 17.6, 14.4, 11.2, 8.0, 5.6, 4.0, 2.8, 2.0, and 1.4 m. Two-dimensional
3He-detectors are used to detect the diffracted neutrons which can be positioned at

any distance between 1.4 and 20 m from the sample. Both the collimation section

and the detector are kept in vacuum to reduce air scattering and beam attenuation.

All passages between vacuum and atmosphere were through single crystal sapphire

windows to reduce the small angle background signal as much as possible. We have

used this technique to observe the vortex state of superconducting CaAlSi.

2.5.1 Powder Neutron Diffraction

The General Materials (GEM) diffractometer [49] at the pulsed neutron source ISIS,

RAL is a powder neutron diffractometer. The layout of the GEM diffractometer is

shown in Fig. 2.17. GEM can be used to perform high intensity, high resolution

experiments to study the crystal structure and magnetic structure of materials,

as well as performing structural studies on disordered materials such as glasses

and amorphous metals [50]. It has eight detector banks which cover the scattering

angle range from 1.1◦ to 169.3◦. The banks contain ZnS/6Li scintillator detectors

33



������
��	�
���	

���

������
��	�
����	

�����
���
���	

������
��	�
��	

������
�	�
���	

������
�	�
���	

�����������
��������
����

������������

Figure 2.17: Layout of the powder neutron diffractometer GEM at ISIS, RAL.

which are narrow in width (5 mm), giving a high Q resolution. The large number

of detectors inside the evacuated sample tank around the sample are engineered in

such a way so as to give the highest possible count rate. The neutron flight path and

sample tank are evacuated to prevent air scattering. There is a long incident path of

17 m, allowing the flight path and time-of-flight to be well defined. Before reaching

the sample, the beam is collimated and a series of choppers define an incident

wavelength range (typically 0.05 to 3.40 Å). Neutron powder diffraction experiments

were performed to study the crystal structure of the two different superconducting

phases of Re3W. The results were shown in section 7.4.
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Chapter 3

Studies of Iron-Based

Superconductors FeTe0.5Se0.5

and FeTe1−xSx (0.1 ≤ x ≤ 0.5)

3.1 Iron-Based Superconductors

In 2008, research on high-Tc superconductivity turned in a new direction with the

discovery of superconductivity in the iron-based superconductors, LaFeAsO1−xFx

(labelled 1111, based on the elemental ratios in the chemical formula of the par-

ent compound LaFeAsO), with a Tc of 26 K by Hosono’s group [14]. This dis-

covery was preceded by an earlier report of superconductivity at 4 K in LaFePO

by the same group [51]. The Tc was soon raised to 43 K, either by replacing

La with Sm (SmFeAsO1−xFx) [52], or by applying pressure [53]. Several other

1111 superconductors with Tc ≥ 50 K have been reported [54], and the current

record is 56 K in Gd1−xThxFeAsO [15]. Besides the 1111 -type system, four other

families of iron-based superconductors have been found, denoted as the 122 -type

BFe2As2(B=Ba, Sr, or Ca) [55], the 111 -type AFeAs(A = alkali metal) [56], the

11 -type α-FeSe(Te) [57], and the 21311 -type Sr2PO3FeAs [58].

The structures of all these families possess the same tetragonal symmetry

at room temperature [see Fig. 3.1]. However, the 122 family has a space group

I4/mmm, while for the rest, the space group is P4/nmm. The key ingredient of

all these structures is the quasi-two-dimensional layer/slab consisting of a square

lattice of iron atoms with tetrahedrally coordinated bonds to either phosphorus,

arsenic, selenium or tellurium anions. These slabs are either simply stacked to-

gether, as in FeSe, or are separated by spacer layers using alkali (e.g. Li), alkaline
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Figure 3.1: Crystallographic structures of the five different families of iron-based
superconductors.

earth (e.g. Ba), rare earth oxide/fluoride (e.g. LaO or SrF) or more complicated

perovskite-type combinations (e.g. Sr2O3). The common FeAs/FeSe building block

is considered as a critical component in stabilizing the superconductivity in these

iron-based superconductors. All the Fe-based superconductors discovered so far pos-

sess some common characteristics of electronic structure. The low-lying electronic

excitations are mainly dominated by the five 3d orbitals which give rise to a couple

of hole-like bands near the zone center Γ and electron-like bands near the zone cor-

ner M. The qualitative agreement with experiment is also remarkably good. Several

angle-resolved photoemission spectroscopy (ARPES) and quantum oscillations mea-

surements confirmed that the predicted band structure composing of hole pockets

at the zone center and electron pockets at the zone corners. However, fundamental

research and potential applications of those FeAs-based materials may be limited by

the presence of the poisonous element As. The discovery of superconductivity in the

As-free Fe(Se, Te) compounds (the 11 system) hence constituted exciting progress.
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3.2 Iron Chalcogenide Superconductors

Among the five types of iron-based superconductors, the Tc for the Fe-ch (chalco-

genide) 11 system is the lowest. FeSe has a Tc of 8.0 K at ambient pressure [57].

However, the 11 materials are still of particular interest for a number of striking

features. The crystal structure of this system is the simplest among all the families

of iron-based superconductors. The 11 system is easier and safer to handle as it

does not contain As or P. Most importantly, high-quality, large-size single crystals

can be grown easily for this system.

The Tc of FeSe can be raised to 37 K by applying pressue up to 7 GPa [59].

This indicates an important role for pressure in controlling the electronic properties

and hence the superconductivity of the 11 system. Ion substitution is a conve-

nient technique for generating effective internal pressure, called chemical pressure.

This has been exploited widely in the 1111 system and in cuprate superconduc-

tors [60, 61]. The effect of chemical pressure has been studied in 11 systems by

means of Se-site substitution [62]. The substitution of tellurium on the selenium

site also increases the Tc. In FeTe1−xSex the antiferromagnetic order of FeTe is

gradually suppressed by increasing x, and superconductivity emerges with a maxi-

mal Tc of 14.5 K at x = 0.5 under ambient pressure [62, 63]. Like FeSe, a positive

pressure effect was also observed in FeTe1−xSex. The Tc of Fe1+δTe0.43Se0.57 gradu-

ally increases with the applied pressure and attains a broad maximum of 23.3 K at

23 GPa. Further compression to 12 GPa leads to a metallic but nonsuperconducting

ground state. High-resolution synchrotron X-ray diffraction shows that the super-

conducting phase is orthorhombic at ambient pressure but with a pressure between

2 to 3 GPa, the structure of Fe1+δTe0.43Se0.57 transforms to a more distorted mono-

clinic symmetry [64]. This implies that there is a link between the crystallographic

and electronic structures of the iron chalcogenide superconductors. Magnetization

and resistivity measurements indicate a lower critical field at T = 0 K, Hc1(0),

of between 10 and 80 Oe and an upper critical field, Hc2(0), of between 400 and

600 kOe for the FeTe1−xSex (0.25 ≤ x ≤ 0.5) system [65, 66, 67]. Measurements

on single crystals indicate that the superconducting properties of this material are

anisotropic [66, 67]. All these properties along with the similarity of the Fermi sur-

face to the FeAs based superconductors [68] make the 11 system an ideal candidate

to study the structure, magnetism, resistivity, specific heat, symmetry of the order

parameter and superconductivity in Fe-based superconductors.

FeTe1−xSx is another member of the 11 family and is also superconducting

with a Tc of 10 K at ambient pressure [69]. Interestingly, the parent compound,
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FeTe, is not superconducting and shows antiferromagnetic order at around 70 K.

Elemental substitution can sometimes suppress the antiferromagnetic order and in-

duce superconductivity in Fe-based superconductors. For example, this is the case

for the compounds of 122 family [55, 70]. A similar scenario has been observed

for FeTe, where a small amount (≤ 10%) of S doping on the Te site induces super-

conductivity [69]. Note, however, the as-grown samples were reported to be either

poorly superconducting or non-superconducting. Bulk superconductivity could be

induced by immersing the samples into water or alcohol for several days or by an-

nealing in oxygen for 12 h [71, 72, 73]. The solubility limit of the sulfur on the Te

site in FeTe1−xSx is reported to be 12 % [74].

Studies of the iron chalcogenide superconductors provide an excellent oppor-

tunity to understand the unconventional superconductivity in these systems which

might be helpful to reveal the key ingredient to increase the Tc to a higher value.

3.3 Studies of FeTe0.5Se0.5

Soon after the discovery of superconductivity in FeSe with a Tc of 8 K, it was natural

to explore whether chemical substitution could increase Tc in this system. A quite

immediate choice in this respect was the partial replacement of Se by Te. It was

found that the Tc can be raised to a maximum of 14.5 K with a 50 % Te substitution

to the Se site.

3.3.1 Sample Growth of FeTe0.5Se0.5

A sample of FeTe0.5Se0.5 was synthesized in a two-step self-flux method [for more

details about the self-flux method, see section 2.1.2] from high purity iron granules

(99.999%), selenium shot (99.997%) and tellurium powder (99.999%). First, the

appropriate stoichiometric mixture of elements was sealed in an evacuated carbon

coated quartz tube (10−6 mbar) and heated at a rate of 100 oC/h to 650 oC, held at

this temperature for 48 h, and then cooled to room temperature at 50 oC/h. The

sample was then heated at a rate of 180 oC/h to 970 oC for 24 h and cooled to room

temperature at 3 oC/h. Since the quartz tube often cracked during this cooling, the

tube was sealed into a second quartz tube under a high vacuum before the second

heating process. Figure 3.2 shows a sample of FeTe0.5Se0.5, grown using the above

mentioned method.
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FeTe0.5Se0.5 

Figure 3.2: A sample of FeTe0.5Se0.5, made by the two-step self-flux method.
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Figure 3.3: (a) Temperature dependence of the magnetic susceptibility of
FeTe0.5Se0.5 measured using zero-field-cooled warming (ZFCW) and field-cooled
cooling (FCC) protocols. The diamagnetic susceptibility corresponds to complete
diamagnetic screening with a Tc onset of 14.4 K. (b) Magnetization versus applied
field curves for FeTe0.5Se0.5 collected above Tc at 20 K, 150 K, and 350 K.

3.3.2 Magnetization Measurements of FeTe0.5Se0.5

Magnetization (M) versus temperature (T ) measurements carried out in a Quantum

Design MPMS magnetometer [see section 2.3.1] reveal the sample has a transition
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temperature Tc of 14.4 K [see Fig. 3.3 (a)]. The zero-field (ZF)-cooled dc suscepti-

bility approaches a value of -1 while the field cooled signal is 10−3 indicating strong

pinning in the sample. Magnetization versus applied magnetic field loops collected

in the normal state at 20, 150 and 350 K [see Fig. 3.3 (b)] show that the normal

state signal is nearly temperature independent and has a response made up of con-

tributions typical of a soft ferromagnet and a Pauli paramagnet. This is consistent

with the presence of a small amount of Fe3O4 in the sample. Using the published

value for the saturation magnetization of Fe3O4 [75] we estimate this fraction to be

∼ 0.5% of the sample by mass. The magnetization at 50 kOe and 20 K is ∼ 30

times smaller than that reported in the sample of FeSe0.85 studied by Khasanov et

al. [76]

3.3.3 Resistivity Measurements of FeTe0.5Se0.5
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Figure 3.4: Temperature dependence of the resistivity in zero field for FeTe0.5Se0.5.

Resistivity measurements were performed using the standard four probe

method, see section 2.3.2. Figure 3.4 shows the temperature dependence of the

resistivity, ρ(T), of FeTe0.5Se0.5 near the superconducting transition. The transition

is observed at (14.7 ± 0.1) K. Figure 3.5 (a) illustrates the effect on the resistive

transition for a series of applied magnetic fields (0, 1, 2, 4, 5, 6, 8, 10, 20, 30, 40,

50, 60, 70, 80, and 90 kOe) on FeTe0.5Se0.5. The resistive transitions are shifted

toward the lower temperatures as the the magnetic field increases. The temperature

dependence of the upper critical field, Hc2(T), determined from the resistive transi-

tions is shown in Fig. 3.5 (b). Here, ρn is the resistivity of FeTe0.5Se0.5 just above

the Tc. Hc2(T) were calculated by collecting the temperatures as the resistivity falls
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Figure 3.5: (a) Temperature variation of the resistivity in a set of magnetic fields
(0, 1, 2, 4, 5, 6, 8, 10, 20, 30, 40, 50, 60, 70, 80, and 90 kOe) for FeTe0.5Se0.5. (b)
Temperature dependence of the upper critical fields Hc2 of FeTe0.5Se0.5. The solid
line is a fit to the data using the WHH model.

to 10%, 50% and 90% of ρn. Fits to the temperature dependence of Hc2 data for

three different conditions[see the solid lines in Fig. 3.5 (b)] were achieved within the

Werthamer-Helfand-Hohenberg (WHH) model for conventional superconductors in

the weak-coupling regime [77].

Werthamer, Helfand, and Hohenberg studied the temperature and impurity

dependence of the Hc2 for a type-II superconductor. Both the effects of Pauli para-

magnetism and spin-orbit coupling were taken into account. In the dirty limit, the

upper critical field Hc2 can be expressed in terms of the digamma function:

ln
1

t
=

(
1

2
+
iλso
4γ

)
Ψ

(
1

2
+
h̄+ 1

2λso + iγ

2t

)

+

(
1

2
+
iλso
4γ

)
Ψ

(
1

2
−
h̄+ 1

2λso − iγ
2t

)
−Ψ

(
1

2

)
, (3.1)

where t = T
Tc

, γ =
[
(αh̄)2 −

(
1
2λso

)2]1/2
and the h̄ is related to Hc2 by the following

function

h̄ = − 4Hc2

π2 (dHc2/dt) |t=1
, (3.2)

Here, λso is the spin-orbit scattering strength and α is the Maki parameter.

The temperature dependence of the Hc2 can be fitted by adjusting λso and α. Us-

ing the WHH model, we estimate the values of Hc2(0) are 380(20), 440(20), and
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520(30) kOe for the 10%, 50% and 90% of ρn at T = 0 K. Results are shown

in Table. 3.1. These values of Hc2(0) are above the Pauli paramagnetic limit,

Hppl = 1.84Tc ≈ 267 kOe. This can be ascribed to an enhanced impurity scat-

tering from the randomly distributed excess Fe site in FeTe0.5Se0.5 as proposed in

Ref. [78]. A similar phenomena has also been observed with MgB2 [79] and can be

explained by a theory of two-gap superconductivity in the dirty limit. The theory

is based on the Usadel equations [80]. In this approach the details of the complex

Fermi surface of are not essential for calculation of Hc2, while the impurity scat-

tering is accounted for by both intraband and interband scattering by nonmagnetic

impurities.

Table 3.1: Results for fits to the temperature dependence of the upper critical field
of FeTe0.5Se0.5 using WHH model.

Model Hc2(10%) Hc2(50%) Hc2(90%)
(kOe) (kOe) (kOe)

WHH Model 38(2)× 10 44(2)× 10 52(3)× 10

3.3.4 Heat Capacity Measurements of FeTe0.5Se0.5

The heat capacity C of a substance is the amount of heat required to change its

temperature by one degree. The specific heat capacity, often simply called specific

heat, is the heat capacity per unit mass of a material. In a superconductor, the

specific-heat measurements provide a clear signature of the superconducting phase

transition. One can estimate the symmetry of the superconducting order parameter

from its electronic specific heat below Tc.

The heat capacity was measured using a two-tau relaxation method in a

Quantum Design Physical Properties Measurement System at temperatures ranging

from 1.9 K to 300 K. For details of this technique, see section 2.3.3.

The specific heat (C) of FeTe0.5Se0.5 is plotted in Fig. 3.6 in the form of C

vs. T . No anomaly is observed from room temperature down to 0.4 K except at the

superconducting transition around 14.5 K. In general, materials with more than one

type of atom (either different masses of different bonding strengths) may exhibit

two types of lattice vibrations (phonons). These may be described as acoustic and

optical phonons. For a compound having N atoms per unit cell, one expects 3

acoustical and 3N − 3 optical phonon modes. The acoustic modes are represented

as the Debye oscillators, which contribute to the total specific heat as
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Figure 3.6: Temperature dependence of the specific heat, C of FeTe0.5Se0.5. Solid
line is the two Debye and one Einstein model fit to the data using Eq. 3.3 and
Eq. 3.4.

CD(T,ΘD) = 9RND(T/ΘD)3

∫ ΘD/T

0

x4 exp(x)

(exp(x)− 1)2
dx, (3.3)

while the optical modes are represented as

CE(T,ΘE) = 3RNE

(
ΘE

T

)2 exp(ΘE/T )

(exp(ΘE/T )− 1)2
, (3.4)

where R is the gas constant, ΘD, ΘE , ND and ND are the Debye temperature, the

Einstein temperature, number of the Debye oscillators and number of the Einstein

oscillators, respectively. For more details, see Ref. [81]. To get a satisfactory de-

scription of the phonon contribution, we model the temperature dependence of the

specific heat data of FeTe0.5Se0.5 by two-Debye modes and one-Einstein mode, also

called the Born-von Karman model

C(T ) = γnT + 2CD(T,ΘD) + CE(T,ΘE), (3.5)

where CD and CE denote the Debye and Einstein contributions to the specific heat

and γn is the Sommerfeld coefficient. The fits yield ΘD1 = 210(6), ΘD2 = 94(2),

ΘE = 349(4) K for FeTe0.5Se0.5. These values are consistent with the other reported

data for this system [82].

Figure 3.7 shows C vs. T of FeTe0.5Se0.5 and FeTe0.75Se0.25 at low tempera-

ture. Specific heat data of FeTe0.5Se0.5 exhibit a pronounced anomaly around 14 K.
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Figure 3.7: C vs T of FeTe0.5Se0.5 and FeTe0.75Se0.25 at low temperature. Solid lines
are the fit to the specific data of FeTe0.75Se0.25 using Eq. 3.6.

When a material becomes superconducting, the lattice parameters (i.e. the crystal

structure) will not change and so the specific heat of the lattice will not change

either. The difference between the specific heat of the normal state and the super-

conducting state is thus due to the change in the electronic specific heat. When the

lattice contribution to the specific heat is determined in the normal state (e.g. by

applying a magnetic field) one can subtract this value from the total specific heat in

order to find the contribution of the electronic specific heat in the superconducting

state.

For FeTe0.5Se0.5, the upper critical field is too high to drive the superconduc-

tor into the normal state to estimate the phonon contribution. So as an alternative,

we assume that the phonon part of the specific heat is almost independent of doping.

We have therefore measured the specific heat of non-superconducting FeTe0.75Se0.25

to use as a reference for the phonon contribution to the specific heat for FeTe0.5Se0.5.

The specific heat of FeTe0.75Se0.25 does not show any superconducting anomaly as

expected. The temperature scale of the specific heat data of FeTe0.75Se0.25 has been

corrected by a scaling factor (0.9) to match with the specific heat of FeTe0.5Se0.5

above Tc. The scaling factor was introduced as the phonon specific heats of both

samples will not be strictly identical. These data further show that the substitution

of Se by Te does increase the lattice contribution to the specific heat by a small

amount as expected. The solid line in Fig. 3.7 shows the low temperature fit to the

specific heat data of FeTe0.75Se0.25 using the equation
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C(T ) = γnT + βT 3, (3.6)

where γnT is the electronic contribution and βT 3 represents the phonon contri-

bution to the specific heat. The fitted parameters are γn = 44.9(6) mJ/mol K2,

β = 0.636(5) mJ/mol K4. Later, these values of γn and β have been used to calcu-

late the electronic specific heat of FeTe0.5Se0.5 in the superconducting state.
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Figure 3.8: Electronic contribution to the specific heat of FeTe0.5Se0.5 as Ce/γnT vs
T/Tc. Solid lines are the fit to the data using a single-gap and two-gap BCS models.

We have investigated the symmetry of the superconducting gap of FeTe0.5Se0.5

by examining the temperature dependence of electronic specific heat. Figure 3.8

shows the non-lattice part of the specific heat of FeTe0.5Se0.5 obtained by subtract-

ing the phonon contribution (βT 3) from the total specific heat data.

To perform a single-gap and two-gap BCS models fit to the Ce/γnT data in

the superconducting state, we use the BCS expressions for the normalized entropy,

S, and the specific heat

S

γnTc
= − 6

π2

∆0

kBTc

∫ ∞
0

[f ln f + (1− f) ln(1− f)]dy, (3.7)

C

γnTc
= t

d(S/γnTc)

dt
, (3.8)

where t = T/Tc, f = [1 + exp (E/kBT )]−1 is the Fermi function, ε is the energy of the

normal electrons relative to the Fermi energy, E = [ε2+∆2(t)]1/2, and y = ε/∆. The

temperature dependence of the energy gap varies as ∆(t) = ∆0δ(t), where δ(t) is the
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Table 3.2: Results for fits to the temperature dependence of the electronic contri-
bution to the specific heat of FeTe0.5Se0.5 using different models for the symmetry
of the superconducting gap function.

Model Gap value (meV) χ2
red

s-wave ∆(0) = 0.63(1) 10.06

s+ s-wave ∆1=2.73(4), ∆2=1.26(13) and ω1 = 0.87(5) 1.92

normalized BCS gap [83]. The blue line in Fig. 3.8 is the single-gap BCS model fit to

the data, while the red line represents the two-gap fit. We obtain a superconducting

gap, ∆(0) = 0.63(1) meV for the single-gap BCS model fit with a reduced chi-

squared (χ2
red) value of 10.06. The χ2

red statistic is simply the chi-squared (χ2)

divided by the number of degrees of freedom. Within the simple two-gap BCS model,

the total specific heat can be assumed as a summation of the contribution from each

gap calculated independently using Eqs. 3.7 and 3.8. A fit to the data using the two-

gap model yields ∆1 = 2.73(4) meV, and ∆2 = 1.26(13) meV with a weighting factor

(ω1) of 0.87(5) for the larger gap. We obtain the lowest value of the χ2
red (1.92) using

this two-gap model. The magnitude of the superconducting gaps are 2∆1/kBTc =

4.52(9) and 2∆2/kBTc = 2.10(28). Table 3.2 shows the fitted parameters using

different superconducting gap models. The second superconducting gap (smaller

gap) is nearly half of the larger gap. These data suggest that the difference in the

gap value of each band in this system is less substantial than the case of other

multigap superconductors, like MgB2 and Lu2Fe3Si5 [28, 31] where the smaller gap

is only one fourth of the larger gap.

3.3.5 µSR Measurements of FeTe0.5Se0.5

µSR measurements on FeTe0.5Se0.5 were performed using the MuSR spectrometer

based at ISIS. For more details about the MuSR spectrometer, see section 2.4.

Measurements were carried out in zero field and in both longitudinal-field (LF) and

transverse-field (TF) modes in magnetic fields of up to 2500 and 600 Oe for the LF

and TF modes, respectively. Each detector is normalized for the muon decay and

rotated into two components at 90 degrees to one another.

A powder sample of FeTe0.5Se0.5 (with a size of 30 mm by 30 mm square

and 1 mm thick) was mixed with GE varnish and mounted on a pure Ag plate.

For measurements down to 1.2 K, the sample was placed in a conventional Oxford

Instruments cryostat. Data were also collected between 0.3 and 1 K in an Oxford
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Instruments He-3 cryostat. For the measurements in TF mode in the conventional

cryostat, haematite slabs were positioned immediately behind the sample to reduce

the background signal. Muons stopping in the hematite contribute a negligible

amount to the asymmetry signal because they are rapidly depolarized. For mea-

surements in the He-3 cryostat these haematite slabs were removed to ensure good

thermal contact between the sample and the cold stage of the cryostat leading to an

increased background in the collected data. For all the data collected in a magnetic

field presented here, the sample was field-cooled to base temperature and the data

collected while warming the sample in a field. A set of data collected at 1.2 K in an

applied LF, H = 400 Oe after the sample was zero-field cooled produced no usable

signal due to the very strong pinning present in the sample.
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Figure 3.9: Zero-field (T=20 and 1.2 K) and longitudinal-field (T=20 K and
H = 300 Oe) µSR time spectra for a sample of FeTe0.5Se0.5.

Zero-field (ZF) µSR data (see Fig. 3.9) can be fitted using

GZ(t) = A0 exp (−Λt) , (3.9)

where A0 is the initial asymmetry, with a small nearly T independent relaxation

rate, Λ, of 0.19µs−1 between 20 and 1.2 K. The application of a small longitudinal

magnetic field is sufficient to decouple the muon spin from the internal magnetic

field. In line with the observations of Khasanov et al. [76] this suggests that the

depolarization is caused by weak, static magnetic fields, that are present in the

sample both above and below Tc. The most likely source of these fields is dilute,

randomly oriented magnetic moments associated with the Fe3O4 impurity phase.

Figure 3.10 shows the TF-µSR precession signals above and below Tc. In the
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Figure 3.10: One component of the transverse-field muon-time spectra for
FeTe0.5Se0.5 collected in a magnetic field H = 300 Oe at temperatures above
(T = 20 K) and below (T = 1.2 K) the superconducting transition temperature
Tc = 14.4 K.

normal state, the oscillation shows a small relaxation. Below Tc, the relaxation rate

increases due to the inhomogeneous field distribution of the flux line lattice. Previous

measurements on polycrystalline samples of superconducting materials have shown

that the internal field distributions can be modelled using a sinusoidally oscillating

function with a Gaussian component

GX(t) = A0 exp (−Λt) exp
(
−σ2t2

)
cos (ωt+ ϕ) , (3.10)

where ω is the muon precession frequency and ϕ is the phase offset. σ is the

Gaussian relaxation rate given by σ =
(
σ2
sc + σ2

nm

) 1
2 . σsc (T ) is the contribution

to the relaxation arising from the vortex lattice while σnm, the nuclear magnetic

dipolar term, is assumed to be temperature independent over the temperature range

of the measurements. The data were fitted in two steps. First the data in the

two channels were fitted simultaneously at each temperature with A0, Λ, and σ

as common variables. The fits were checked over the entire temperature range to

ensure that physical values were obtained for all the parameters at each temperature

point. To ensure stability of the fits, Λ was then fixed to the value obtained just

above Tc and the data were refitted at each temperature point. The temperature

dependence of σ obtained is shown in Fig. 3.11 (a). The value of σ is also observed

as a function of applied field and found to very little or no change over the entire

field range [see Fig. 3.11 (b)].
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Figure 3.11: (a) The temperature dependence of the Gaussian depolarization rate
σ extracted from the TF muon-time spectra collected in an applied magnetic field
H = 300 Oe. (b) The magnetic field independence of the parameter σ.

In a superconductor with a large upper critical field and a hexagonal Abrikosov

vortex lattice, the Gaussian muon-spin depolarization rate, σsc (T ), is related to the

penetration depth λ by the expression

2σ2
sc (T )

γ2
µ

= 0.00371
Φ2

0

λ4 (T )
, (3.11)

where γµ/2π = 135.5 MHz/T is the muon gyromagnetic ratio and Φ0 = 2.068× 10−15 Wb

is the flux quantum [47, 84]. The temperature dependence of the penetration depth

can then be fitted using either a single gap or a two gap model [23, 85]

λ−2 (T )

λ−2 (0)
= ω1

λ−2 (T,∆0,1)

λ−2 (0,∆0,1)
+ (1− ω1)

λ−2 (T,∆0,2)

λ−2 (0,∆0,2)
, (3.12)

where λ−2 (0) is the value of the penetration depth at T = 0 K, ∆0,i is the value of

the i-th (i = 1 or 2) superconducting gap at T = 0 K and ω1 is the weighting factor.

Each term in equation 3.12 is evaluated using the standard expression within

the local London approximation [22, 86]

λ−2 (T,∆0,i)

λ−2 (0,∆0,i)
= 1 +

1

π

∫ 2π

0

∫ ∞
∆(T,ϕ)

(
∂f

∂E

)
EdEdϕ√

E2 −∆i (T, ϕ)2
, (3.13)

where f is the Fermi function, ϕ is the angle along the Fermi surface, and

∆i (T, ϕ) = ∆0,iδ (T/Tc) g (ϕ). The temperature dependence of the gap is approx-

imated by the expression δ (T/Tc) = tanh
{

1.82 [1.018 (Tc/T − 1)]0.51
}

[23] while
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Table 3.3: Results for fits to the temperature dependence of the penetration depth
using different models for the symmetry of the superconducting gap function.

Model g (ϕ) Gap value (meV) χ2
red

s-wave 1 ∆=1.86(2) 5.93

s+ s-wave 1 ∆1=2.6(1), ∆2=0.87(6) and ω1 = 0.70(3) 1.55

anisotropic s-wave (s+ cos 4ϕ) ∆ = 1.4(1) with s = 1.56(5) 1.62

d-wave |cos (2ϕ)| ∆ = 3.31(4) 2.87

g (ϕ) describes the angular dependence of the gap and is replaced by 1 for both an

s-wave and an s+ s-wave gap, (s+ cos 4ϕ) for an anisotropic s-wave and |cos (2ϕ)|
for a d-wave gap. [63]. The fits [see Table 3.3] appear to rule out both the d-wave

and s-wave as possible models for this system. The values of χ2 are lower for both

s+s-wave and anisotropic s-wave models. Note, the normalized χ2 values, resulting

from our least squares fits to the temperature dependence of λ−2 using different

models for the gap, are used as the criteria to determine which model best describes

the data.

The anisotropic s-wave model gives a value for s, the parameter reflecting

the isotropic s-wave component, that is larger than that obtained for FeSe0.85 in

Ref. [76]. Nevertheless, the variation in the gap with angle ∆max/∆min ≈ 4.6

is still larger than the published values for related single layer superconductor

NdFeAsO0.9F0.1. [87]

A fit to the data using a two-gap s + s-wave model is shown in Fig. 3.12

and gives ∆0,1 = 2.6(1) meV and ∆0,2 = 0.87(6) meV with ω1 = 0.70(3). This

model gives the lowest χ2. The gap parameters extracted from these µSR studies,

are consistent with the parameters extracted from heat capacity measurements. ω1

agrees with the value obtained by µSR for FeSe0.85 where ω1 = 0.658(3). [76] The

size of the larger energy gap for FeSe0.85 and FeTe0.5Se0.5 scale with Tc. We found

the gap ratio, ∆0,1/∆0,2 ∼ 3 for FeTe0.5Se0.5, which is 40% smaller than the corre-

sponding value seen in FeSe0.85 but is similar to the value for RFeAsO0.9F0.1 (R=La,

Nd) determined by measuring the magnetic penetration depth using a tunnel-diode

resonator [88].

For anisotropic polycrystalline samples, the magnetic penetration depth, λ,

calculated from the µSR depolarization rate σ is related to λab, the in-plane penetra-

tion depth by λ = 3
1
4λab [89]. Note, µSR cannot measure λ along a single crystallo-
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Figure 3.12: Temperature dependence of λ−2 for FeTe0.5Se0.5. The curve (black
line) is a fit to the data using two s-wave components, each with an isotropic gap.

graphic direction. The measurements are limited to mixed quantities, which here is

λab = (λaλb)
1/2. At T = 0, the value for λ (0) = 703(2) nm with λab (0) = 534(2) nm.

The error in λ(0) is the statistical error arising from the fit to the λ−2(T ) data using

the model described in the text. The error quoted does not take into account any

systematic errors (e.g. vortex lattice disorder) that may be present in the data.

These values are longer than those obtained by Khasanov et al. [76] for FeSe0.85 in

spite of the fact that the Tc of FeTe0.5Se0.5 is ∼ 6 K higher.

LaFeAsO1-xFx 

FeTe0.5Se0.5 

Figure 3.13: Uemura plot for hole and electron doped high Tc cuprates. The dough-
nut on the plot shows the data for FeTe0.5Se0.5.
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An Uemura plot nicely demonstrates the linear relation between λ−2 and

Tc for underdoped and optimally doped superconductors [90, 91]. In Fig. 3.13, the

doughnut shows the data of FeTe0.5Se0.5 on the Umera plot. The value for λ places

FeTe0.5Se0.5 above the line for hole doped high Tc cuprates. This indicates that the

superfluid density of FeTe0.5Se0.5 is also very dilute, similar to the cuprate family,

and provides evidence for unconventional superconductivity in this system. In un-

derdoped cuprates, a dilute superfluid density is observed due to the fluctuations

of the phase of the superconducting order parameter. It is assumed that the effects

of phase fluctuations are due to the exchange of spin fluctuations in the pairing

interaction [92].

Using an upper critical field, Bc2 (0) ‖ ab, for FeTe0.5Se0.5 estimated from

transport measurements of 520 kOe and Bc2 = Φ0
2πξ2

, we calculate a coherence length,

ξab, for FeTe0.5Se0.5 at 0 K of ∼ 2.6 nm. If this is combined with our measurement of

λ and the standard expression Hc1 = Φ0
4πλ2

(
ln λ

ξ + 0.12
)

[22] we estimate Hc1 (0) ‖
ab = 32 Oe. This is in fair agreement with magnetization measurements where

the first deviation from linear behaviour gives Hc1//ab of between 10 and 80 Oe at

1.5 K. [66, 67]

By this point we know that FeTe0.5Se0.5 is superconducting with a Tc of

14.5 K. We have also seen that the Tc of FeTe0.5Se0.5 can be raised as high as 23.3 K

with the application of external pressure. Inseatd of applying external pressure, we

can substiture a atomic site of a material with a smaller size atom and increase the

internal pressure (called chemical pressure). In the next section we have discussed

about FeTe1−xSx, where we replaced Se with S to increase the Tc by growing chemical

pressure.

3.4 Studies of FeTe1−xSx (0.1 ≤ x ≤ 0.5)

FeTe has a tetragonal structure analogous to superconducting FeSe. It undergoes

antiferromagnetic ordering at nearly 70 K and does not show superconductivity.

The magnetic ordering is suppressed by S or Se substitution, and superconductivity

appears [62, 63, 69, 74]. It is assumed that the substitution of smaller atoms at the Te

site create a chemical pressure and induce superconductivity. However, hydrostatic

pressure does not induce superconductivity in FeTe [93, 94]. In order to try to

understand why only the Te-site substitution can induce superconductivity in FeTe,

we have carried out an in depth study of S-substituted FeTe.
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3.4.1 Sample Growth of FeTe1−xSx (0.1 ≤ x ≤ 0.5)

As-grown samples of FeTe1−xSx (0.1 ≤ x ≤ 0.5) were made using the same technique

as described in section 3.3.1. Finally, the samples were annealed in an oxygen flow

at 200◦C for 12 h.

3.4.2 Powder X-ray Diffraction Studies of FeTe1−xSx (0.1 ≤ x ≤ 0.5)

Powder x-ray diffraction patterns were collected using a Panalytical X’Pert Pro

X-Ray MPD Powder Diffractometer with Cu Kα radiation. For more details of

the experimental procedure, see section 2.2.1. The XRD patterns show that all

the samples have a tetragonal structure with space group P4/nmm. The patterns

indicate that all the samples contain small amounts of the impurities Fe7S8 and

Fe3O4, consistent with previously reported XRD patterns.[71] By comparing the

intensity of the impurity peaks with those from the sample, we estimate that the

impurities constitute no more then 2% of the sample.
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Figure 3.14: (a) Powder x-ray diffraction data collected around the (002) peak for
samples of FeTe1−xSx 0.1 ≤ x ≤ 0.5 shows the clear shift in the position of this
peak with increasing x. (b) The c-axis lattice parameter and the cell volume as a
function of S doping, refined from the x-ray diffraction patterns.

Figure 3.14(a) clearly shows the shifting of the (002) peak toward higher

2θ angles with increasing S concentration. A broadening of the peaks for lower x

(especially for x = 0.1 and x = 0.2) indicates the presence of some local structural

inhomogeneity in these samples. Figure 3.14(b) shows that the lattice constant, c,

and the cell volume initially decrease with increasing S concentration. These results

are consistent with the fact that the ionic radius of S2− (1.84 Å) is smaller than

Te2− (2.21 Å). [95] The changes in c and the cell volume reach saturation at x = 0.3,
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implying that there is a limit to the amount of S that can be doped onto the Te site

in FeTe1−xSx.

Figure 3.15: Actual S concentration, xe, in FeTe1−xSx as a function of nominal x
determined by EDX.

The actual S concentration xe as measured by EDX spectroscopy for the

FeTe1−xSx samples with nominal values of x = 0.1, 0.2, 0.3, 0.4 and 0.5 are given in

Fig. 3.15 and Table 3.4. Measurements were carried out on five different spots across

the surface of the sample and then averaged to get the final value. The results show

that the measured S content xe is always smaller than the nominal x. xe increases

with increasing x up to x = 0.3 and then remains nearly constant for higher values

of x. We estimate the solubility limit of the S atoms on the Te site to be around

16%, which is slightly higher than 12%, suggested by Mizuguchi et al. [74]. However

we could not detect any trace of free S in the XRD data.

Table 3.4: Results for S concentration(xe), lattice parameters (a and c) and cell
volume (v) of FeTe1−xSx for nominal x = 0.1, 0.2, 0.3, 0.4 and 0.5.

x xe a(Å) c(Å) v(Å3)

0.1 0.02(1) 3.811(3) 6.2589(2) 90.89(6)
0.2 0.10(2) 3.810(1) 6.2419(3) 90.58(6)
0.3 0.13(5) 3.810(1) 6.2345(1) 90.49(3)
0.4 0.16(4) 3.810(2) 6.2356(1) 90.49(4)
0.5 0.14(5) 3.808(2) 6.2323(1) 90.38(5)
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3.4.3 Magnetization Measurements of FeTe1−xSx (0.1 ≤ x ≤ 0.5)
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Figure 3.16: Temperature dependence of the magnetic susceptibility, χ (T ), of
FeTe1−xSx for x = 0.1, 0.2, 0.3, 0.4 and 0.5, measured on zero-field-cooled warm-
ing (ZFCW).
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Figure 3.17: Temperature dependence of the magnetic susceptibility, χ (T ), of
FeTe1−xSx for x = 0.2, 0.4 and 0.5, measured on zero-field-cooled warming (ZFCW)
with an applied field of 1 kOe.
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Magnetization measurements as a function of temperature T , applied field

H and pressure P were performed in a MPMS magnetometer [see section 2.3.1].

Fig. 3.16 shows the temperature dependence of the magnetic susceptibility χ (T ) of

FeTe1−xSx for x = 0.1, 0.2, 0.3, 0.4 and 0.5 collected during zero-field-cooled warm-

ing (ZFCW) in an applied field H = 10 Oe. The transition temperature Tc (onset)

of FeTe1−xSx appears to increase slightly with x up to x = 0.4. The data also show

that the diamagnetic signal increases slowly with increasing x and reaches a max-

imum for FeTe0.6S0.4, indicating that this sample has the largest superconducting

volume fraction. χ (T ) of FeTe1−xSx for x = 0.2, 0.4, 0.5 were also collected in an

applied magnetic field of 1 kOe. All the data were taken in the ZFCW mode. Data

in Fig. 3.17 show that along with the superconducting transition (marked as Tc),

there is also an extra peak between 14 and 20 K (marked as TN ) for each of those

compositions. We believe this extra peak is an antiferromagnetic transition due to

the ordering of the iron spins. A similar antiferromagnetic transition has also been

observed at 58 K in the parent compound FeTe [96].
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Figure 3.18: Magnetization vs. applied field curves for FeTe0.6S0.4 collected above
Tc at 30 K, 100 K, and 350 K.

Fig. 3.18 shows the magnetization vs. applied magnetic field curves for

FeTe0.6S0.4 collected in the normal state at 30, 100 and 350 K. The normal state

signals are nearly temperature independent. This suggests that the normal state

magnetization has a response made up of contributions typical of a soft ferromagnet

and a Pauli paramagnet [67]. This is due to the presence of a small amount of Fe7S8

and Fe3O4 in the sample. Using the reported value for the saturation magnetization

of Fe7S8 and Fe3O4 we estimate this fraction to be ∼ 1.0% of the sample by mass,

56



is similar to our x-ray diffraction measurements [97, 75].
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Figure 3.19: (a) Magnetization (M) as a function of applied magnetic field, H,
collected at 1.8 K. (b) ∆M vs H, shows the deviation from the straight line mag-
netization.

Fig. 3.19 (a) shows the magnetization (M) as a function of applied magnetic

field at 1.8 K. ∆M is the difference in the magnetization from a straight line be-

haviour where the first deviation of ∆M from the zero line gives an estimate of the

lower critical field (Hc1). Hc1 is approximately 5(1) Oe for ∆M ≤ 10−5 emu/f.u.
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Figure 3.20: Magnetic hysteresis loops for FeTe0.6S0.4 collected at 1.8 K and 6 K.

Figure 3.20 presents the magnetic hysteresis loops for FeTe0.6S0.4, collected

at 1.8 K and 6 K. The hysteresis loops have a large loop-width that mainly arises

from bulk flux pinning rather than from the (Bean-Livingston) surface barrier [98]
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as seen in many other Fe-based superconductors [99].

3.4.4 Resistivity Measurements of FeTe1−xSx (0.1 ≤ x ≤ 0.5)
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Figure 3.21: (a) Resistivity as a function of temperature of FeTe1−xSx for
x = 0.1, 0.2, 0.3, 0.4 and 0.5, measured in zero applied magnetic field. (b) Resis-
tivity as a function of temperature, measured up to room temperature.

AC resistivity was measured by a standard four-probe configuration using a

Quantum Design Physical Property Measurement System (PPMS), see section 2.3.2.

Figure 3.21 (a) shows the temperature dependence of the resistivity ρ of FeTe1−xSx

for x = 0.1, 0.2, 0.3, 0.4 and 0.5, collected in zero magnetic field. Zero resistivity is

clearly observed below 10 K in FeTe1−xSx for all compositions except in the x = 0.1

sample. The lack of zero resistivity in FeTe0.9S0.1 might be due to the insufficiency of

S concentration which is needed to reach a percolation threshold (i.e. the minimum

fraction for a continuous superconducting current path). Figure 3.21 (b) shows

the resistivity data up to room temperature. The peak at 70 K for FeTe0.9S0.1

corresponds to an antiferromagnetic (AF) transition presumably coupled with a

structural phase transition as seen by Zajdel et al. [100] which slowly disappears with

increasing S concentration. We observe a slight increase in Tc (onset) with increasing

S concentration with a maximum Tc (onset) of (10.04± 0.01) K for x = 0.4.

The superconducting transition temperature of FeTe1−xSx as a function of

S doping is shown in Fig. 3.22. T onsetc (R) and T zeroc (R) have been taken from

the resistivity data [see Fig. 3.21] while T onsetc (χ) is taken from the χ (T ) data

[see Fig. 3.16]. In all three sets of data, Tc remains nearly constant for all sulfur

compositions.
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Figure 3.23: (a) Resistivity as a function of temperature of FeTe0.6S0.4, measured
in different applied fields. (b) Temperature dependence of the upper critical field
of FeTe0.6S0.4. The solid lines indicate the fits made using GL theory. The dashed
lines indicate the fits from the WHH model.

Fig. 3.23 (a) shows the temperature dependence of resistivity of FeTe0.6S0.4

in different applied magnetic fields up to 90 kOe. This indicates that the super-

conducting transitions shift toward lower temperature and become broader with

increasing applied magnetic fields. ∆Tc increases from 2.14 K at 0 Oe to 3.10 K at

90 kOe. Fig. 3.23 (b) shows the upper critical field (Hc2), determined from the Tc
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of FeTe0.6S0.4 at different applied fields. ρn is the resistivity of FeTe0.6S0.4 in the

normal state (just above Tc). Tc(10% ρn), Tc(50% ρn) and Tc(90% ρn) are defined

as the resistivity falls to 10%, 50% and 90% of ρn respectively. The temperature

dependence of Hc2 can be fitted using the Ginzburg Landau (GL) theory:

Hc2(T ) = Hc2(0)
1− t2

1 + t2
, (3.14)

where Hc2(0) is the upper critical field at T = 0 K and t = T/Tc [101]. The

fits were also made from the WHH model [for details, see section 3.3.3]. Results are

shown in Table. 3.5. The results are consistent with other reported values for this

system. [69, 102]

Table 3.5: Results for fits to the temperature dependence of the upper critical field
of FeTe0.6S0.4 using GL theory and WHH model.

Model Hc2(10%) Hc2(50%) Hc2(90%)
(kOe) (kOe) (kOe)

GL theory 45(3)× 10 56(3)× 10 73(5)× 10
WHH Model 27(4)× 10 39(3)× 10 54(4)× 10

The coherence length (ξ) corresponding to the upper critical value can be

calculated using the GL relation ξ = (Φ◦/2πHc2)1/2 [84]. We have used the value

of Hc2(0) estimated from the GL model over the WHH model as the formar model

better fit the data close to Tc. For Hc2(0) = 780 kOe, the estimated ξ is 2.05 nm,

which is consistent with the ξ for the related FeTexSe1−x system. [67] Combining

ξ and the standard expression Hc1 = Φ0
4πλ2

(
ln λ

ξ + 0.12
)

, we estimate the magnetic

penetration depth, λ = 664(1) nm. [22] The result is again consistent with the

penetration depth of FeTexSe1−x system. [67]

3.4.5 Magnetization Measurements of FeTe0.5S0.5 with Pressure

Magnetization versus temperature under pressure were carried out in a copper-

beryllium clamp cell (easyLab Mcell 10). For details about the easyLab Mcell 10,

see section 2.3.1. The samples were placed in a PTFE sample holder filled with a

pressure transmitting medium (Daphne oil) and the pressure was applied at room

temperature. The pressure at low temperature was determined by measuring the

Tc of a piece of high purity (99.9999%) tin (used as a Manometer) placed alongside

the sample.

Fig. 3.24 shows the pressure dependence of the Tc of FeTe0.5S0.5 obtained

from magnetization measurements. Data collected for increasing or decreasing pres-
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Figure 3.24: Pressure (P ) dependence of the transition temperature Tc for
FeTe0.5S0.5.

sure legs, Tc of FeTe0.5S0.5 decreases linearly with increasing pressure (P ) with a

gradient, dTc/dP = −0.27(1) K/kbar. This contrasts with the scenario it has been

observed for FeSe and FeTe1−xSex system, where Tc initially increases with P and

goes through a broad maximum and decreases thereafter [64]. This type of opposite

pressure dependence can be understood from the low temperature crystal symmetry

of FeTe1−xSx system. A detail study by P. Zajdel et al. [100] on FeTe1−xSx sug-

gest that on sulfur inclusion, the monoclinic crystal structure of Fe1+xTe transforms

through an orthorhombic phase to a superconducting tetragonal phase with a Tc of

10 K. This is a completely different scenario to that seen for other members of the

iron chalcogenide system. For example, FeSe is orthorhombic rather than tetragonal

at low temperature [103]. Hence, a possible link can be made between the structure

and pressure dependence of Tc in the iron chalcogenide system.

So far we have investigated different superconducting properties of FeTe1−xSx.

To observe the magnetic ordering and if there is any coexistence between the super-

conducting and magnetic phase in FeTe1−xSx, we have performed the µSR studies

on the different compositions of FeTe1−xSx.

3.4.6 µSR Measurements of FeTe1−xSx (0.1 ≤ x ≤ 0.5)

µSR experiments were carried out in longitudinal geometry using the MuSR spec-

trometer at the ISIS facility (see section 2.4 for more detail). The polycrystalline

samples were formed into thin disks, 30 mm in diameter and 1 mm thick, and
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mounted onto a highly pure (99.995 + %) silver plate. Any muons stopped in silver

give a time-independent background for longitudinal (relaxation) experiments. The

sample holder was then mounted in an Oxford Instruments cryostat. The sample

was cooled to base temperature in zero applied magnetic field and the µSR spectra

were collected on warming the sample in zero field. Any stray fields at the sample

position are cancelled to within 0.01 Oe by a flux-gate magnetometer and an active

compensation system controlling three pairs of correction coils.

The µSR spectra are best described for all temperatures and compositions

by a double exponential decay with each exponential decay having equal weighting,

as given by

Gz(t) = A0 exp(−λ1t) +A0 exp(−λ2t) +Abckgrd (3.15)

where A0 is the initial asymmetry, λ1,2 are the muon depolarization rates and Abckgrd

is the background coming from Ag exposed to the muon beam. A typical spectrum

is shown in Fig. 3.25. The need for the two exponential decay times implies that

there are two unique muon sites within the sample.
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Figure 3.25: Typical µSR spectra for FeTe0.9S0.1 for a range of temperatures. The
lines are least squares fits to the data as described in the text.

Figure 3.26 shows the initial asymmetry as the function of temperature.

The drop in the initial asymmetry might be due to a magnetic transition which

does not show any dependence on composition. Interestingly, the drop in initial

asymmetry is quite broad which suggests regions of the sample are ordering, which

may indicate inhomogeneity in the sample. Another interesting point to note is the
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Figure 3.26: The temperature dependence of the initial asymmetry of the relaxing
component A0.

gradual reduction of A0 at high temperatures with increasing S concentration, whilst

Abckgrd remains approximately constant. This could be caused by either magnetic

impurities or muonium. In the latter case, a thermalized positive muon picks up

an electron and form a neutral atomic state. Magnetization data from FeTe1−xSx

(see Fig. 3.18) show almost no evidence of magnetic impurities. However, EDAX

measurements show that the solubility of S in FeTe reaches saturation at 16%. The

behaviour of pure S is quite complex, but an interesting feature is that implanting

muons into S gives 100% muonium, which causes a complete loss of asymmetry.

Therefore, we attribute the gradual reduction of A0 with composition to an excessed

S, and the estimated amount is in broad agreement with the EDAX measurements.

Figure 3.27 shows the muon depolarization rate (λ) as a function of temper-

ature. As expected the depolarization rate shows a peak at the superconducting

transition. Interestingly, the higher relaxation rate (λ1) seems to show a double

peak. The lower temperature peak in λ1 is close to the peak position in λ2 are are

taken to indicate the superconducting transition temperature, Tc. The peak at high

temperature in λ1 may be due an antiferromagnetic (AF) transition. In analogy

with FeTe [96], this AF transition may be due to a SDW (spin density wave) transi-

tion associated with an ordering of the iron spins. A similar AF transition has also

been observed in the magnetization measurments on the same sample. However,
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Figure 3.27: The temperature dependence of the muon depolarization rate λ of
FeTe1−xSx for 10%, 20%, 40%, and 50% S compositions.

more studies are required to establish the exact nature of these magnetic transitions

seen in the FeTe1−xSx system.

3.5 Summary and Conclusions

We have synthesized polycrystalline and single crystal samples of FeTe0.5Se0.5. Our

detailed studies of the structural, magnetic, thermodynamic and other supercon-

ducting properties of this sample reveal several important results. A supercon-

ducting transition at 14 K have been confirmed using susceptibility, resistivity and

specific heat measurements. We have measured the temperature dependence of the

resistivity of FeTe0.5Se0.5 at different magnetic fields. The upper critical fields at

absolute zero have been estimated from the resistivity at different applied mag-

netic fields. We have investigated the temperature dependence of specific heat of

FeTe0.5Se0.5. We have used the the specific heat of a non-superconducting sample

FeTe0.75Se0.25 as a reference and separated the electronic specific heat of FeTe0.5Se0.5.

Our analysis also shows that the electronic specific heat of FeTe0.5Se0.5 can be fitted

using a two-band BCS model with isotropic gaps.

We have also performed µSR measurements on superconducting FeTe0.5Se0.5.

The temperature dependence of the magnetic penetration depth of FeTe0.5Se0.5 is
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found to be compatible with either a two-gap s + s-wave or an anisotropic s-wave

model. This result is consistent with our heat capacity data and also with other

reported experimental data [76, 104]. These results along with other published data

suggest that FeTe0.5Se0.5 can be described as a two-band superconductor. Further

studies on higher purity single crystal samples are desirable as the presence of im-

purities can sometimes mask the true nature of the superconducting gap. [105]

We have synthesized good quality polycrystalline samples of FeTe1−xSx for

x = 0.1, 0.2, 0.3, 0.4 and 0.5. Transport and magnetic measurements show that Tc

increases very slowly with increasing S concentration and reaches a maximum for

x = 0.40. A zero resistivity state was not observed for FeTe0.9S0.1 probably due to

very small S concentration, which is needed to make a percolating superconducting

current path. The solubility limit of the sulfur on the Te site is found to be around

(16 ± 2) %. This result is slightly higher than the reported value of 12% for this

system [74]. Hc1 has been estimated to be 5(1) Oe for FeTe0.6S0.4. Hc2 values have

been estimated for FeTe0.6S0.4 using the GL theory and the WHH model. ξ and

λ have been calculated to be 2.05 nm and 664(1) nm respectively for FeTe0.6S0.4.

The Tc of FeTe0.5S0.5 is found to decrease linearly with pressure with the pressure

coefficient, dTc/dP = −0.27(1) K/kbar. The results are consistent with other exper-

imental data of the FeTe1−xSx system [69, 102] but different compared to the other

iron chalchogenide superconductors where Tc initially increases with P and goes

through a broad maximum and decreases thereafter. This different scenario can be

understood by its structural phase transition with pressure. µSR experiments have

been performed on four different compositions of FeTe1−xSx. µSR data show a AF

transition at low temperature. Similar AF transitions have also been observed in

the magnetization data of FeTe1−xSx system. The magnetic transitions may be due

to an ordering of the iron spins. More studies are required to understand the exact

nature of these magnetic transitions seen in the FeTe1−xSx system.
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Chapter 4

Two-gap Superconductivity in

Lu2Fe3Si5

4.1 Introduction

The discovery of superconductivity in MgB2 with a Tc ∼ 39 K [13] has generated

a great deal of interest in superconducting materials containing light elements such

as B, C, and Si. Among these materials, the ternary-iron silicide superconductors

R2Fe3Si5 with R = Lu, Y, Sc, Tm, or Er are particularly noteworthy due to the

presence of iron [106, 107]. The ternary-iron silicides, R2Fe3Si5 were first reported

as superconducting by Braun in 1980 [106]. The properties of these materials are

peculiar in several respects. For instance, these compounds have high superconduct-

ing critical temperatures (6.1, 4.5, and 2.4 K for compounds with Re = Lu, Sc and

Y, respectively) among the Fe-based superconductors, other than the recently dis-

covered FeAs and FeSe families as discussed in Chapter 3. Mössbauer experiments

suggest that in these materials the iron possesses no magnetic moment [108]. The

local magnetic moment of an atom depends on the local bonding environment. Ac-

cording to Umarji et al. [109], the moment of iron is quenched primarily because the

Fe-Si separation is much smaller than the sum of the individual metallic radii. This

leads to a strong covalent interaction between Fe and Si. The effect of pressure on

R2Fe3Si5 is very unusual. A large negative pressure effect on Tc has been observed

in Lu2Fe3Si5 and Sc2Fe3Si5 (dTc/dp = −7 × 10−5 K/bar), whilst a large positive

pressure effect on Tc is exhibited in Y2Fe3Si5 (dTc/dp = 33 × 10−5 K/bar) [110].

Reentrant superconductivity has been reported in Tm2Fe3Si5 [107]. The coexistence

of superconductivity and magnetism has also been reported in Er2Fe3Si5 [111].

Lu2Fe3Si5 is one of the most interesting of the ternary-iron silicide super-
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Figure 4.1: Crystallographic structure of Lu2Fe3Si5.

conductors because of its high superconducting transition temperature, large upper

critical field (Hc2 = 60 kOe) [106, 109] and unconventional superconducting proper-

ties. This compound crystallizes in the tetragonal Sc2Fe3Si5-type structure (space

group P4/mnc) consisting of quasi one-dimensional iron chains along the c-axis and

quasi two-dimensional iron squares parallel to the basal plane [112]. Fig. 4.1 shows

the crystal structure of Lu2Fe3Si5. It is noteworthy that the other two isoelec-

tronic compounds Lu2Ru3Si5 and Lu2Os3Si5 are not superconducting [113]. This

implies that the 3d electrons in Lu2Fe3Si5 play a significant role in the occurrence

of the superconductivity in this system. Anisotropy in the upper critical field and

a pronounced peak effect have also been reported in Lu2Fe3Si5 from magnetic mea-

surements [114]. Moreover, there is a rapid decrease in Tc when a small amount

of nonmagnetic impurity replaces some of Fe atoms in Lu2Fe3Si5 [115]. Accord-

ing to Anderson’s theorem, adding a small amount of non-magnetic impurity to a

conventional s-wave superconductor does not affect its Tc or the superconducting

density of states [116]. This behaviour in Lu2Fe3Si5 is thus incompatible with the

isotropic s-wave BCS picture and hence allows us to speculate on the possibility

of the existence of spin-triplet superconductivity in Lu2Fe3Si5. On the other hand,

Josephson effect measurements between Lu2Fe3Si5 and Nb have indicated an s-wave

pairing mechanism in this system [117]. However, recently, a detailed study of the

low-temperature specific heat on a single crystal of Lu2Fe3Si5 revealed two-gap su-

perconductivity similar to that seen in MgB2 [31].

To reveal the pairing mechanism of the exotic superconductivity in Lu2Fe3Si5,
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it is crucial to determine the superconducting gap function. To clarify the supercon-

ducting gap symmetry of Lu2Fe3Si5, we have carried out a series of low-temperature

µSR measurements on a polycrystalline sample. We show that the temperature de-

pendence of λ can be well described using a two-gap s+s-wave model. We also study

the low-temperature specific heat of Lu2Fe3Si5 in order to support the validity of

the two-gap model. We compare these results with published data for the R2Fe3Si5

system.

4.2 Sample Preparation of Lu2Fe3Si5

Polycrystalline samples of Lu2Fe3Si5 were prepared by melting a stoichiometric mix-

ture of lutetium shot (99.99%), iron granules (99.999%) and silicon pieces (99.99%)

in an arc furnace under an argon atmosphere [see 2.1.1]. The as-cast sample was

poorly superconducting with a Tc = 4.8 K and a broad transition. In order to

improve these characteristics, it is essential to anneal the as-cast samples at high

temperature for a long period of time [118, 31]. The as-cast sample was sealed in a

quartz tube under a partial pressure of argon. The sample was then heated at a rate

of 200◦C/h to 800◦C, held at this temperature for 48 h, then heated at the same rate

to 1100◦C and held at this temperature for 72 h. The sample was then cooled at

200◦C/h to 800◦C, maintained at this temperature for 72 h, and then finally cooled

to room temperature.

4.3 Magnetization Measurements of Lu2Fe3Si5

Temperature dependence of the dc magnetic susceptibility of Lu2Fe3Si5 were per-

formed by using a Quantum Design Magnetic Property Measurement System (MPMS)

magnetometer [see section 2.3.1 for more details]. Data were taken both in zero-field-

cooled warming (ZFCW) and field-cooled cooling (FCC) modes. The temperature

dependence of the diamagnetic susceptibility shows that Lu2Fe3Si5 has a supercon-

ducting transition temperature Tc (onset) of (6.1±0.1) K [see Fig. 4.2]. In the ZFCW

mode, the temperature dependence of the susceptibility of Lu2Fe3Si5 reaches a value

close to -1. This implies that the superconducting volume fraction of Lu2Fe3Si5 is

nearly 100%.

Magnetization measurements were performed to check the sample quality

and the Tc value of Lu2Fe3Si5. However, to find the magnitude and the symme-

try of the superconducting gap, we have performed low temperature specific heat

measurements on Lu2Fe3Si5.
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Figure 4.2: The temperature dependence of the dc magnetic susceptibility of
Lu2Fe3Si5 measured using both zero-field-cooled warming (ZFCW) and field-cooled
cooling (FCC). The diamagnetic susceptibility shows a Tc onset of (6.1± 0.1) K.

4.4 Heat Capacity Measurements of Lu2Fe3Si5

Low-temperature specific heat measurements were carried out using a two-tau re-

laxation method in a Quantum Design Physical Property Measurement System

(PPMS) equipped with a 3He insert [see 2.3.3].
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Figure 4.3: Temperature dependence of specific heat of Lu2Fe3Si5 in various applied
magnetic fields.

Figure. 4.3 shows the temperature dependence of the specific heat of Lu2Fe3Si5

at different applied fields. In the zero field specific heat data, a pronounced jump
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is observed starting at 6.1 K which indicates that the sample exhibits bulk super-

conductivity. The value of Tc measured here coincides with the Tc found from the

magnetization measurement. The peak position shifts toward lower temperature

and also get broaden as the applied field increases.
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Figure 4.4: The specific heat divided by temperature (C/T ) as a function of T 2 for
Lu2Fe3Si5. The dashed line shows the fit to the data in the normal state using the
equation C = γT + βT 3 + αT 5.

Figure. 4.4 shows the specific heat divided by temperature (C/T ) as a func-

tion of T 2 for Lu2Fe3Si5. The normal state heat capacity has been fitted up to 12 K

by C = γT +βT 3 +αT 5, where γT is the electronic contribution and βT 3 +αT 5 rep-

resents the lattice contribution to the specific heat. We obtained fitted parameters

γ = 26.27(5) mJ/mol K2, β = 0.32(1) mJ/mol K4 and α = 4.75(6)×10−4 mJ/mol K6

which are consistent with the reported values for both polycrystalline [119, 120, 114]

and single crystal samples [31]. We observed a sizable residual specific heat coeffi-

cient, γr = 7.21(1) mJ/mol K2 at T = 0 K. Interestingly, a finite residual specific

heat coefficient has also been observed in a polycrystalline sample of the same sys-

tem [114] whereas it is absent in data for a single crystal [31]. A similar effect has also

been reported in Ba0.6K0.4Fe2As2 (γr = 7.7 mJ/mol K2), Ba(Fe1−xCox)2As2 (γr =

3.0 mJ/mol K2) and Ba(Fe0.92Co0.08)2As2 (γr = 3.7 mJ/mol K2) [121, 122, 123].

Possible explanations for this residual specific heat coefficient involve pair breaking

effects of an unconventional superconductor due to the presence of some impurities

in the sample [124], spin glass behaviour or crystallographic defects [123]. Given the

metallurgy of our polycrystalline sample and the dramatic effects that annealing has

on the electronic properties, we suggest that crystallographic defects are the most
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likely cause of the residual specific heat coefficient in the heat capacity data.

If the superconducting and nonsuperconducting regions have similar heat

capacities then the volume fractions of normal and superconducting material can

be expressed as γr/γ and 1− γr/γ, respectively. On this basis, the total electronic

specific heat is the sum of contributions of the superconducting and normal phases

and consequently, the electronic specific heat can be normalized to one mole of

superconducting material, Ces, defined by:

Ces = (Ce − γrT ).
γ

γ − γr
(4.1)

where Ce is the electronic specific heat and is calculated by subtracting the lattice

contribution from the total specific heat. Fig. 4.5 shows the temperature dependence

of the normalized electronic specific heat, Ces/γT , for Lu2Fe3Si5 as a function of

T/Tc. We find two clear anomalies in the temperature dependence of electronic

specific heat data of Lu2Fe3Si5. A large jump appears at Tc and a smaller one

at Tc/5. The value of Ces/γT at Tc is found to be 1.13(1) meV, which is much

smaller than the BCS value of 1.43 meV but similar to the value of 1.05 meV

measured on a single crystal [31] and also agrees well with the reported values for

polycrystalline samples [119, 120, 114]. To perform a two-gap fit to the Ces/γT

data in the superconducting state, we use the BCS expressions for the normalized
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entropy S and the specific heat as discussed in section 3.3.4. The solid line in

Fig. 4.5 is a two-gap fit to the data using Eq. 3.7 and Eq. 3.8. We obtain two

distinct superconducting gaps, ∆1/kBTc = 2.11(4) and ∆2/kBTc = 0.57(4) with a

weighting factor, ω1 = 0.62(4).

4.5 µSR Measurements of Lu2Fe3Si5

The µSR experiments were performed on the MuSR spectrometer of the ISIS pulsed

muon facility. For more details about this technique, see section 2.4. The TF-µSR

experiment was conducted with applied fields between 50 and 600 Oe, which ensured

the sample was in the mixed state. The magnetic field was either applied above the

superconducting transition and the sample then cooled to base temperature (FC),

or the sample was first cooled to base temperature and then the field was applied

(ZFC). The sample was mounted on a silver plate with a circular area of ∼ 700 mm2

and a small amount of diluted GE varnish was added to aid thermal contact. The

sample and mount were then inserted into an Oxford Instruments He3 sorbtion

cryostat. Any silver exposed to the muon beam gives a background described by

non-decaying sine wave.

0 1 2 3 4 5
- 0 . 2
- 0 . 1
0 . 0
0 . 1
0 . 2

0 1 2 3 4 5

 

 

0 . 3  K

As
ym

me
try

t  ( µs )

( a )

 

 

6 . 5  K

( b )

Figure 4.6: The transverse-field muon-time spectra (one component) for Lu2Fe3Si5
collected (a) at T = 6.5 K and (b) at T = 0.3 K in a magnetic field H = 300 Oe.

TF-µSR precession signals above and below Tc = 6.1 K are shown in Fig-

ure 4.6. Above the superconducting transition i.e. in the normal state, the signal

decays very slowly, but the decay is relatively fast in the superconducting state due to

the inhomogeneous field distribution from the flux-line lattice. We can model these

inhomogeneous field distributions using an oscillatory decaying Gaussian function
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GX(t) = A0 exp
(
−σ2t2

/
2) cos (ω1t+ φ) +A1 cos (ω2t+ φ) , (4.2)

where ω1 and ω2 are the frequencies of the muon precession signal and background

signal respectively, φ is the initial phase offset, and σ is the Gaussian muon spin

relaxation rate. Fig. 4.7a shows the temperature dependence of σsc obtained in

an applied TF of 300 Oe. Fig. 4.7b presents the magnetic field dependence of

σsc collected at different temperatures below the superconducting transition. A

deviation in the field dependence of σsc is observed at 400 Oe in 0.3 K data. A

small deviation of σsc is also present at the same field in 2 K data, whereas it is

constant above 2 K.
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Figure 4.7: (a) The temperature dependence (on a log scale) of the supercon-
ducting muon spin depolarization rate, σsc, collected in an applied magnetic field
H = 300 Oe. (b) Superconducting Gaussian depolarization rate, σsc, versus applied
magnetic field for Lu2Fe3Si5 collected below Tc at 0.3, 2.0, 2.5, 3.0 and 4.0 K.

The temperature dependence of the London magnetic penetration depth,

λ (T ) is coupled with the superconducting Gaussian muon-spin depolarization rate,

σsc (T ) by the equation 3.11. λ (T ) can then be fitted using either a single gap

or a two-gap model which are structured on the basis of the α-model [23, 85] and

described in section 3.3.5.

Fits to the data using the three different models are shown in Fig. 4.8. The

fits rule out the s-wave and d-wave models as possible descriptions for Lu2Fe3Si5

as the χ2
red values for these models are 33.92 and 15.91 respectively. The two-gap

s + s-wave model gives a good fit to the data with a χ2
red of 1.94. The normalized

χ2
red values, resulting from our least squares fits to the temperature dependence of
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Figure 4.8: The temperature dependence of the London penetration depth for
Lu2Fe3Si5. The solid line is a two-gap s + s-wave fit to the data while the dashed
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λ−2 using different models for the gap, are used as criteria to determine which model

best describes the data. The two-gap s + s-wave model gives ∆0,1/kBTc = 2.23(5)

and ∆0,2/kBTc = 0.67(1) with ω1 = 0.47(3). The ratio of larger to the smaller gap,
∆0,1

∆0,2
≈ 3.33(9), which is slightly lower than the value 5 obtained by low-temperature

specific heat measurement [31], but consistent with the value 3.44 obtained by pen-

etration depth measurement using the tunnel-diode resonator technique [125] on a

single crystal of Lu2Fe3Si5. The ratio is also close to the value 4.18, obtained from

the specific heat measurements on the same sample. The magnetic penetration

depth at T = 0 K is found to be λ (0) = 353(1) nm. The in-plane penetration depth

is 200 nm, obtained by tunnel-diode resonator technique [125]. The weighting factor,

ω1 = 0.47(3), which is slightly smaller than the value obtained from fits to the spe-

cific heat data. The good agreement between the µSR and heat capacity data and

the two-gap model argues in favour of the presence of two distinct superconducting

gaps in Lu2Fe3Si5.

4.6 Summary and Conclusions

We have synthesized high quality polycrystalline samples of Lu2Fe3Si5. A supercon-

ducting transition at around 6.1 K have been confirmed using susceptibility, spe-
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cific heat and µSR measurements. Low-temperature specific heat measurements

of Lu2Fe3Si5 confirm the presence of two distinct superconducting gaps. Low-

temperature specific heat measurements on Lu2Fe3Si5 reveal a reduced normalized

specific heat jump at Tc and a second smaller jump at nearly Tc/5. Specific heat

data of Lu2Fe3Si5 can be fitted well using a two-gap BCS s-wave model.

We have also performed a µSR study on the same polycrystalline sample of

Lu2Fe3Si5. The temperature dependence of the magnetic penetration depth data

was fitted with three different models. A two-gap s + s-wave model provides the

best fit to the data and hence support the specific heat results. These results are

consistent with other reported data for this system [119, 120, 114, 31, 125].

The gap magnitudes calculated from specific heat and µSR studies agree

reasonably. A more precise analysis using a self-consistent two-gap model proposed

by Kogan et al. [126] may be required to fully understand the coupling strength be-

tween the two bands in this system. The self-consistent model has been developed

within the quasi-classical Eilenberger weak-coupling formalism with one inter-band

and two in-band pairing potentials. The model has been tested with the experimen-

tal data of well-known two-band superconductors MgB2 and V3Si. Work is under

way to explain our specific heat and µSR data using this model.
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Chapter 5

Flux-Line Lattice in 6H-CaAlSi

5.1 Introduction

Magnesium diboride, MgB2, has the highest transition temperature (Tc of 39 K)

for a simple binary compound [13]. In MgB2 there are two distinct energy gaps

associated with different parts of the Fermi surface. The larger gap (7 meV) origi-

nates from holelike carriers residing on two cylindrical Fermi surface sheets, derived

from σ bonding of the Pxy boron orbitals and called the σ band. The smaller

gap (2 meV) originates from two 3D sheets of electron and holelike carriers, de-

rived from π bonding of the Pz orbitals and called the π band. However, there

are important questions concerning the superconducting mechanism that are still

to be addressed. The best way to answer these questions is to investigate the var-

ious properties of similar systems. A few gallium-based binary compounds CaGa2,

SrGa2, and BaGa2 crystallize in to similar AlB2-type structures but are not su-

perconducting [127]. A high pressure superconducting phase of CaSi2 with a Tc of

14 K also has the similar crystallographic structure [128]. However, a new group

of pseudoternary compounds of the AlB2-type structure with the general formula

A(M1−xSix) (A = Ca, Sr, Ba and M = Al, Ga) turn out to have rich physics in

various aspects of superconductivity [129, 130, 131, 132]. Among these compounds,

CaAlSi with the highest superconducting transition temperature, Tc, of 7.8 K under

ambient pressure [130], has attracted considerable interest as a reference material

for understanding the key factors leading to such a high Tc in MgB2. The ternary

Ca-Al-Si system has another compound with a layered structure, CaAl2Si2. It has

the La2O3-type structure [space-group P3m1 (No. 164)], where the Si and Al atoms

are arranged in the chemically ordered double-corrugated hexagonal layers and Ca

atoms are intercalated between them. It is interesting to note that this compound
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is not superconducting above 1.4 K, showing semimetal behaviour with the opening

of a pseudogap in the Fermi level [133, 134]. CaAlSi exhibits a number of inter-

esting superconducting properties, the study of which can provide an insight into

the factors leading to high superconducting transition temperatures (Tc) in this

class of materials. There is no reasonable correlation of Tc with the mass of the

alkaline-earth-metal ion (A) in the compound A-GaSi. However, in AAlSi Tc de-

creases systematically with increasing mass of the A ion from 7.8 K (A = Ca) to

5 K (A = Sr) and BaAlSi is not superconducting above 2 K [135, 136]. In this

case, the decrease of the electron-phonon coupling along the Ca, Sr, Ba sequence

has been taken as a consequence of a decreasing density of states at the Fermi level

(ρEF ) [136] or the hardness of a soft mode which is present in CaAlSi but absent in

the Ba compound [137, 138].
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Figure 5.1: Crystal structure of 1H, 5H, and 6H -CaAlSi which are characterized by
a different sequence of A and B layers. A and B layers are rotated by 60◦ around
the c-axis with respect to each other. Flat and buckled Al-Si layers are indicated
with and without an asterisk, respectively.

Neutron and x-ray diffraction studies have shown that there are two possible
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arrangements for the atoms in the hexagonal AlSi layers in CaAlSi, denoted as A

and B shown in Fig. 5.1. The A and B layers differ by a 60◦ rotation around the

c-axis [139, 140]. These layers stack along the c-axis in a sequence (AABBB) in

five-fold 5H-CaAlSi and (AAABBB) in six-fold 6H-CaAlSi. Stacking of the A and

B layers induces an internal stress on the structure, causing a buckling of boundary

layers. It was also found that the superconducting properties depend strongly on the

kind of stacking of the A and B layers. Further distortions produce either corrugated

or flat AlSi layers within the multi stack structures [139]. An unmodulated phase

(1H-CaAlSi) can also be grown by controlled cooling from the molten state [140].

The superconducting properties of CaAlSi, including Hc2 (T ) and Tc (5.7

to 7.7 K), change with modulation, as does the anisotropy γH = Hab
c2/H

c
c2 or

γλ = λc/λab of the superconductivity, although γ values of 2-3 indicate that these

materials are only moderately anisotropic [129, 132, 141]. The upper critical fields

also show an anisotropic behaviour. The angular variation of the upper critical

field shows a cusplike behaviour near zero degrees [132], consistent with Tinkham’s

model for thin films [142]. The heat capacity of 6H-CaAlSi below Tc is well ex-

plained by the BCS theory with strong-coupling, with a single superconducting gap,

2∆, at T = 0 K giving 2∆/kBTc = 4.07 [131]. It is also noteworthy that while the

Tc of 1H-CaAlSi decreases with applied pressure P , dTc/dP = +0.21 K/GPa for

6H-CaAlSi [131, 143].

Band-structure calculations have predicted that the electronic structure of

CaAlSi consists of σ and π bands derived from hybridized (Al,Si) s and p states

and Ca s, p and d states [144, 145, 137]. Band-structure calculations of 6H-CaAlSi

show that there are two disconnected cylindrical Fermi-surfaces which have two-

dimensional character [146]. ARPES measurements indicate that in 6H-CaAlSi

there are two superconducting gaps with equal magnitudes [147] while muon spin

rotation studies of the field dependence of penetration depth λ [141] and optical

measurements both suggest an anisotropic or multi-gapped structure [148]. In

contrast, tunnel-diode resonator measurements and break-junction tunneling spec-

troscopy both suggest that there is a single weakly anisotropic s-wave gap in 6H-

CaAlSi [149, 150].

Here, we report the synthesis of a single crystal of 6H -CaAlSi. The sam-

ple characterization was done by single crystal X-ray diffraction, magnetization and

resistivity measurements. We also present the results of a small angle neutron scat-

tering (SANS) study of the magnetic flux line lattice (FLL) in the 6H phase of

CaAlSi. SANS is a powerful technique for studying the FLL in the mixed state of

type-II superconductors [151] and has often been used to investigate the symmetry
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of the underlying electronic structure, details of the pairing mechanism, and the

macroscopic physics of the FLL [152, 153, 154, 155, 156, 157, 158, 159]. We observe

the FLL at a very low field of 54 Oe. The data also show a 30◦ reorientation of

the FLL in 6H-CaAlSi in a field of only 200 Oe. At low fields the sixfold symmet-

ric diffraction pattern with Bragg peaks align themselves along one high symmetry

direction of the crystal lattice and at high fields, they move to another high sym-

metry direction. We estimate the penetration depth, λ, and the coherence length,

ξ of CaAlSi by analyzing the form factor data. We also estimate the penetration

depth anisotropy γλ, by measuring the FLL for fields applied at different angles to

the c-axis. Unlike MgB2, the anisotropy of this coherence length is the same as the

anisotropy of the penetration depth in CaAlSi.

5.2 Single Crystal Growth of 6H-CaAlSi

A single crystal of 6H-CaAlSi was prepared by the Bridgman method. For more

details about the Bridgman method, read section 2.1.2. A polycrystalline ingot of

CaAlSi was first made by melting a stoichiometric mixture of calcium shot (99.99%),

aluminum shot (99.999%) and silicon pieces (99.99%) in an arc furnace under flowing

argon gas. The as cast ingot was placed in a boron nitride crucible with a conical

shaped bottom, and then sealed in a quartz tube under vacuum. The tube was

placed in a vertical Bridgman furnace, heated to 1010◦C at 100◦C/h, and then held

at this temperature for 24 h. Crystal growth was carried out by lowering the tube

at a rate of 3 mm/h.

5.3 Single Crystal X-ray Diffraction of 6H-CaAlSi

An Oxford Diffraction CCD single crystal diffractometer was used to study the

structural modulation in a single crystal of 6H-CaAlSi. For more details, see sec-

tion 2.2.3. A single crystal of dimension 0.20×0.12×0.14 mm3 was cleaved from the

crystal of CaAlSi used for the small angle neutron scattering (SANS) experiments

and attached to a glass fibre with epoxy resin. Principal planes of reciprocal space

were reconstructed from this data on the basis of the refined reciprocal lattice to

identify the nature of the structural modulation.

Single-crystal X-ray diffraction experiments were performed on CaAlSi to

verify the six-fold superlattice structure in our sample. Analysis of the X-ray

diffraction data revealed a hexagonal unit cell, with refined lattice parameters of

a = 4.1982(7) Å and c = 26.446(4) Å, and an internal R-factor of 0.0889. This cor-

79



l l 

h h 

Figure 5.2: Sections of (h1`) reciprocal layers both with and without grid, measured
at room temperature for the single crystal of 6H-CaAlSi.

responds to a c/a ratio of 6.30, consistent with (c/a = 6.31) for 6H -CaAlSi observed

by Sagayama et al. [139]. Figure 5.2 shows sections of (h1`) reciprocal layers both

in grid and without grid. The strong reflections correspond to the average structure

with the symmetry P6/mmm and are separated along the vertical c∗-axis by five

superstructure reflections.
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Figure 5.3: X-ray diffraction pattern along the reciprocal lattice line (01`) and a
single section of the (h1`) reciprocal lattice plane for the 6H single crystal of CaAlSi.

Figure 5.3 shows a single section of the (h1`) reciprocal lattice plane, indexed

with both the unmodulated (1H) and refined modulated (6H) reciprocal lattices,
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clearly showing the structure exhibits a six-fold modulation.

5.4 Magnetization Studies of 6H-CaAlSi
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Figure 5.4: Temperature dependence of the magnetic moment for CaAlSi measured
in zero-field-cooled and field-cooled mode in an applied magnetic field of 10 Oe.

Magnetization versus temperature measurements were performed in an ap-

plied magnetic field of 10 Oe using a Quantum Design Magnetic Property Measure-

ment System (MPMS) magnetometer [see section 2.3.1]. The temperature depen-

dence of the magnetic moment shows that CaAlSi sample has a superconducting

transition temperature, T onset
c , of (7.7± 0.1) K [see Fig. 5.4].

Figure 5.5 (a) shows the low-field virgin magnetization M(H) data as a

function of applied field of 6H-CaAlSi measured at different temperatures. The raw

M(H) data contain a small paramagnetic contribution which may come from any

impurities present in the sample. This contribution has been removed from the data

by subtracting magnetization data taken at 9 K (well above the superconducting

transition temperature). The dashed line is a linear fit to the 1.8 K data between 0

to 20 Oe. The value of the lower critical field Hc1 was determined by measuring the

field of first deviation from the linear fit (initial slope of the magnetization curve).

Demagnetizing effects are also taken into account in estimating the Hc1 values.

Figure 5.5 (b) shows the Hc1 versus temperature graph. The Hc1 data can be fitted

well using a quadratic equation Hc1(T ) = Hc1(0)
{

1− (T/Tc)
2
}

, where Hc1(0) is

the lower critical field at zero temperature. The fit yields Hc1(0) of 53.4(5) Oe for

CaAlSi.
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Figure 5.5: (a) Magnetization, M(H) versus applied magnetic field in the low mag-
netic field region at different temperatures below Tc. (b) Lower critical field, Hc1

versus temperature of 6H-CaAlSi deduced from the magnetization measurements.

5.5 Resistivity Studies of 6H-CaAlSi
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Figure 5.6: In-plane electrical resistivity versus temperature of 6H-CaAlSi at (a)
close to superconducting transition temperature and (b) up to room temperature.

We have measured the in-plane ac electrical resistivity, ρab(T ), as a func-

tion of temperature for CaAlSi via a standard four-probe method using a Quantum

Design Physical Property Measurement System (PPMS) [for more details, see sec-

tion 2.3.2]. Fig. 5.6 (a) shows the resistivity for temperatures between 2 to 12 K.

ρab(T ) shows a superconducting transition at 7.7 K with a transition width of 0.9 K.

The resistivity curves between 2 to 295 K (see Fig. 5.6 (b))shows metallic behavior

for CaAlSi. The relative resistance ratio, ρab(295 K)/ρab(8 K) is 4, similar to the

reported data (ρab(298 K)/ρab(8.2 K) = 4.9) [160] by Imai et al.

82



In case of MgB2, a 30o rotation of FLL has been reported by R. Cubitt

et al. [161]. This result suggests that MgB2 is a two-gap superconductor and the

30o rotation of FLL is happening due to the suppression of the smaller of two

superconducting gaps. We have performed SANS measurements on a single crystal

of 6H-CaAlSi to observe the FLL and if there is any rotation of the FLL exists in

this system similar to MgB2.

5.6 SANS Studies of 6H-CaAlSi

SANS measurements were performed using the D22 instrument at the Institut Laue-

Langevin (ILL), Grenoble, France and the SANS I instrument at the Paul Scherrer

Institut, Villigen, Switzerland. Read section 2.5 for more details. During the ex-

periment, D22 was configured in a high resolution mode with a mean wavelength of

14 Å and a wavelength spread of 10%, collimation of 17.6 m, and an area detector

at a distance of 17.6 m to the sample. An additional circular aperture of diam-

eter 20 mm was also used before the sample to better define the scattered beam

at the detector and to equalize the horizontal and vertical divergences. A sample

was mounted with the c-axis parallel to the neutron beam direction to access the

Bragg peaks. To maximize the intensity of a diffraction spot, a rocking curve was

performed by tilting or rotating the sample, cryostat and magnet together about a

horizontal or vertical axis to scan through the Bragg condition for that spot. Ad-

ditional anisotropy data were collected using the SANS I instrument at the Paul

Scherrer Institut, Villigen, Switzerland. At SANS I, incident neutrons of various

wavelengths between 5-10 Å were selected with a wavelength spread of 10% and

collimated over a distance of 8 to 18 m before the sample. Diffracted neutrons were

collected with a position-sensitive two-dimensional multidetector located 13-20 m

after the sample. For all measurements, the sample was cooled to base temperature

in an applied magnetic field H and the data collected while warming the sample in

the same field. Background scattering was measured above Tc and subtracted from

the low-temperature data.

Figs. 5.7(a)-(d) show the diffraction patterns from the FLL of CaAlSi mea-

sured at 2 K in fields, H of (a) 97, (b) 185, (c) 250, and (d) 294 Oe applied parallel

to the c-axis. Figs. 5.7(e)-(h) and Figs. 5.7(i)-(l) are the same diffraction patterns

taken at 4 K and 5 K, respectively. At the lowest field [Fig. 5.7(a), (e), (f), and

(i)] we observe a symmetric hexagonal diffraction pattern with Bragg peaks appear-

ing at 30◦ to the b-axis of the crystal denoted here as Low-Hex. With increasing

field, a second hexagonal diffraction pattern appears oriented along the b-axis [see

83



2 K 2 K 2 K 2 K 

4 K 4 K 4 K 4 K 

5 K 5 K 5 K 5 K 

97 Oe 

97 Oe 

97 Oe 

185 Oe 

185 Oe 

185 Oe 

250 Oe 

250 Oe 

250 Oe 

294 Oe 

294 Oe 

294 Oe 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

Figure 5.7: (a-l) SANS diffraction patterns of CaAlSi taken at 2 K, 4 K and 5 K in
the applied magnetic fields of 97, 185, 250, and 294 Oe, respectively.

Figs. 5.7(b), (c), (g), and (j)]. This means that the FLL has now formed two do-

mains with an angular separation of 30◦. As the applied field is increased further

the FLL transforms into a single domain with Bragg peaks oriented along the b-axis

and referred to as High-Hex [Fig. 5.7(d), (h), (k), and (l)]. We did not observe any

intermediate structures or any continuous change in the positions of the diffraction

peaks during the reorientation process. These observations suggest that the transi-

tion between the High and Low-Hex phases is most likely of first-order in character.

No further reorientations of the FLL were observed in applied fields of up to 2 kOe.

Fig. 5.8 contains a schematic diagram of the FLL patterns of CaAlSi in real-

space (upper panel) and the diffraction patterns (lower panel). The only previous

SANS measurements on 6H-CaAlSi found no evidence for a FLL reorientation as

the measurements were not carried out at sufficiently low applied fields [162]. This

earlier study also suggested the FLL was not perfectly hexagonal. In our measure-

ments, a perfectly hexagonal lattice was found for all applied fields. It is also worth

noting that the lowest applied field (54 Oe) is much smaller than the reported value

of Hc1 [160]. However, from the magnetization(M ) vs. H measurements, we found
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Figure 5.8: Schematic diagram of the FLL patterns in real-space (upper panel) and
the corresponding diffraction patterns (lower panel).

Hc1 = 50 Oe at 2 K.

The intensity of the Bragg diffraction peaks for the Low-Hex, High-Hex, and

Coexistence phases are shown in Fig. 5.9. The intensity curves were obtained by

summing the counts as a function of angle over a half-spherical (between 0◦ to 180◦)

block arc encompassing the spots. For the Low-Hex phase [see Fig. 5.9 (a)], we

observe intensity peaks at 30◦, 90◦, and 150◦. For High-Hex phase [see Fig. 5.9

(b)], the peaks are at 0◦, 60◦, 120◦, and 180◦. This again implies that the FLL in

High-Hex phase has rotated by 30◦ from the Low-Hex phase. In the Coexistence

phase [see Fig. 5.9 (c)], we observe peaks both in Low-Hex and High-Hex positions

as expected.

An H-T phase diagram of CaAlSi is shown in Fig. 5.10 indicating the regions

in which we observe either a purely Low-Hex or a High-Hex phase separated by a

region in which the two FLL structures coexist. Fig. 5.11 shows the variation of

the integrated intensity of the Bragg spots for the High and Low-Hex states with

applied magnetic field at 4 K. The shaded region indicates the coexistence of the two

phases. A sudden change of intensity for the two states occurs through this narrow

window of coexistence. The coexistence of the two phases around the transition

might come from pinning or demagnetization effect due to the shape of the sample.

Changes in the symmetry of the FLL and its orientation with respect to the

crystallographic axes can result from an anisotropy in either the Fermi surface or

the superconducting energy gap. In some instances the structures of the FLL can

be understood by considering non-local corrections to the London model [163, 164,

153, 165].

The 30◦ reorientation of the FLL reported here occurs in a field Hr of only
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Figure 5.9: Intensity of the Bragg’s peaks as a function of angle in the Low-Hex,
High-Hex, and Coexistence phases of 6H-CaAlSi between 0◦ to 180◦.

200 Oe, a much lower field than for most FLL reorientations and a small fraction

of the Hc2 for this material, (Hr/Hc2 ≈ 0.025). In MgB2, a 30◦ reorientation in the

FLL has been associated with the suppression of the smaller of two superconducting

gaps. However, Hr for MgB2 is over 5000 Oe (Hr/Hc2 ≈ 0.2) and the reorientation

process is second-order [161]. In some ways the FLL transition in CaAlSi more

closely resembles the (apparently) first-order 45◦ reorientation between two rhombic

FLL phases observed in Lu and Y borocarbide [164, 153, 166]. In these materials Hr

is 250 and 1500 Oe for Lu and Y respectively (Hr/Hc2 ≈ 0.02) and the reorientation

angle reflects the underlying symmetry of the lattice. In CaAlSi, however, we find

no clear evidence for the changes in the apex angle β away from 60◦ seen in the

borocarbides close to Hr.

Fig. 5.12 shows the form factor F at 2 K, extracted from the integrated

intensity of the Bragg spots forming the FLL in CaAlSi. The form factor provides

a measure of the amplitude of the field modulation inside a type-II superconductor

due to the formation of a FLL [161].

According to the London model, for a conventional single band supercon-

ductor with a penetration depth and a coherence length that are independent of
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Figure 5.10: H-T phase diagram of CaAlSi indicating the temperatures and applied
fields at which we observe either a High-Hex or a Low-Hex state for the FLL. A
shaded region in which the two states coexist is also marked.

field, F decreases exponentially with field [167]. However, for an anisotropic super-

conductor, an expression for F has been calculated by Hao et al. [168] within the

Ginzburg-Landau (GL) approximation.

F =
31/4

2π
√

2

√
Φ0Bf

2ξv
λ2

K1

(
2π
√

2

31/4
ξv
√
B/Φ0

)
(5.1)

with

ξv = ξ

(√
2− 0.75

κ

)√
(1 + b4)

[
1− 2b(1− b)2

]
, (5.2a)

f2 = 1− b4, (5.2b)

Kn(x) is a modified Bessel function of nth order, Φ0 = 2.068 × 10−15 Wb is the

magnetic flux quantum, κ = λ/ξ is the GL parameter, Bc2 = Φ0/(2πξ
2) is the

upper critical field, and B = bBc2 is the applied field [84, 167]. The fit yields

λ = 1496(1) Å, ξ = 307(1) Å, and κ = 4.9(1). This κ is similar to the value of 5.2

reported by Imai et al. [160]. ξ is 50% larger than the value extracted from Hc2

measurements on the same sample. In a study of MgB2, the increase in the F at

low field was attributed to a change in the superfluid density [161]. As shown here,

such a conclusion is not required for CaAlSi.

The penetration depth anisotropy γλ, can be extracted by rotating the ap-
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Figure 5.11: Standard monitor normalized intensity of the Bragg peaks for the High-
Hex and Low-Hex phases of CaAlSi. The dotted and dashed lines are guides to the
eye. The shading indicates the region in which the two FLL phases coexist.

plied magnetic field away from the c-axis and measuring the ratio of the major to

minor axes of the ellipse (ε) connecting the Bragg peaks. Figs. 5.13(a)-(d) show

the diffraction patterns of CaAlSi taken at 1.5 K in a field of 3 kOe applied at 10◦,

28◦, 47◦, and 72◦ respectively to the c-axis. As the angle between the applied field

and the c-axis increases, the diffraction pattern is distorted towards an elliptical

shape, since the screening currents circulating around a vortex must cross the basal

plane. Campbell et al. [169] studied the structure of a vortex lattice in anisotropic,

uniaxial superconductors, for magnetic fields applied at an angle ψ to the principal

axis. According to their model based on the London approach, ε is related to γλ in

the following way,

ε2 =
γ2
λ

sin2ψ + γ2
λcos2ψ

. (5.3)

Fig. 5.14 shows the variation of ε as a function of ψ for CaAlSi measured at

1.5 K in a field of 3 kOe. A fit to the data using Eq. 5.3 is indicated by the solid line

yielding an anisotropy, γλ = 2.7(1). The value of γλ is in excellent agreement with

previous values of γξ determined from magnetic and transport measurements [160,

132] and slightly larger than the value of 2 obtained by Kuroiwa et al. [162] from

SANS measurements.

Close to Tc the anisotropic GL equations for a clean superconductor with

an arbitrary gap anisotropy yield γλ = γξ. At lower T , however, these two quanti-
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Figure 5.12: Form factor F of CaAlSi plotted on a log scale. The solid line is a fit
to the data using the Hao model described in the text.
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Figure 5.13: (a-d) Anisotropic FLL of CaAlSi at 1.5 K and a field of 3 kOe applied
at 10◦, 28◦, 47◦, and 72◦ respectively to the c-axis of the crystal.

ties may both depend on T and are not necessarily the same. For example, in the

case of MgB2 calculations for a weakly coupled two-band anisotropic superconduc-

tor showed that γλ (T ) and γξ (T ) are an increasing and decreasing function of T

respectively [170, 171]. In CaAlSi the equality of γλ and γξ at 1.5 K may reflect

the fact that the morphology of the FLL is established at higher T , which then gets

pinned as the T is reduced. Alternatively it may be indicative of a more isotropic

character for the Fermi surface in this material.

5.7 Summary and Conclusions

We have successfully grown a large single crystal of CaAlSi by the Bridgman method.

We have carried out a high resolution single crystal x-ray study and observed the
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6 fold superlattice peaks present as a result of the 6H structure in the single crys-

tal of CaAlSi. Magnetization and resistivity measurements have been performed

to further verify the quality of our samples. Both magnetization and resistivity

measurements confirm that our sample is superconducting below 7.7 K. Using the

virgin magnetization data, we have calculated the Hc1 of CaAlSi to 53.4(5) Oe at

zero temperature.

We have performed a SANS study on a single crystal sample of CaAlSi. We

observe a well-defined flux line lattice in a very low field of only 54 Oe. This in itself

is noteworthy as this is one of the lowest fields in which a FLL has ever been imaged

using the SANS technique and brings the technique closer to applied fields used in

Bitter decoration experiments. In addition, it is interesting that a well defined FLL

forms just above Hc1 where the inter vortex distance is many times longer than the

penetration depth. There have been suggestions that in this class of materials at

lower fields (≈ 1 Oe) an attractive inter vortex interaction will lead to a clustering

of the vortices. While we acknowledge that we are well above this field regime,

it is important to demonstrate that the dominant inter vortex interaction in this

material at the low field regime is repulsive, leading to the formation of a symmetric

hexagonal FLL.

We observe a hex-to-hex FLL reorientation at just 200 Oe. We have carefully

considered what may drive the reorientation of the FLL. We cannot unequivocally

state the source of the reorientation. We can, however, argue strongly in favour of
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the reorientation being driven by non-local effects. This contrasts with the situation

in MgB2 where it is claimed that the FLL reorientation is driven by the effects of

two superconducting bands. We argue that non local effects may be ubiquitous in

this class of materials. Our measurement of the field dependent form factor from

the field distribution is explained by a single coherence length, and the anisotropy

of this coherence length is the same as the anisotropy of the penetration depth.

Both features are very unlikely to occur in a multi-band superconductor. This has

important implications for those working to understand the physics of the AlB2 class

of materials. The equality of the values of the anisotropy for the penetration depth

measured here and the coherence length measured elsewhere may hint at the fact

that this is indeed a simple one band system.
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Chapter 6

Coexistence of Type-I and

Type-II Superconductivity in

ZrB12

6.1 Introduction

Superconductivity was discovered in the cubic hexaborides, MeB6, and the dode-

caborides, MeB12 by Matthias et al. in the late 1960’s (Me = Sc, Y, Zr, La, Lu,

Th) [172]. ZrB12 has a relatively high T c (≈ 6 K) among all the known dodeca-

borides. Superconductivity in these cluster boride compounds has been of interest

because of the idea that large numbers of light atoms and hence high phonon fre-

quencies, together with a strong electron-phonon interaction, might lead to a high

transition temperature. This interest has been renewed with the discovery of super-

conductivity at 39 K in MgB2 (see ref. [13]). Later, isotope measurements indicated

that the superconductivity in ZrB12 may arise from the Zr sublattice, with the boron

acting as a fairly inert background [173]. ZrB12 crystallizes in the fcc cubic structure

of the UB12 type (space group Fm3m, a = 0.74075 nm [174]), a rocksalt-type struc-

ture with the Zr on the Na and the B12 clusters on the Cl sites. The boron atoms

form a B12 cubic octahedral unit. Figure 6.1 shows the crystallographic structure

of ZrB12.

There have been several models suggested to explain the superconducting

properties of ZrB12 which range from a strong-coupling BCS model to a two band

BCS model with different superconducting gaps [175, 176, 174]. Recent band-

structure calculations concluded that the Fermi surface of ZrB12 is composed of

one open and one closed sheet [177, 178]. The specific heat data at zero field shows
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Figure 6.1: Crystallographic structure of ZrB12. ZrB12 has a UB12 type face-centred
cubic lattice structure. Each Zr atom (solid sphere) is surrounded by 24 B atoms
arranged in a octahedral cluster.

a BCS-type superconducting transition at Tc. The specific heat jump changes from

first-order (with a latent heat) to second-order (without a latent heat) with increas-

ing magnetic field. It is also reported that the κ in this material lies close to the

cross-over value of 1/
√

2 between Type-I and Type-II superconductivity and that

κ may change with temperature [179]. This motivated us to map out the complete

B-T phase diagram of ZrB12. This will help to clarify the debate as to whether

ZrB12 is a Type-I or Type-II superconductor or has a more exotic nature in which

both types of superconductivity coexist.

6.2 Single Crystal Growth of ZrB12

Single crystals of ZrB12 were produced using the floating-zone technique in a Crystal

Systems Incorporated (CSI) four-mirror infrared image furnace [see section 2.1.2].

The growths were performed in a flowing argon atmosphere of 2 bars. The seed rod

was a polycrystalline rod of the same composition as the feed rod. Polycrystalline

materials of ZrB12 (commercially available) were made into rods by compacting the

powder in a waterproof balloon before compressing the rod isostatically by submerg-

ing it in water and applying high pressure (≥ 150 kg cm−2). The polycrystalline

rod was sintered for 12 hr at 1400oC to densify the materials to make it less likely to

crumble upon handling and also to stabilize the molten zone during crystal growth.

Growth speeds of 6-8 mm/h and a rotation rate of 25-30 rpm were used for both
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Single Crystal of ZrB12 Polycrystalline rod 

Figure 6.2: Single crystal of ZrB12, grown using the optical floating zone method in
a four mirror image furnace.

the feed and seed rods. Figure. 6.2 shows a single crystal of ZrB12 grown using

this method. Crystal quality and orientation were determined using the X-ray Laue

technique [for more details, see section 2.2.2]. Figure. 6.3 show the X-ray Laue im-

ages of a single crystal of ZrB12 collected along the [100] (a-axis) and [110] direction

of the crystal.

[100] [110] 

Figure 6.3: Typical X-ray Laue back-reflection image obtained from a crystal of
ZrB12. The image in the left is taken with the X-rays directed parallel to [100]
(along the a-axis). The image on the right is taken along the [110] direction.

6.3 Magnetization Measurements of ZrB12

The temperature dependence of the magnetic susceptibility of ZrB12 was measured

using a Quantum Design MPMS magnetometer [see section 2.3.1]. A field of 10 Oe

was applied both parallel and perpendicular to the c-axis. Data were taken both in
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Figure 6.4: The temperature dependence of the dc magnetic susceptibility of ZrB12

measured using both zero-field-cooled warming (ZFCW) and field-cooled cooling
(FCC). The magnetic field was applied both in parallel and perpendicular to the
c-axis. The diamagnetic susceptibility shows a Tc onset of (6.10± 0.05) K.

the zero-field-cooled warming (ZFCW) and the field-cooled cooling (FCC) modes.

The temperature dependence of the diamagnetic susceptibility shows that ZrB12 has

nearly the same signal strength [see Fig. 6.4] for both directions of the applied field.
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Figure 6.5: Virgin magnetization curves of the sample ZrB12 taken at different fixed
temperatures.

Magnetization measurements were performed as a function of field. Fig-
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ure 6.5 shows the virgin magnetization curves of the sample ZrB12 taken at dif-

ferent fixed temperatures. At low temperature, the magnetization approaches zero

smoothly, as expected for a typical Type-II superconductor. However, close to Tc,

the M(H) curves exhibit behaviour more like a Type-I superconductor as the mag-

netization (5.5 K data) sharply approaches zero at the critical field.
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Figure 6.6: The temperature dependence of the critical field, Hc of ZrB12, estimated
from the M(H) data.

Figure 6.6 shows the temperature dependence of the critical field, Hc of

ZrB12. We can not simply call Hc the upper critical field as the M(H) data of

ZrB12 shows Type-I like behaviour near Tc. We define Hc, as the field at which the

sample enters the normal state. We fit the temperature dependence of the Hc data

using the WHH model [for details, read section 3.3.3]. The WHH model is only

applicable for the temperature dependence of the upper critical field for a Type-II

superconductor. Here, we have used this model simply to estimate the Hc of ZrB12

at absolute zero. The fit yields, Hc(0) = 527(9) Oe at absolute zero.

6.4 µSR Measurements of ZrB12

In order to determine whether ZrB12 is a Type-I or Type-II superconductor, it is

very important to understand the internal field distribution in the superconducting

state. To probe the field distribution in the superconducting state of ZrB12 we have

performed µSR experiments on the MuSR spectrometer of the ISIS pulsed muon

facility. For more details of this technique, see section 2.4.

Here, we report transverse-field (TF) µSR experiments on a single crystal of
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superconducting ZrB12 and construct a complete superconducting phase diagram.

Our results clearly show a region of the B-T phase diagram of ZrB12 in which

the sample is in a Meissner state. In this region, the superconductor behaves as

an ideal diamagnet. We observe a region of intermediate state, a characteristic

feature of Type-I superconductor (with a sizable demagnetization factor) [180] and

a region of the mixed state with Abrikosov vortices [16], that are typical of a Type-II

superconductor. We also find regions where the mixed state coexists with either the

Meissner or the intermediate state.

We have performed the experiments in TF mode in the temperature range

between 1.4 and 8 K and with applied fields between 50 and 600 Oe. The sample

was mounted on a silver plate with the c-axis aligned perpendicular to the plate. A

small amount of diluted GE varnish was added to glue the sample to the holder. The

outer surface of the sample was covered with a thin silver foil to aid thermal contact.

The sample and mount were then inserted into a continuous-flow helium cryostat.

For all the measurements, the field was applied (perpendicular to the c-axis) above

the superconducting transition temperature and the sample then cooled to base

temperature. To analyze the data we have used the standard TF-µSR time spectra

to observe the local field distribution in the superconducting state of ZrB12. We

have also used the field spectra which are extracted from the TF-µSR spectra using

the maximum entropy technique. This is a deconvolution algorithm which functions

by minimizing a smoothness function (entropy) of a system. This method picks

the configuration with the highest entropy from all the probability distributions

compatible with the empirical data. For more details on how the maximum entropy

data is converted from the TF-µSR spectra, see Ref. [181].

The left hand panels of Figs. 6.7 and 6.8 show the time dependence of the

muon spin rotation spectra below and above the superconducting transition tem-

perature and in different applied fields. The solid lines are the fits to the data using

the function:

GX(t) = AKT
[
1/3 + 2/3(1− σ2

KT t
2) exp(−σ2

KT t
2/2)

]
exp (−λt)

+
∑

i=M,Mx,Int

Ai exp(−σ2
i t

2/2) cos (ωit+ φ)

+ABg cos (ωBgt+ φ) , (6.1)

where A is the asymmetry, σ is the relaxation rate, and ω is the frequency of the

muon spin precession signal of the respective components. The first term in the

parentheses describes the static or quasi-static magnetic signal due to the neigh-
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Figure 6.7: Muon spin rotation signals and the fitted parameters. The left hand
panels show the time-dependent transverse-field µSR spectra, measured at different
applied fields and temperatures. The right hand panels show the maximum entropy
spectra of the corresponding muon spin rotation signals shown in the left panels.

bouring nuclear dipoles of Zr atoms which are randomly orientated with respect to

each other and is also called the Kubo-Toyabe relaxation function [182]. Nuclear

dipoles create a magnetic moment depending on the spin of the individual nucleons

(i.e., protons and neutrons), which is a fundamental property of the nucleus. For

Zr atoms, the nuclear magnetic dipole moment, µ = −1.5424(1) µN , where µN is

the nuclear magneton [183]. The summation in the middle of Eq. 6.1 consists of

Meissner (M ), mixed (Mx ) and intermediate (Int) state components. The third

term represents the background signal which is mainly due to the applied field in

the exposed sample holder and the cryostat walls.

Figure 6.9 shows the temperature dependence of the initial asymmetry data

for the Meissner, mixed, intermediate, and normal states at different applied fields.
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Figure 6.8: Muon spin rotation signals and the fitted parameters. The left hand
panels are the time-dependent transverse-field µSR spectra, measured at different
applied fields and temperatures. The right hand panels are the maximum entropy
spectra of the corresponding muon spin rotation signals shown in the left panels.

The asymmetry data quantitatively describes the presence of different superconduct-

ing states with temperature. Solid lines are guides to the eye. In all cases, regimes

of the different superconducting states tend towards lower temperature as the field

increases. Figure 6.10 summarizes our data in a complete B-T phase diagram.

Let us now discuss this data in a little more detail. At 3.6 K and 50 Oe, the

sample shows a Meissner state where the magnetic field is completely excluded from

the sample. In the time spectra data (see the upper left panel of Fig. 6.7), we find

a oscillatory signal with a frequency of 0.673 MHz. The muon precession frequency

is related to the local field strength by

f =
γµ
2π
B, (6.2)
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Figure 6.9: Temperature dependence of the initial asymmetry of the muon spin
precession signals shown in the Meissner, mixed, intermediate and normal state.
Here, the error bars indicate one standard deviation.

where γµ/2π = 135.5 MHz/T is the muon gyromagnetic ratio. This implies that a

frequency of 0.673 MHz corresponds to the magnetic field of 50 Oe. A relaxation

signal with a field of 50 Oe can be explained by the fact that a fraction of the muons

hit the sample holder and only see the applied field giving a background signal.

The time spectra also has an additional relaxation signal which is probably due to

the random nuclear dipole moments of the Zr atoms and can be fitted using the

Kubo-Toyabe relaxation function. In the maximum entropy data (see the upper

right panel of Fig. 6.7), we observe a peak at very low field which shows the Kubo-

Toyabe behaviour associated with the nuclear field. We also see a small fraction

of the applied field as an additional peak in the data due to some of the muons

stopping in the sample holder and the cryostat’s wall. In the B-T phase diagram

[see Fig. 6.10], this Meissner state is shown by the yellow circles.

The signal at 1.6 K and 350 Oe (Fig. 6.7 middle panel) decays very quickly

due to the inhomogeneous field distribution from the flux line lattice (FLL). Time

spectra data have two frequencies of 4.776 and 3.205 MHz corresponding to mag-

netic fields of 350 and 236 Oe, respectively. Here again, the high frequency signal
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Figure 6.10: Superconducting phase diagram determined from muon spin rotation
measurements on ZrB12. The yellow circles, black stars, and green open-triangles
indicate the Meissner, intermediate, and mixed states, respectively. The red open-
stars and blue circle designate the coexistence of the mixed state separately with
the Meissner and intermediate states, respectively. The royal-blue diamonds and
red squares are the upper critical fields determined from muon spin rotation and
magnetization measurements, respectively. The error bars indicate one standard
deviation.

(4.776 MHz) is the background signal coming from the applied field, whereas the

other signal with a frequency of 3.205 MHz is due to the formation of the FLL in the

mixed state. In the maximum entropy data, a Gaussian distribution of fields due to

the FLL is observed below the applied field and this indicates that the sample is in

the mixed state of a Type-II superconductor. This data point is shown in the phase

diagram by one of the green triangles.

The µSR spectra at 5.2 K and 50 Oe (Fig. 6.7 bottom panel) clearly reveal

the presence of two oscillatory terms (with frequencies of 0.702 and 1.058 MHz)

along with the Kubo-Toyabe term for the nuclear moments at very low field. The

maximum entropy data show three peaks in the internal field distribution. The

first and the second peaks are due to the nuclear moment and small background

applied field, respectively, while the third peak can be described as a critical field
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coming from the intermediate state of the sample exhibiting Type-I behaviour. In

the intermediate state, due to the geometry of the sample it may have a sizable

demagnetisation effect and even a small applied field may exceed the critical field at

the edges of the sample and hence parts of the sample become normal. As a result,

superconducting regions exhibiting the Meissner state coexist with normal regions.

The black stars represent similar points to this in the phase diagram.

At 1.4 K and 200 Oe (Fig. 6.8 upper panel), the µSR spectra show two

oscillations with frequencies 2.64 MHz (195 Oe) and 1.545 MHz (114 Oe) due to the

background applied field and the formation of the FLL, respectively. There is also

a Kubo-Toyabe relaxation present in the signal. The maximum entropy data also

show a peak near zero field due to the nuclear moments, a peak at the applied field,

and a Gaussian Type distribution of fields due to the formation of FLL. These are

the characteristic signals of both the Meissner and mixed state. Here, again, due to

demagnetisation effects, the applied field can exceed the lower critical field and the

sample forming a mixed state at some places, while the rest of the sample remains

in the Meissner state. In this state there is a coexistence between the Meissner and

the mixed state. This region is shown in the phase diagram by the red stars. At

3.0 K and 250 Oe (Fig. 6.8 middle panel), another coexistence region is observed

between the intermediate and the mixed states where we see structures typical of a

FLL and the characteristic feature of the intermediate state. In the phase diagram,

this region is shown by the blue spheres. Finally, at 1.4 K and 500 Oe (Fig. 6.8 lower

panel), the sample is clearly in the normal state and we see a single oscillation (with

frequency 6.769 MHz) corresponding to the applied field of 500 Oe which decays very

slowly. The maximum entropy data also shows a single peak at the applied field.

The normal state data are shown in the B-T phase diagram by the blue diamonds.

6.5 Summary and Conclusions

We have grown a high quality single crystal of ZrB12 using the optical floating

zone method. The quality of the crystal was confirmed from Laue X-ray diffraction

images. The temperature dependence of the magnetization measurements show a

sharp Tc of 6.1 K for ZrB12. The temperature dependence of Hc has been extracted

from the virgin magnetization loops measured at different temperatures. The value

of Hc(T ) at absolute zero can be estimated using the WHH model. The fit yields a

value of 527(9) Oe for Hc(0). We have mapped out the superconducting phase dia-

gram of ZrB12 in great detail from the µSR measurements. By measuring the local

field distribution for different applied fields and temperatures we have found evi-
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dence of the Meissner, mixed, and intermediate states in the ZrB12 superconductor.

The intermediate state is characteristic of a Type-I superconductor, while the mixed

state is characteristic of a Type-II superconductor. We have also observed regions

of coexistence between different states. Observation of an intermediate mixed state

in a low-κ and Type-II superconductor has been reported by Essmann and Träuble

using the decoration technique [184], while our system shows direct evidence of such

a state. This observed phase diagram for superconductivity is unusual and implies

that κ may change with temperature (or at least is close to the Type-I / Type-II

boundary) since different regions of the phase diagram are characteristic of Type-I

and Type-II behaviour. More studies (such as SANS, etc.) are required to verify

our claim and also to understand the B-T phase diagram of ZrB12 in more detail.

In addition, at low fields an attractive interaction between vortices may also be

playing a role, as has been suggested for the “Type-1.5” description of MgB2 (see

ref. [20]) where one band is thought to have Type-I character while the other retains

its Type-II nature. ZrB12 may be the ideal system to test such propositions.
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Chapter 7

Crystallographic Structure and

Superconductivity of Two

Different Phases of Re3W

7.1 Superconductivity with Non-centrosymmetric Crys-

tal Structure

Figure 7.1: Crystal structure of CePt3Si. The bonds indicate the pyramidal coor-
dination [Pt5]Si around the Si atom.

The discovery of superconductivity in the non-centrosymmetric (NCS) heavy

fermion CePt3Si [185] has resulted in a period of intense theoretical and experimen-
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tal investigation into the physics of non-centrosymmetric superconducting materi-

als. The symmetry of a crystal structure plays an important role in the formation

of Cooper pairs in conventional superconductors. The term “non-centrosymmetric”

indicates that the crystal lattice lacks inversion symmetry. The concept of sym-

metry describes the periodic repetition of structural features. If a crystal possesses

inversion symmetry, then every line drawn through the centre of the crystal will con-

nect two identical features on opposite sides of the crystal. For example, CePt3Si

crystallizes in a tetragonal crystal structure with the space group P4mm (No. 99)

which lacks inversion symmetry [185]. The unit cell contains one formula unit with

one Ce, one Si and two Pt inequivalent sites. The absence of inversion symme-

try comes from the missing mirror plane (0, 0, 1/2)(see Fig. 7.1). The absence

of such a crystallographic inversion centre can degenerate the underlying spin-up

and spin-down energy bands. Theoretically, the lack of inversion symmetry leads

to an anti-symmetric spin orbit coupling which removes the spin degeneracy of

the conduction band electrons and therefore in noncentrosymmetric superconduc-

tors the spin and the orbital parts of the Cooper pairs cannot be treated indepen-

dently [186, 187, 188, 189]. The lack of inversion symmetry in the crystal structure of

this type of material along with strong spin-orbit (SO) coupling can lead to a mixing

of spin-singlet and spin-triplet pair states [186]. These NCS materials exhibit un-

usual magnetic properties including suppressed paramagnetic limiting or high upper

critical fields [188, 190] as seen in CePt3Si, [185] CeRhSi3, [191] and CeIrSi3 [192],

the appearance of superconductivity with antiferromagnetic order in CePt3Si, [193],

and superconductivity at the border of ferromagnetism in UIr [194]. Novel physics

has indeed been observed in many NCS superconductors such as the large upper

critical field (Y2C3, [195] CePt3Si, [185] CeRhSi3, [191] CeIrSi3, [192] CeCoGe3, [196]

CeIrGe3, [195] etc.), suppressed paramagnetic limiting (CePt3Si, [188, 190]), time-

reversal symmetry breaking (LaNiC2 [197]), coexistence of ferromagnetic or anti-

ferromagnetic ordering with the superconducting phase (CePt3Si, [193] UIr, [194])

are expected.

7.2 Superconductivity in Re3W

One recent focus of the work on non-centrosymmetric superconductors has been to

investigate the properties of transition-metal compounds that have significant spin-

orbit coupling. Here, the complications of the f -electron heavy fermions, such as

the strong electron correlations and the possibility of magnetically mediated super-

conductivity, are expected to be absent. The intermetallic Re3W belongs in this
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category as it contains very heavy atoms with atomic numbers 75 and 74 for Re

and W respectively. Superconductivity in Re3W was first reported in the 1960s.

The material was shown to have an α-Mn or A12 structure [198, 199], although it

is worth noting that the authors of this early work did not comment on the fact

that the α-Mn structure is non-centrosymmetric. Since then, very little experimen-

tal work has been done on Re3W. Recent penetration depth measurements carried

out on the NCS phase of Re3W by RF tunnel diode resonator and point-contact

spectroscopy suggested that Re3W is a weakly coupled isotropic s-wave supercon-

ductor [200, 201, 202].

Here, we report on the synthesis of two different superconducting phases of

Re3W. One phase has a centrosymmetric (CS) crystal structure, whereas the other

has a non-centrosymmetric structure. Switching from the CS to the NCS phase is

achieved by annealing the sample, while remelting the NCS sample in an arc furnace

returns the sample to the CS structure. The ease with which one can switch between

the two phases of Re3W has allowed us to investigate and compare the properties of

a CS and a NCS superconducting system using a single material without changing

in stoichiometry. We characterize the properties of both phases of Re3W using

neutron diffraction, magnetization, M , and resistivity, ρ, measurements. We present

the temperature dependence of the lower critical field, Hc1, and the upper critical

field, Hc2, of both materials and also calculate the penetration depths and coherence

lengths for these systems.

We have also performed muon spin relaxation/rotation (µSR) experiments

on the NCS and the CS phases of Re3W. µSR can be used to detect small inter-

nal magnetic fields associated with the onset of an unconventional superconducting

state [203, 204, 197] and to measure the temperature and field dependence of the

London magnetic penetration depth, λ, in the vortex state of type-II supercon-

ductors. [47, 205] The temperature and field dependence of λ can in turn provide

detailed information on the nature of the superconducting gap.

7.3 Sample Preparation of the CS and NCS Phases of

Re3W

Samples of the as-cast phase of Re3W were prepared by melting together a stoichio-

metric mixture of Re lumps (99.99%) and W pieces (99.999%) in an arc furnace [for

details, see section 2.1.1] on a water-cooled copper hearth using tungsten electrodes

in a high-purity Ar atmosphere. After the initial melt, the sample buttons were

turned and remelted several times to ensure homogenity. The as-grown samples
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were annealed for 5 days at 1500◦C in a high-purity Ar atmosphere. The unan-

nealed samples of Re3W are hard but malleable. The samples become brittle after

annealing.

7.4 Powder Neutron Diffraction Studies of the CS and

NCS Phases of Re3W
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Figure 7.2: Neutron diffraction patterns as a function of d-spacing collected at 295 K
for the (a) annealed and (b) unannealed samples of Re3W. The Rietveld refinement
of the diffraction data shows the annealed sample has a non-centrosymmetric α-Mn
structure while the unannealed sample has a centrosymmetric hexagonal structure.
Green asterisks are the peaks that can not be indexed. All the refined crystal
parameters are shown in Table 7.1.

Powder neutron diffraction experiments were carried out on the GEM diffrac-

tometer at the ISIS Facility, Rutherford Appleton Laboratory, UK. For more de-

tails, read section 2.5.1. The data were normalized to the incident neutron flux

distribution, corrected for detector efficiencies, and converted into d-spacing pat-
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(a) (b) 

Figure 7.3: Crystal structures of the (a) non-centrosymmetric and (b) centrosym-
metric phases of Re3W, with the Re atoms shown in dark cyan and the W atoms
shown in grey.

terns. Fig. 7.2 shows the diffraction patterns collected at 295 K from the an-

nealed and unannealed samples of Re3W. The Rietveld refinement of the diffrac-

tion data have been done using the GSAS (General Structure Analysis System)

program [206, 207]. The refinement shows that the annealed sample has a NCS

α-Mn structure with space group I 4̄3m and cubic unit cell size a = 9.5986(1) Å (see

Fig. 7.2(a)). The diffraction pattern of the unannealed sample shows that this

sample has a hexagonal structure with the space group P63/mmm and lattice pa-

rameters a = 2.7719(1) Å and c = 4.5166(1) Å (see Fig. 7.2(b)). The diffraction

patterns of both phases of Re3W contain some weak peaks (denoted by asterisks)

that can not be indexed. Figure. 7.3(a) and (b) show the crystal structures of the

NCS and the CS phases of Re3W. For the CS phase of Re3W, both the Re and

the W atoms share the same site leading to a random distribution of Re and W

within the material. For the NCS phase, the refinement indicates that Re and the

W atoms occupy preferred crystallographic sites and are therefore distributed in

a more orderly fashion within the material. The refined composition of the NCS

phase is Re3.45W indicating there is still some uncertainty in the site occupation.

The ratio of the unit-cell volume for the NCS and CS phases of Re3W is 25:1. Crys-

tallographic parameters of the two phases of Re3W, determined from the structural

refinement of neutron diffraction data are shown in Tables 7.1 and 7.2.
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Table 7.1: Lattice parameters of the non-centrosymmetric and centrosymmetric
phases of Re3W determined from the structural refinement using the GSAS program
of powder neutron diffraction data collected at 295 K.

NCS Re3W CS Re3W

Structure α-Mn Hexagonal
Space group I 4̄3m P63/mmm
a (Å) 9.5986(1) 2.7719(1)
c (Å) 4.5166(1)
Vcell (Å3) 884.35(1) 34.70(1)
Rp 0.049 0.077
wRp 0.07 0.1

Table 7.2: Atomic position parameters of the non-centrosymmetric and centrosym-
metric phases of Re3W determined from the structural refinement using the GSAS
program of powder neutron diffraction data collected at 295 K

NCS Re3W

Atom site x y z Mult Occ. Uiso (Å2)

Re 2a 0 0 0 2 0.99 0.007
W 8c 0.3192 0.3192 0.3192 8 1.00 0.006
W 24g 0.3605 0.3605 0.0456 24 0.21 0.009
Re 24g 0.3605 0.3605 0.0456 24 0.79 0.009
Re 24g 0.0911 0.0911 0.2826 24 1.00 0.008

CS Re3W

Atom x y z Mult Occ. Uiso (Å2)

Re 0.3333 0.6667 0.25 2 0.75 0.005
W 0.3333 0.6667 0.25 2 0.25 0.005

7.5 Magnetization Measurements of the CS and NCS

Phases of Re3W

Magnetization versus temperature measurements were performed in an applied mag-

netic field of 20 Oe using a Quantum Design Magnetic Property Measurement Sys-

tem (MPMS) magnetometer, see section 2.3.1. The temperature dependence of the

dc magnetic susceptibility, χ(T ) shows that the NCS Re3W sample has a super-

conducting transition temperature, T onset
c , of (7.80 ± 0.05) K [see Fig. 7.4] with a

transition width ∆Tc = 0.21 K. For CS Re3W, the onset of the transition is around
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Figure 7.4: Temperature dependence of the magnetic susceptibility for the non-
centrosymmetric and the centrosymmetric Re3W measured in zero-field-cooled and
field-cooled mode in an applied magnetic field of 20 Oe.

(9.40 ± 0.05) K with a much broader transition of ∆Tc = 0.50 K. Comparable

transition widths are observed in the resistivity measurements (see below). This

suggests, as expected, that the annealed NCS phase of Re3W is more homogeneous

than the unannealed CS phase. At 2 K, the zero-field-cooled (ZFC) dc susceptibility

approaches a value of -1 (∼ 100% shielding) for both the samples, while the field-

cooled (FC) signal shows a flux exclusion (Meissner effect) of ∼ 5% for the NCS

phase and ∼ 7% for the CS phase.
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Figure 7.5: (a) and (b) Virgin magnetization curves measured at 1.8 K for the
non-centrosymmetric and centrosymmetric phases of Re3W.
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Figure 7.6: (a) and (b) Magnetization hysteresis loops at 1.8 K for the NCS and CS
phases of Re3W.
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Figure 7.7: (a) and (b) Magnetization hysteresis loops for the NCS (10 K) and CS
(12 K) phases of Re3W above Tc.

Figs. 7.5(a) and (b) show the low-field virgin magnetization data for the NCS

and CS phases of Re3W at 1.8 K and figures 7.6(a) and (b) show the full magneti-

zation versus applied magnetic field loops collected in the superconducting state at

1.8 K. For the NCS sample the raw M(H) data contain a significant paramagnetic

contribution. This contribution has been removed from the data shown in Fig. 7.6(a)

by measuring an M(H) curve above Tc at 10 K (see Fig. 7.7(a)). The signal for

the CS sample contains a small linear susceptibility χdc = 4.23 × 10−7 emu/g (see

Fig. 7.7(b)) that has been subtracted from the data shown in figure 7.6(b). For the

NCS sample, the value of the field of complete penetration of magnetic flux, Hp

is 152 Oe while in the CS sample, Hp > 2500 Oe. For the NCS phase of Re3W
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the magnetization is reversible all the way from 70 kOe, the highest field that we

can apply in our magnetometer, down to 10 kOe. We presume that the magne-

tization will remain reversible up to the upper critical field, estimated from the

resistance measurements presented below to be 113 kOe. In contrast, the magne-

tization of the CS sample only becomes reversible in magnetic fields above 40 kOe

(with Hc2(T ) ≈ 130 kOe).
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Figure 7.8: First two quarters of the hysteresis loops for different field sweeping rate
for the CS phases of Re3W, taken at (a) 2 K and (b) 5 K.

Hysteresis loops of the CS phase of Re3W have been measured at different

field sweep rates and temperature using the Oxford Instruments’s Vibrating Sample

Magnetometer (VSM). For lower fields the hysteresis loops of the CS sample contain

a number of large magnetic-flux jumps, while no jumps are observed for the annealed

samples. These flux jumps occur at lower temperatures (T ≤ 4 K) and at applied

fields below ∼ 20 kOe. The number and magnitude of the flux jumps vary from

loop to loop and become less frequent as the field sweeping rate, dH/dt, is decreased

[see Fig. 7.8(a)]. At 5 K with (dH/dt ≤ 10 Oe/s) no flux jumps are observed and

at higher temperatures (5 K < T < Tc) the flux jumps disappear [see Fig. 7.8(b)].

The M(H) curves show that both types of Re3W exhibit reversible behaviour

below Tc over a large region of the H-T phase diagram. These data indicate that

the bulk pinning is stronger in the CS phase of Re3W than the NCS phase, and

that the flux jumps are due to thermomagnetic instabilities induced by the motion

of vortices into the superconductor combined with the sudden redistribution of the

vortices within the sample [208]. The symmetry of the loops suggests that surface

barriers do not play an important role in this material. Further studies are underway

to investigate the different pinning mechanisms in the two different phases of Re3W.
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Figure 7.9: (a) and (b) Deviation, ∆M , from the linear virgin magnetization as a
function of applied field determined at different temperatures for the NCS and CS
phases of Re3W.

The value of the lower critical field, Hc1, was determined by measuring the

field of first deviation from the initial slope of the magnetization curve. To this end,

a linear fit to the data between 0 to 10 Oe was made. The deviation from linearity,

∆M , was then calculated by subtracting this fit from the magnetization curves and

plotted as a function of applied field [see Figs. 7.9 (a) and (b)]. The temperature

dependence of Hc1 for the two phases of Re3W are obtained by using the criteria

∆M ≤ 10−4 emu/g and plotted in Figs. 7.10 (a) and (b). Demagnetizing effects

are taken into account while estimating the Hc1 values from the magnetization

data. The data for both the samples are fitted using the expression Hc1(T ) =

Hc1(0)
{

1− (T/Tc)
2
}

, where Hc1(0) is the lower critical field at zero temperature.

Tc was used as a variable parameter for better fitting. The quadratic equation fits

the data well for the NCS phase, whereas the model provides a poor fit to the data

of the CS phase. The fits yield Hc1(0) of 97(1) and 279(11) Oe for the NCS and the

CS samples respectively.
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.

7.6 Resistivity Measurements of the CS and NCS Phases

of Re3W

We have measured the ac electrical resistivity as a function of temperature, ρ(T ),

for both phases of Re3W via a standard four-probe method [see section 2.3.2] using

a Quantum Design Physical Property Measurement System (PPMS) [see Fig. 7.11].

The NCS Re3W shows a superconducting transition (onset) at (7.85 ± 0.05) K

(∆Tc = 0.05 K) while the CS Re3W has a transition at (9.45 ± 0.05) K (∆Tc =

0.32 K). The zero-field onset transition temperatures determined from the resistiv-

ity measurements are slightly higher than those obtained from the magnetization

measurements performed in a magnetic field of 20 Oe. The resistivity curves between

2 to 295 K show metallic behaviour for the CS phase of Re3W, whereas it is almost

temperature independent above Tc in the NCS phase of Re3W [see Fig. 7.12]. The

relative resistance ratio, ρ(295 K)/ρ(10 K) and the room temperature resistivity are

1.15(1) and 1.7µΩm for the NCS phase and 1.52(1) and 2.1µΩm for the CS phase
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Figure 7.11: Low-temperature ac electrical resistivity of the NCS and the CS phases
of Re3W.
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Figure 7.12: An ac electrical resistivity of the NCS and the CS phases of Re3W up
to room temperature.

indicating that both samples are poor metals. The NCS phase is the more brittle of

the two materials and any extrinsic factors such as microscopic cracks in the sample

are more likely to play a role in high normal state resistivity. Given that the room

temperature resistivity of the NCS sample is lower than the CS phase, we suggest

that cracks are not the reason for the high normal-state resistivity. The poor con-

ductivity is more likely to result from a combination of strong electronic scattering

and a large temperature independent residual resistivity due to structural disorder
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(while the NCS annealed phase is structurally more ordered than the CS phase, the

NCS phase still retains a degree of Re/W disorder). We have calculated the mean

free path, ltr based on the BCS approach [209]. The molecular weight of Re, W

and, Re3W are 186.2, 183.9 and, 742.5 g/mol, respectively. The density of Re3W is

18.1 g/cm3 (assuming same density for the NCS and CS phases of Re3W). Hence,

the molar volume, VM = 742.5/18.1 = 41.0 cm3/mol. The Fermi surface area for

the free electron gas, SF = 4π(3π2n)2/3 where n is the free electron density and can

be calculated as n = 1
VM
× (3× 7 + 6)× 6.023× 1023 e/cm3. The mean free path of

an electron can be calculated by these values using the following equation

ltr =
1.27× 104

ρn2/3(S/SF )
, (7.1)

where S is the Fermi-surface area and SF is the Fermi-surface area of the free

electron gas of density n. SF and n have been used in such a way so that the factor

n2/3S/SF appears proportional only to S. We assume S/SF = 1/2 (value of S/SF

has been assumed to be between 1/2 and 2/3 for V3Si and Nb3Sn systems) [209]. The

calculations using the room temperature resistivity data yield lNCStr = 0.277 nm and

lCStr = 0.224 nm. These values are comparable with the size of the crystallographic

unit cells and given the coherence lengths, ξ derived below, indicate that both phases

of Re3W are in the dirty limit.

We have measured the resistivity versus temperature of the NCS and the

CS samples of Re3W in magnetic fields up to 90 kOe [see Fig. 7.13 (a) and (b)].

In the normal state just above Tc, both phases exhibit a small (∼ 0.6%) positive

magnetoresistance in a magnetic field of 90 kOe. The temperature dependence of the

upper critical field, Hc2(T ), of the NCS and the CS samples, determined from the

onset of the resistive transitions (defined by a 1% drop of the resistivity), are shown

in Fig. 7.14 (a) and (b). For the NCS sample, the temperature dependence of Hc2 is

nearly linear close to Tc with dHNCS
c2 /dT = −23.0(2) kOe/K and can be described

using the Werthamer-Helfand-Hohenberg (WHH) model [see section 3.3.3]. In fitting

the data to the WHH relations we calculated the Maki parameter, α = 1.41± 0.01,

compared with a value of 1.22±0.01 estimated from the gradient dHNCS
c2 /dT near Tc.

The WHH fit yields HNCS
c2 = 125(1) kOe at T = 0 K. The temperature dependence

of Hc2 for the CS sample clearly shows a difference in behaviour compared to the

NCS sample with deviations from the conventional WHH dependence. The data has

a positive curvature with temperature near Tc and is linear thereafter. A similar

behaviour is observed in polycrystalline borocarbides [210], MgB2 [211, 212], and

Nb0.18Re0.82 [213]. A reasonable fit to the data for the CS sample can be obtained
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Figure 7.13: (a) and (b) Temperature variation of the resistivity in a set of magnetic
fields from 0 to 90 kOe for the NCS and CS phases of Re3W.

using the formula based on Ginzburg-Landau (GL) equation

Hc2(T ) = Hc2(0)
(1− t2)

(1 + t2)
. (7.2)

Here t = T
Tc

. The fit yields HCS
c2 (0) = 129(4) kOe. A better fit to the data close to

Tc can be obtained using the Boson equation [214].

Hc2(T ) = Hc2(0)(1− t3/2)3/2. (7.3)

In this model is it assumed that the electron pairs beheave as hard-core charged

bosons. This can exhibit a superconducting state analogous to that of superfluid
4He. The fit the Boson expression yields HCS

c2 (0) = 147(3) kOe. A simple linear

extrapolation of the lower temperature data to T = 0 K (shown in dashed line

in Fig. 7.14 (b)) gives HCS
c2 (0) = 178(5) kOe with dHCS

c2 /dT = −21(1) kOe/K. A

similar analysis of the data for the NCS sample gives HNCS
c2 (0) = 153(1) kOe. While

the temperature dependence of Hc2 for the two phases is clearly different, the values
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Figure 7.14: (a) and (b) Temperature dependence of the upper critical fields of the
NCS and CS phases of Re3W. The solid line in Fig. 7.14(a) is a fit to the data using
the WHH model. The red line in Fig. 7.14(b) is a fit to the data using the Boson
model. The black line is a fit to the data using the GL equation. The dashed line
is a straight line fit to the data at low temperature region.

of Hc2 at T = 0 K are comparable. The analysis presented above shows that Hc2(0)

appears to be slightly higher in the CS phase. Measurements at higher fields and

lower temperatures are required to reveal to what extent Pauli limiting plays a role

in determining Hc2(0) in these materials.

7.6.1 Microscopic Parameters from Resistivity and Magnetization

Measurements

The coherence length, ξ, can be calculated using the Ginzburg-Landau (GL) relation

ξ = (Φ◦/2πHc2)1/2. With HNCS
c2 (0) = 125(1) kOe for NCS Re3W, the estimated

ξNCS(0) is 5.13(2) nm. To calculate the value of ξ for CS Re3W, we have used

the value of HCS
c2 (0) estimated using the Boson model as this model better fit the

data close to Tc. ξ
CS(0) is deduced to be 4.73(5) nm from HCS

c2 (0) = 147(3) kOe.
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Table 7.3: Measured and derived superconducting and transport parameters of the
non-centrosymmetric and centrosymmetric phases of Re3W.

NCS Re3W CS Re3W

T onset
c (K) 7.80±0.05 9.40±0.05
Hc1(0) (Oe) 97±1 279±11
Hc2(0) (kOe) 125±1 147±3
λ(0) (nm) 257±1 141±11
ξ(0) (nm) 5.13±0.02 4.73±0.05
κ(0) 50±1 30±3
ρ(295 K)(µΩm) 1.7 2.1
ltr (nm) 0.277 0.224

Combining ξ and the standard expression Hc1 = Φ0
4πλ2

(
ln λ

ξ + 0.12
)

[22], we estimate

the magnetic penetration depth, λNCS(0) = 257(1) nm and λCS(0) = 141(11) nm for

the NCS and CS phases of Re3W respectively. The value of λNCS(0) is in resonable

agreement with the value of 300(10) nm reported by Zuev et al. [200]. We used

the values of λ(0) and ξ(0) to calculate the GL parameter κ = λ/ξ. They yield

κNCS(0) = 50(1) for the NCS phase and κCS = 30(3) for the CS phase of Re3W.

The measured and derived superconducting and transport parameters of the NCS

and the CS phases of Re3W are listed in Table 7.3.

7.7 Heat Capacity Measurements of the CS and NCS

Phases of Re3W

The heat capacity was measured in a Quantum Design physical properties mea-

surement system for temperatures from 2 K ≤ T ≤ 300 K. The details about the

experimental procedure are given in section 2.3.3.

The specific heat (C) of the NCS and CS phases of Re3W are plotted in

Fig. 7.15 in the form of C vs. T . As expected, no magnetic order could be detected

down to 2 K and at high temperature, the signal is dominated by the contribution

from lattice vibrations. To calculate the Einstein and Debye temperatures, we model

the temperature dependence of the specific heat data of the NCS and CS phases

of Re3W by one-Debye and one-Einstein model, also called the Born-von Karman

model
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Figure 7.15: Temperature dependence of the specific heat C of the NCS and CS
phases of Re3W. Solid lines are the Debye+Einstein fit to the data.

C(T ) = γnT + CD(T,ΘD) + CE(T,ΘE), (7.4)

For more details, read section 3.3.4. The fits yield ΘD = 228(6), ΘE = 292(15)

for the NCS phase and ΘD = 219(1), ΘE = 333(6) for the CS phase of Re3W,

respectively. The contributions of the Debye mode to the total specific heat are

78 % and 81 % for the NCS and CS phases of Re3W, respectively. We can also

resonably fit the data well using only a single Debye model and obtain a Debye

temperature ΘD of 258(1) and 247(1) K for the NCS and CS phases respectively.
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Figure 7.16: C/T vs T 2 of the NCS and CS phase of Re3W. Solid lines are fit to
the low-temperature data above Tc using Eq. 7.5.

Fig. 7.16 shows C/T vs T 2 of the NCS and CS phase of Re3W. Specific
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heat jumps due to superconducting phase transitions have been clearly observed at

(7.80± 0.05) K and (9.40± 0.05) K for the NCS and CS phase of Re3W. Solid lines

show the low temperature fits to the specific heat data in the normal state (above

Tc) using the equation

C/T = γn + βT 2 + αT 4. (7.5)

The fitted parameters are γn = 15.9(6) mJ/mol K2, β = 0.26(1) mJ/mol K4, α =

7.3(4) × 10−4 mJ/mol K6 for the NCS phase and γn = 11.6(8) mJ/mol K2, β =

0.45(1) mJ/mol K4, α = 5.1(4) × 10−4 mJ/mol K6 for the CS phase of Re3W,

respectively.
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Figure 7.17: Electronic contribution to the specific heat of the NCS and CS phases
of Re3W as Ce/γnT vs T/Tc. Solid lines are the fit to the data using a single-gap
BCS model.

The electronic contribution to the specific heat Ce can be obtained by sub-

tracting the phonon contribution (Cph = βT 3 + αT 5) from the total specific heat

data. Fig. 7.16 shows the normalized electronic specific heat, Ce/γnT of the NCS

and CS phases of Re3W as a function of reduced temperature T/Tc.

We have fitted the Ce/γnT data using the single-gap BCS expressions. De-

tails about the BCS expressions are described in section 3.3.4. The solid lines in

Fig. 7.17 are the single-gap BCS model fit to the data. We obtain superconducting

gaps, ∆NCS(0) = 1.25(1) meV for the NCS phase and ∆CS(0) = 1.56(1) meV for

the CS phase of Re3W. The magnitude of the superconducting gap, ∆/kBTc, are

1.85(2) and 1.90(2) for the NCS and CS phases of Re3W, respectively. In the weak-

coupling BCS superconductors, the value of ∆/kBTc is 1.76. This implies that both

the NCS and CS phases of Re3W are strong coupling superconductors. The derived
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Table 7.4: Fitted parameters of the non-centrosymmetric and centrosymmetric
phases of Re3W obtain from specific heat measurements.

NCS Re3W CS Re3W

ΘD (K) [nD] 228±6 [0.78] 219±1 [0.81]
ΘE (K) [nE ] 292±15 [0.22] 333±6 [0.19]
γn (mJ/mol K2) 15.9±0.6 11.6±0.8
β (mJ/mol K4) 0.26±0.01 0.45±0.01
α (µJ/mol K6) 0.73± 0.04 0.51± 0.04
∆(0) (meV) 1.25±0.01 1.56±0.01
∆(0)/kBTc 1.85±0.02 1.90±0.02

specific parameters of the NCS and the CS phases of Re3W are listed in Table 7.4.

7.8 µSR Measurements of the CS and NCS Phases of

Re3W

We have successfully derived different superconducting parameters by magnetic,

transport and specific heat measurements. However, these can provide very little

or no information about the absolute value of the London penetration depth and

the symmetry of the superconducting gap structure. To investigate these features,

we have performed muon spin rotation (µSR) experiments on Re3W on the MuSR

spectrometer of the ISIS pulsed muon facility, Rutherford Appleton Laboratory, UK

[see section 2.4]. The sample was mounted on a silver plate with a circular area of

∼ 700 mm2 and a small amount of diluted GE varnish was added to aid thermal

contact. The sample and mount were then inserted into a Oxford Instruments He3

sorbtion cryostat.

We have performed ZF-µSR study on both phases of Re3W to detect the

presence of any weak internal magnetism in the samples. Fig. 7.18 (a) and (b) show

the ZF-µSR signals of the NCS and CS phase of Re3W, respectively. Data taken

above and below Tc show no sign of any change in the relaxation rate for both

materials. These indicate the absence of any spontaneous internal field at the muon

sites in the superconducting state and hence preserve the time-reversal symmetry

in both systems.

The ZF data can be described by the Kubo-Toyabe function, [215]
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Figure 7.18: ZF- µSR time spectra collected at (a) 8 K and 0.3 K for the NCS phase
of Re3W and (b) 10 K and 0.3 K for the CS phase of Re3W. The solid lines (in
blue) are the fits to the data (above Tc) using the Gaussian Kubo-Toyabe function
as described in the text.

Table 7.5: Parameters extracted from the fits using the Kubo-Toyabe function to
the zero-field-µSR data collected above and below Tc for the non-centrosymmetric
and centrosymmetric phases of Re3W.

NCS Re3W CS Re3W

A0 0.182±0.001 [8 K] 0.064±0.001 [10 K]
0.178±0.001 [0.3 K] 0.069±0.002 [0.3 K]

σ (µs−1) 0.267±0.002 [8 K] 0.235±0.004 [10 K]
0.266±0.002 [0.3 K] 0.234±0.005 [0.3 K]

Abkgd 0.043±0.001 [8 K] 0.196±0.001 [10 K]
0.047±0.001 [0.3 K] 0.191±0.002 [0.3 K]

Gz(t) = A0

[
1

3
+

2

3
(1− σ2t2) exp(−σ

2t2

2
)

]
+Abkgd, (7.6)

where A0 is the initial asymmetry, σ is the relaxation rate, and Abkgd is the back-

ground signal. The fits yield the parameters shown in Table 7.5 with the same values

for each phase obtained above and below Tc. The observed behaviour, and the val-

ues of σ extracted from the fits, are commensurate with the presence of random

local fields arising from the nuclear moments within the samples, that are static on

the time scale of the muon precession.
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There is no evidence for any spontaneous coherent internal fields at the muon

sites arising either in the normal or the superconducting states. Nor are there any

additional relaxation channels that may be associated with more exotic electronic

phenomena such as the breaking of time-reversal symmetry. [203, 204, 197]
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Figure 7.19: The transverse-field muon-time spectra (one component) collected (a)
at T = 0.3 K and (b) at T = 8.0 K for the NCS phase and (c) at T = 0.3 K and (d)
at T = 10 K for the CS phase of Re3W in a magnetic field H = 400 Oe.

We have also performed a transverse field Muon spin rotation (TF-µSR)

study on both phases of Re3W which involves the application of an external magnetic

field perpendicular (transverse) to the initial direction of the muon spin polarization.

The muon spin precesses about the transverse field, with a frequency (called the

Larmor frequency) that is proportional to the size of the field at the muon site in

the material. Figure 7.19 (a) and (c) show the TF-µSR precession signals below Tc

for the NCS and CS phases of Re3W, while Figure 7.19 (b) and (d) are similar above

Tc. The data were taken in an applied field of H = 400 Oe to make sure that the

samples were in the mixed state. In the normal state, the signals of both phases of

Re3W decay very slowly. In this case, the muons experience only the homogeneous

applied field over the whole sample. However, the decay is relatively fast in the
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superconducting state (T < Tc). Here, the muons face an inhomogeneous field

distribution inside the samples due to the formation of the flux-line lattice in the

vortex state. To calculate the superconducting contribution to the Gaussian muon

spin relaxation rate, σsc, TF-µSR precession data were fitted using equation 4.2.

Fig. 7.20 (a) and (b) show the temperature dependence of σsc obtained in an applied

TF of 400 Oe for the NCS and CS phases of Re3W, respectively. Fig. 7.21 (a) and

(b) show the magnetic field dependence of σsc, obtained at 0.3 K for the NCS and

CS phases of Re3W. σsc is almost field independent for the CS phase, while an up

turn is observed in the NCS phase of Re3W at low fields. The up turn in σsc of the

NCS phase of Re3W can be explained by the lower value Hc1 in this system. The

value Hc1 is ∼ 97 Oe for NCS Re3W and ∼ 279 Oe for CS Re3W. The flux expulsion

will be different for applied fields above and below the Hc1. The flux pinning in the

CS material is much stronger than in the NCS phase. [216] Therefore, the most

likely cause of the upturn in σsc in low fields for the NCS phase is flux exclusion.
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Figure 7.20: (a) The temperature dependence of the superconducting muon spin
depolarization rate, σsc, collected in an applied magnetic field H = 400 Oe for the
NCS and CS phase of Re3W.

λ (T ) for the NCS and CS phases of Re3W have been calculated using

Eq. 3.11. Fig. 7.22 shows the λ (T ) for both phases. The data can be fitted for

an s-wave BCS superconductor in the clean limit (no defects) using the expression

as described in section 3.3.5. In the dirty limit (maximal defects), we have[
λ2 (0)

λ2 (T )

]
dirty

=
∆ (T )

∆ (0)
tanh

(
∆ (T )

2kBT

)
, (7.7)

Note, the error in λ(0) is the statistical error arising from the fit to the λ−2(T ) data
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Figure 7.21: The magnetic field dependence of σsc, obtained at 0.3 K for the corre-
sponding phases.

using the model described in the text. The error quoted does not take into account

any systematic errors (e.g. vortex lattice disorder) that may be present in the data.
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Figure 7.22: The temperature dependences of the London penetration depth as a
function of temperature for (a) the NCS and (b) the CS phases of Re3W, respectively.
The solid lines are the clean and dashed lines are the dirty BCS s-wave fit to the
data.

We obtain good fits to the λ−2 (T ) data for the NCS and the CS phases

using both the models discussed above (see Fig. 7.22). The parameters extracted

from these fits are shown in Table 7.6. There is little difference between the quality

of the fits, as measured by χ2
norm, in the clean and dirty limits. As expected the

magnitudes of the gap in the clean limit are larger than those obtained for the dirty
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Table 7.6: Superconducting gap parameters extracted from the fits to the penetra-
tion depth data using a BCS model in the clean and the dirty limit for both the
non-centrosymmetric and centrosymmetric phases of Re3W.

NCS Re3W

Model ∆(0) (meV) ∆(0)/kBTc χ2
norm

Clean BCS 1.49±0.04 2.22±0.06 1.74
Dirty BCS 1.38±0.07 2.05±0.10 1.72

CS Re3W

Model ∆(0) (meV) ∆(0)/kBTc χ2
norm

Clean BCS 1.70±0.03 2.14±0.04 1.60
Dirty BCS 1.51±0.06 1.90±0.08 1.57

limit but in both cases the values obtained place the materials in the strong-coupling

limit. Penetration depth measurements carried out on the NCS phase of Re3W by

rf tunnel diode resonator and point-contact spectroscopy also suggest that the NCS

phase of Re3W is an s-wave superconductor, although Zuev et al. could only obtain

good fits to their data for NCS Re3W in the dirty limit. [200, 201, 202]
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Figure 7.23: Normalized superfluid density, λ−2 (0)/λ−2 (T ) as a function of T/Tc
for the CS and NCS phases of Re3W.

Figure 7.23 shows the normalized superfluid density, λ−2/λ−2
0 as a function

of T/Tc for the CS and NCS phases of Re3W. Normalized data of both CS and

NCS phases of Re3W agree with each other and hence clearly show the same gap
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symmetry for both phases.

7.9 Summary and Conclusions

We have shown that there are two different phases of Re3W. One phase is non-

centrosymmetric with an α-Mn structure and is superconducting with a Tc of (7.80±
0.05) K. The other phase is centrosymmetric with a hexagonal structure and is also

superconducting with a Tc of (9.40± 0.05) K. Switching between the two phases is

made possible by annealing (CS to NCS) or remelting (NCS to CS) the samples. The

full hysteresis loops of the CS sample of Re3W show giant flux jumps, while no jumps

are observed for the NCS sample. The flux jumps are due to thermomagnetic in-

stabilities induced by the motion of vortices into the superconductor combined with

the sudden redistribution of the vortices within the sample [208]. The temperature

dependence of Hc2 of the NCS phase for Re3W can be fitted using the WHH model

which yields HNCS
c2 (0) = 125(1) kOe. In contrast, Hc2(T ) of the CS phase of Re3W

is linear at lower temperature and has a positive curvature nearer to Tc. A Boson

model fit to the data gives HCS
c2 (0) = 147(3) kOe. Using GL relations, the penetra-

tion depths are estimated to be λNCS = 257(1) nm and λCS = 141(11) nm and the

coherence lengths are calculated to be ξNCS = 5.13(1) nm and ξCS = 4.73(1) nm at

T = 0 K. Our results compare well with unpublished work [201] on the NCS phase

of Re3W.

We have performed specific heat measurements of the NCS and CS phases

of Re3W from room temperature down to 2 K. Temperature dependence of the

normalized electronic specific heat of both phases of Re3W can be fitted well us-

ing a single-gap BCS model. The measurements reveal larger specific heat jumps

(compared to weak-coupling BCS value) for both phases of Re3W. We have also per-

formed a µSR study on both the NCS and the CS superconducting phases of Re3W.

There is no evidence in either phase for any long-range magnetic order, nor for any

unusual electronic behaviour arising from the non-centrosymmetric structure. The

absolute values of the magnetic penetration depth are λNCS (0) = 418(6) nm and

λCS (0) = 164(7) nm. Interestingly, the change in structure appears to have no ef-

fect on either the symmetry or the temperature dependence of the superconducting

gap. The temperature dependence of λ for both structural phases of Re3W can be

described using a single gap s-wave BCS model. The magnitudes of the supercon-

ducting gaps both from heat capacity and µSR studies suggest that both materials

are strong-coupling superconductors.
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Chapter 8

Conclusions

Research into superconductivity has been highly active since its discovery in 1911.

A great deal of progress has been made into understanding the fundamental causes

of superconducting behaviour in different types of materials, and developing super-

conductors for technological applications in real life. The research work presented

in this thesis has been focused on investigating the unconventional superconducting

properties in FeTe0.5Se0.5, FeTe1−xSx (0.10 ≤ x ≤ 0.50), Lu2Fe3Si5, CaAlSi, ZrB12

and two different superconducting phases of Re3W. The majority of the research

presented has focused on the symmetry of the superconducting gap and the FLL in

these compounds determined from low temperature specific heat, µSR and SANS

studies. By explaning the observed exotic features in these compounds a broader

understanding of the underlying physics of this class of material is achieved. Fur-

thermore, it is hoped that by studying these particular materials new physics to

explain the phenomena observed may be developed.

The initial work carried out used Fe-based superconductors. We have syn-

thesized good quality polycrystalline and single crystal samples of FeTe0.5Se0.5 and

FeTe1−xSx for x = 0.1, 0.2, 0.3, 0.4 and 0.5. Our detailed studies of the structural,

magnetic, thermodynamic and other superconducting properties of this sample re-

veal several important results: The Tc of FeTe0.5S0.5 is found to decrease linearly

with pressure with the pressure coefficient, dTc/dP = −0.27(1) K/kbar. The results

are consistent with other experimental data of the FeTe1−xSx system [69, 102] but

different when compared to the other iron chalcogenide superconductors where Tc

initially increases with P . This different scenario can be understood by its struc-

tural phase transition with pressure. We have performed low temperature specific

heat measurements of FeTe0.5Se0.5. Our analysis shows that the electronic specific

heat of FeTe0.5Se0.5 can be fitted using a two-band BCS model with isotropic gaps,
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similar to MgB2. We have also performed µSR measurements on superconduct-

ing FeTe0.5Se0.5. The temperature dependence of the magnetic penetration depth

of FeTe0.5Se0.5 is found to be compatible with either a two-gap s + s-wave or an

anisotropic s-wave model. This result is consistent with our heat capacity data and

also with other reported experimental data [76, 104]. These results along with other

published data suggest that FeTe0.5Se0.5 can be described as a two-band supercon-

ductor. Further studies on higher purity single crystal samples are desirable as the

presence of impurities can sometimes mask the true nature of the superconducting

gap. [105] µSR experiments have been performed on four different compositions of

FeTe1−xSx and show an AF transition at low temperature. Similar AF transitions

have also been observed in the magnetization data of FeTe1−xSx. The magnetic

transitions may be due to an ordering of the iron spins. However, more studies are

required to understand fully the exact nature of these magnetic transitions.

To understand the underlying physics of two-gap superconductivity better,

we continued our research with another candidate of this class of superconductor

Lu2Fe3Si5. We have synthesized high quality polycrystalline samples of Lu2Fe3Si5

and performed low-temperature specific heat measurements to confirm the presence

of two distinct superconducting gaps. Low-temperature specific heat measurements

on Lu2Fe3Si5 reveal a reduced normalized specific heat jump at Tc and a second

smaller jump at nearly Tc/5. Specific heat data of Lu2Fe3Si5 can be fitted well using

a two-gap BCS s-wave model. We have also performed a µSR study on the same

polycrystalline sample. The temperature dependence of the magnetic penetration

depth data was fitted with three different models. A two-gap s + s-wave model

provides the best fit to the data and hence support the specific heat results. These

results are consistent with other reported data for this system [119, 120, 114, 31, 125].

The gap magnitudes calculated from specific heat and µSR studies are in resonable

agreement. A more precise analysis using a self-consistent two-gap model proposed

by Kogan et al. [126] may be required to fully understand the coupling strength

between the two bands in this system. This model has been developed within the

quasi-classical Eilenberger weak-coupling formalism with one inter-band and two

in-band pairing potentials and tested with experimental data from well-known two-

band superconductors MgB2 and V3Si. Work is under way to explain our specific

heat and µSR data using this model.

We have worked with another superconductor CaAlSi, structurally similar to

the two-band superconductor MgB2. CaAlSi is a low κ (≈ 5) superconductor and

there is a debate about whether the superconducting gap symmetry in CaAlSi is sin-

gle or multi-gap in nature. Different measurements on CaAlSi such as ARPES, µSR
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and optical measurements suggest an anisotropic or multi-gapped structure [148]. In

contrast, tunnel-diode resonator measurements and break-junction tunneling spec-

troscopy both suggest that there is a single weakly anisotropic s-wave gap in CaAlSi.

To clarify this debate, we have performed a SANS study on a single crystal sample

of CaAlSi. We observe a well-defined flux line lattice in a very low field of only 54

Oe. This in itself is noteworthy as this is one of the lowest fields in which a FLL

has ever been imaged using the SANS technique. In addition, it is interesting that

a well defined FLL forms just above Hc1 (≈ 50 Oe) where the inter vortex distance

is many times longer than the penetration depth. There have been suggestions that

in this class of materials at lower fields (≈ 1 Oe) an attractive inter vortex inter-

action will lead to a clustering of the vortices. While we acknowledge that we are

well above this field regime, it is important to demonstrate that the dominant inter

vortex interaction in this material at the low field regime is repulsive, leading to the

formation of a symmetric hexagonal FLL. We observe a hex-to-hex FLL reorienta-

tion at just 200 Oe. We have carefully considered what may drive the reorientation

of the FLL. We cannot unequivocally state the source of the reorientation. We can,

however, argue strongly in favour of the reorientation being driven by non-local ef-

fects. This contrasts with the situation in MgB2 where it is claimed that the FLL

reorientation is driven by the effects of two superconducting bands. We argue that

non local effects may be ubiquitous in this class of materials. Our measurement of

the field dependent form factor from the field distribution is explained by a single

coherence length, and the anisotropy of this coherence length is the same as the

anisotropy of the penetration depth. Both features are very unlikely to occur in a

multi-band superconductor, hence supporting the single gap arguments. This has

important implications for those working to understand the physics of the AlB2 class

of materials. The equality of the values of the anisotropy for the penetration depth

measured here and the coherence length measured elsewhere may hint at the fact

that this is indeed a simple one band system.

So far we have discussed about the unconventional superconductors with

two different superconducting gaps. However, there are some other unconventional

superconductors which have different unusual behaviours. One of this kind of su-

perconductors is ZrB12 which have a very low-κ value. It is also reported that the κ

in this material lies close to the cross-over value of 1/
√

2 between Type-I and Type-

II superconductivity and that κ may change with temperature [179]. To find out

whether ZrB12 is a Type-I or Type-II superconductor or has a more exotic nature

in which both types of superconductivity coexist, it was of interest to map out the

complete B-T phase diagram of ZrB12 to find out the regions for different types
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of superconductivity. To this end, we have grown a high quality single crystal of

ZrB12 using the optical floating zone method and characterized it using a range of

in-house measurements. We have mapped out the superconducting phase diagram

of ZrB12 in great detail from the µSR measurements. By measuring the local field

distribution for different applied fields and temperatures we have found evidence

of the Meissner, mixed, and intermediate states in the ZrB12 superconductor. The

intermediate state is characteristic of a Type-I superconductor, but the mixed state

is characteristic of a Type-II superconductor. We have also observed regions of co-

existence between different states. Observation of an intermediate mixed state in

a low-κ and Type-II superconductor has been reported by Essmann and Träuble

using the decoration technique [184], while our system shows direct evidence of such

a state. The observed phase diagram for superconductivity is unusual and implies

that κ may change with temperature (or at least is close to the Type-I / Type-II

boundary) since different regions of the phase diagram are characteristic of Type-I

and Type-II behaviour. More studies (such as SANS, etc.) are required to verify our

claim and also to understand the B-T phase diagram of ZrB12 in more detail. In ad-

dition, at low fields an attractive interaction between vortices may also be playing a

role, as has been suggested for the Type-1.5 description of MgB2 (see ref. [20]) where

one band is thought to have Type-I character while the other retains its Type-II

nature. ZrB12 may be the ideal system to test such propositions.

Another class of unconventional superconductors are the non-centrosymmetric

superconductors. They are well-known for exhibiting unusual magnetic properties

including nodes in the superconducting gap function or the involvement of spin-

triplet pairs in the superconducting condensate, high upper critical fields, time-

reversal symmetry breaking, coexistence of ferromagnetic or anti-ferromagnetic or-

dering with the superconducting phase, etc. These arise due to the lack inver-

sion symmetry of their crystal structures and strong correlations between electrons.

This motivated us to investigate if Re3W exhibits any such unusual behaviour.

We have grown good quality polycrystalline sample of Re3W. While growing the

sample, we found two different superconducting phases of Re3W. One phase is non-

centrosymmetric (NCS) with an α-Mn structure and is superconducting with a Tc of

(7.80±0.05) K. The other phase is centrosymmetric (CS) with a hexagonal structure

and is also superconducting with a Tc of (9.40±0.05) K. Switching between the two

phases is made possible by annealing (CS to NCS) or remelting (NCS to CS) the

samples. The full hysteresis loops of the CS sample of Re3W show giant flux jumps,

while no jumps are observed for the NCS sample. We have performed specific heat

measurements of the NCS and CS phases of Re3W from room temperature down to
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2 K. Low temperature electronic specific heat of both phases of Re3W can be fitted

well using a single-gap BCS model. The measurements reveal larger specific heat

jumps (compared to weak-coupling BCS value) for both phases of Re3W. We have

also performed a µSR study on both the NCS and the CS superconducting phases of

Re3W. There is no evidence in either phase for any long-range magnetic order, nor

for any unusual electronic behaviour arising from the non-centrosymmetric struc-

ture. Interestingly, the change in structure appears to have no effect on either the

symmetry or the temperature dependence of the superconducting gap. The temper-

ature dependence of λ for both structural phases of Re3W can be described using

a single gap s-wave BCS model. The magnitudes of the superconducting gaps both

from heat capacity and µSR studies suggest that both materials are strong-coupling

superconductors. This, and similar systems if they exist, offer a good opportunity

to study the interplay between the structure, spin-orbit coupling, and the supercon-

ducting properties of intermetallic systems.

Finally, we have successfully studied the properties of different unconven-

tional superconducting materials which exhibit unusual pairing mechanisms and

other exotic properties that cannot explained by a simple BCS model. By studying

such systems, we hope to gain a better understanding of the mechanism involved.

This may help to find new routes to the discovery of unconventional superconductors

with higher Tc values and greater technological applications.
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