Charm of the charmless – Three-body Hadronic *B* decays at *BaB*ar

Gagan Mohanty

Warwick EPP Seminar October 25, 2007

Outline of the talk

- Theory and Motivation
- Dataset and Detector
- Analysis Strategy
 - Particle Identification
 - Continuum Suppression
 - Kinematical Variables
- Results

$$P \to K^+ K^- \pi^+ / K^+ \pi^+ \pi^- / \pi^+ \pi^- \pi^+$$

$$> B^0 \rightarrow K_S \pi^+ \pi^-$$

Summary and Outlook

History: Timeline (1993)

 1st observation of charmless B decays by CLEO PRL 71, 3922 (1993)

Abstract

We report results from a search for the decays $B^0 \to \pi^+\pi^-$, $B^0 \to K^+\pi^-$, and $B^0 \to K^+K^-$. We find 90% confidence level upper limits on the branching fractions, $B_{\pi\pi} < 2.9 \times 10^{-5}$, $B_{K\pi} < 2.6 \times 10^{-5}$, and $B_{KK} < 0.7 \times 10^{-5}$. While there is no statistically significant signal in the individual modes, the sum of $B_{\pi\pi}$ and $B_{K\pi}$ exceeds zero with a significance of more than four standard deviations, indicating that we have observed charmless hadronic B decays.

PACS numbers: 13.40.Hq, 14.40.Jz

Today: LP2007

http://www.slac.stanford.edu/xorg/hfag/rare/index.html

• Typical diagrams for charmless three-body B decays (h denotes K or π)

b \to s loop (penguin) transition contributes only to the final states with odd number of kaons due to presence s quark e.g. $K\pi\pi$, KKK

Final states with even number of kaons, such as $KK\pi$ get contributions from $b\to u$ tree and $b\to d$ penguin diagrams. Odd number kaon states are further Cabibbo suppressed [~ $\sin\theta_c$]

Motivations

- Interfering tree and penguin amplitudes pood place to search for direct *CP* violation
- New particles can appear in loop diagrams (signature of physics beyond SM)
- Probes flavor sector, particularly by measuring
 - $-\sin(2\beta)$ or just β in the $K_S h^+ h^- (K/\pi)$ Dalitz plot
 - α in the modes: $\pi\pi$, $\rho\pi$ and $\rho\rho$
 - $-\gamma$ using flavour symmetries (isospin, U-spin, etc.)
- Low energy spectroscopy

Klempt *et al.*, arXiv:0708.4016

• Testing ground for perturbative QCD, factorization, SU(3) flavor symmetry ...

Why three-body?

PRO:

- Larger BF than two-body decays
- Correct way to study interference
- Some modes in well-defined CP
- eigenstate Gershon, Hazumi PLB 596, 163

CON:

- large phase space with low event density; hard to identify all phase-space structures
- mixture of CP-even, CP-odd final states
- more complicated analysis needed

Dataset

9 GeV e⁻
$$\rightarrow$$
 Y(4S) \leftarrow 3.1 GeV e⁺ $\gamma\beta = 0.56$ $<\Delta z> \sim 260 \ \mu m$

➤ Peak luminosity > 3 X Design

- ✓ Run 6 just ended last month
 - → New results based on run 1-5 data (other on smaller set)
- ✓ Final run 7 scheduled to start on December 2007

BaBar Detector

Analysis Strategy

Inclusive

- Background fighting:
 - ✓ Continuum (event topology)
 - ✓ Other types of *B* decays (PID, charm and charmonia veto)
- Signal extraction (kinematics)

Full (3body)/partial (Q2B)

➤ Dalitz plot technique (three-body decays having reasonable signal size)

Time-dependent DP (3body)

Time-dependent analysis in neutral *B* meson decays to determine *CP* violation parameters at each point of the phase space

Particle Identification

- distinguish K vs. π
- veto the leptons

 Always room to improve (NIM article in preparation)

Longitudinal shower depth from an unsegmented EMC

Continuum Suppression

Event topology

− *B* produced at rest (spherical)

0.2

fisherL2L0

Signal

Background

Typical Performance

Kinematical Variables

Utilize precise beam energy information and (E,p) conservation

$$m_{\rm ES} = \sqrt{E_{\rm beam}^{\star 2} - \mathbf{p}_B^{\star 2}}$$

$$\Delta E = (E_B^{\star} - E_{\mathsf{beam}}^{\star})$$

Dalitz-plot Analysis

• Powerful technique relying on Lorentz invariant phase-space variables in a three-body decay

$$\mathcal{D}_k = R_k(s_{13}) \times T_k(s_{13}, s_{23})$$

$$R_k(s_{13}) = \frac{1}{m_0^2 - s_{13} - im_0 \Gamma(s_{13})}$$
 and T_k is the angular term

Zemach, PL133 B1021 (1964)

For single channel BW $\Gamma = \Gamma_0 \left(\frac{q}{q_0}\right)^{2J+1} \frac{m_0}{\sqrt{s_{13}}} \frac{X_J^2(q)}{X_J^2(q_0)}$

For coupled channel BW $\Gamma = \Gamma_{\pi}(s_{13}) + \Gamma_{K}(s_{13}),$ where $\Gamma_{h} = g_{h} \sqrt{s_{13} - 4m_{h}^{2}}$

Flatte, PLB63, 224 (1973)

Dalitz-plot Analysis [2]

- Extract $c_{k,NR}$ and $\theta_{k,NR}$ by performing a maximum likelihood fit $\mathcal{L}(s_{13}, s_{23}) = f_{sig} \cdot \mathcal{L}_{sig}(\mathsf{Model}, \epsilon_{sig}) + f_{bkg} \cdot \mathcal{L}_{bkg}$
- Tit fraction is the ratio of the integral of a single decay amplitude squared to the coherent sum of all $\sum_{i} F_{ik} \neq 1$

$$\mathcal{B}_{k} \leftarrow \left(\frac{N_{sig}}{\overline{\epsilon}N_{B\bar{B}}}\right) \times F_{k} = \frac{\int |c_{k}e^{i\theta_{k}}\mathcal{D}_{k}(s_{13},s_{23})|^{2}ds_{13}ds_{23}}{\int |\sum_{j}c_{j}e^{i\theta_{j}}\mathcal{D}_{j}(s_{13},s_{23})ds_{13}ds_{23}|^{2}}$$

 \clubsuit Measure CP violation asymmetries by comparing B and B amplitudes

Time-dependent DP

 \square Time-dependent decay rate of $B^0(B^0) \rightarrow$ three-body

$$\Gamma^{\pm}(\Delta t,Q) \propto \left(|\mathcal{A}|^2 + |\bar{\mathcal{A}}|^2\right) \frac{e^{-|\Delta t|/\tau}}{4\tau} \times \left(1 \pm 2Q\mathcal{I}m\frac{(\bar{A}A^{\star}e^{-i\phi_{mix}})}{|A|^2 + |\bar{A}|^2} \sin(\Delta m \Delta t) \mp Q\frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} \cos(\Delta m \Delta t)\right)$$

- Include detector effects (mistagging and resolution)
- Determine mixing-induced *P* [sine coefficient] and direct *P* [cosine coefficient] at each point in the DP

$$\triangleright A(B \to f) \neq \overline{A}(\overline{B} \to \overline{f})) \implies \text{direct} \mathscr{P}$$

$$B^+ \to K^+ K^- \pi^+$$
 inclusive

Motivations

- Potentially rich Dalitz structure
- Good place to look for direct *P* (interference between b→u tree and b→d penguin amplitudes)
- Little experimental information exists \Longrightarrow new physics effects not excluded
- Rate and asymmetry in $B^+ \to \overline{K}^{*0}(892)K^+$ are inputs to a method to extract γ Soni and Suprun, PRD 75, 054006
- Same Q2B state helps on understanding observed discrepancy of $\sin(2\beta^{\text{eff}})$ in the $B \to \varphi K_S$ mode

And... • Surprises do happen

Grossman *et al.*, PRD 68, 015004

Current Status

Theory 0.1 0.3 0.5 0.7 $\mathcal{B}(\overline{K}^{*0}(892)K^{+})[10^{-6}]$:

$$\mathcal{B}(\phi(1020)\pi^+)[10^{-8}]$$
:

Factorization pQCD SU(3)

Interesting Lower Limit:

$${\cal B}(B^+ o \overline K^{*0}(892)K^+)> \ \equiv^K_\pi imes (0.68^{+0.11}_{-0.13}) imes 10^{-6}, \ {
m Fleischer\ and\ Recksiegel} \ {
m PRD\ 71,\ 051501\ (2005)} \ {
m with\ } \equiv^K_\pi=\left[rac{f_0^K}{0.331}rac{0.258}{f^\pi}
ight]^2\sim 1$$

Experiment

$B^+ \rightarrow Mode$	Best existing limit	References
$K^+K^-\pi^+$	$< 6.3 \times 10^{-6}$	PRL 91 (2003) 051801 (*)
$f_0(980)\pi^+$	$< 3.0 imes 10^{-6}/\mathcal{B}(f_0(980) o \pi^+\pi^-)$	PRD 72 (2005) 052002
$\phi(1020)\pi^+$	$< 2.4 \times 10^{-7}$	PRD 74 (2006) 012001 (*)
$K^{+}\overline{K}^{*0}$ (892)	$<1.1 imes10^{-6}$	arXiv:0706.1059[hep-ex] (*)
$K^{+}\overline{K}_{0}^{*0}(1430)$	$< 2.2 \times 10^{-6}$	arXiv:0706.1059[hep-ex]

► Numbers are from *BaBar*, competitive limits also available from Belle and CLEO for the modes indicated by (*)

$B^+ \rightarrow K^+ K^- \pi^+$ inclusive

- \square An unbinned maximum likelihood fit of $[m_{ES}, \Delta E, NN]$ to 16143 candidate events finds a signal yield of 429±43
 - \geq 12.6 σ (statistical only) and 9.6 σ including systematic uncertainty

arXiv:0708.0376, accepted by PRL

$$\mathcal{B}(B^+ \to K^+ K^- \pi^+) : (5.0 \pm 0.5 \pm 0.5) \times 10^{-6}$$

$$A_{CP} = 0.00 \pm 0.10 \pm 0.03$$

$B^+ \rightarrow K^+ K^- \pi^+$ inclusive

- ✓ Half of the events originates from-
- ✓ Reminiscent of similar structures in $K_SK^+K^-$ and $K^+K^+K^-$

✓ Rate reasonably consistent with the Q2B results on $K^{*0}K$

> arXiv:0708.2248, accepted by PRD(R)

Efficiency-corrected distribution

Nature of this state around 1.5GeV/c² is not very clear

Efficiency-corrected distribution

Dalitz plot analyses of $B^+ \to K^+\pi^+\pi^-$ and $\pi^+\pi^-\pi^+$

$B^+ \rightarrow \pi^+ \pi^+ \pi^-$ Dalitz plot

$B^+ \rightarrow \pi^+ \pi^+ \pi^-$: Summary

PRD 72, 052002 (2005)

Mode	${\cal B}(B^\pm o{ m Mode}\ (10^{-6})$	90% CL UL \mathcal{B} (10 ⁻⁶)	A_{CP} (%)
$B^{\pm} \to \pi^{\pm}\pi^{\pm}\pi^{\mp}$ total	$16.2 \pm 1.2 \pm 0.9$	_	$-0.7 \pm 7.7 \pm 2.5$
$ ho^0(770)\pi^{\pm}, ho^0(770) o \pi^+\pi^-$	$8.8 \pm 1.0 \pm 0.6^{+0.1}_{-0.7}$	_	$-7.4 \pm 12.0 \pm 3.4^{+0.6}_{-4.4}$
$f_2(1270)\pi^{\pm}, f_2(1270) \to \pi^{+}\pi^{-}$	$2.3 \pm 0.6 \pm 0.2 \pm 0.3$	< 3.5	$-0.4 \pm 24.7 \pm 2.8^{+0.4}_{-1.6}$
$B^\pm o \pi^\pm \pi^\pm \pi^\mp$ Nonresonant	$2.3 \pm 0.9 \pm 0.3 \pm 0.4$	< 4.6	$+8.0 \pm 41.2 \pm 6.5 \pm 2.4$
$ ho^0(1450)\pi^{\pm}, ho^0(1450) ightarrow \pi^+\pi^-$	$1.0 \pm 0.6 \pm 0.2 \pm 0.2$	< 2.3	$+15.5 \pm 62.1 \pm 7.9^{+0.4}_{-1.0}$
$f_0(980)\pi^{\pm}, f_0(980) \to \pi^{+}\pi^{-}$	$1.2 \pm 0.6 \pm 0.1 \pm 0.4$	< 3.0	$-49.5 \pm 53.7 \pm 4.9^{+3.7}_{-2.9}$
$\chi_{c0}\pi^\pm,\chi_{c0} o\pi^+\pi^-$	_	< 0.3	_
$f_0(1370)\pi^{\pm}, f_0(1370) \to \pi^+\pi^-$	_	< 3.0	_
$\sigma\pi^{\pm}, \sigma \to \pi^{+}\pi^{-}$	_	< 4.1	<u> </u>

- $\checkmark \rho^0(770)$ is the dominant component
- \square 3 σ indication for $f_2(1270)$ and NR
- Little evidence for σ (seen by BES) in the decay $J/\psi \rightarrow \omega \pi^+\pi^-$
- No contribution from χ_{c0} not feasible to measure γ with analysed dataset Bediaga *et al.*, PRL 81, 4067 (1998)

WARWICK

$B^+ \rightarrow K^+ \pi^+ \pi^-$: Summary

PRD 72, 072003 (2005)

1112 /2,0/2000 (2000)			
Mode	${\cal B}(B^\pm o{\sf Mode})\;(10^{-6})$	90% CL UL ${\cal B}$ (10 $^{-6}$)	A_{CP} (%)
$B^{\pm} o K^{\pm} \pi^{\pm} \pi^{\mp}$ total	$64.1 \pm 2.4 \pm 4.0$	_	$-1.3 \pm 3.7 \pm 1.1$
$K^{\star 0}(892)\pi^{\pm}, K^{\star 0}(892) \to K^{+}\pi^{-}$	$8.99 \pm 0.78 \pm 0.48^{+0.28}_{-0.39}$	_	$6.8 \pm 7.8 \pm 5.7^{+4.0}_{-3.5}$
$(K\pi)_0^{\star 0}\pi^{\pm}, (K\pi)_0^{\star 0} o K^+\pi^-$	$34.0 \pm 1.7 \pm 1.5^{+1.2}_{-1.6}$	_	$-6.4 \pm 3.2 \pm 2.0^{+1.1}_{-1.7}$
$f_0(980)K^{\pm}, f_0(980) \to \pi^+\pi^-$	$9.47 \pm 0.97 \pm 0.46 ^{+0.42}_{-0.75}$	_	$8.8 \pm 9.5 \pm 2.6^{+9.3}_{-5.0}$
$ ho^0(770)K^{\pm}, ho^0(770) ightarrow \pi^+\pi^-$	$5.07 \pm 0.75 \pm 0.35 ^{+0.42}_{-0.68}$	_	$32 \pm 13 \pm 6^{+8}_{-5}$
$\chi_{c0}K^{\pm},\chi_{c0} o\pi^{+}\pi^{-}$	$0.66 \pm 0.22 \pm 0.07 \pm 0.03$	< 1.1	_
$B^\pm o K^\pm \pi^\pm \pi^\mp$ Nonresonant	$2.85 \pm 0.64 \pm 0.41^{+0.70}_{-0.34}$	< 6.5	_
$K_2^{\star 0}(1430)\pi^{\pm}, K_2^{\star 0}(1430) \to K^{+}\pi^{-}$	_	< 7.7	_
$K^{\star 0}(1680)\pi^{\pm}, K^{\star 0}(1680) \to K^{+}\pi^{-}$	_	< 3.8	_
$f_2(1270)K\pm, f_2(1270) \to \pi^+\pi^-$	_	< 8.9	_
$f_0(1370)K^{\pm}, f_0(1370) \to \pi^+\pi^-$	_	< 10.7	_
$ ho^0(1450)K^\pm, ho^0(14570) o\pi^+\pi^-$	_	< 11.7	_
$f_0(1500)K^{\pm}, f_0(1500) \to \pi^+\pi^-$	_	< 4.4	_
$f_2'(1525)K^{\pm}, f_2'(1525) \to \pi^+\pi^-$	_	< 3.4	

❖ Total BF differs significantly from Belle (48.8±1.1±3.6)•10⁻⁶

PRL 96, 251803 (2006)

- \square $(K\pi)^{*0} \longrightarrow K^{*0}(1430)$ resonance + Effective range nonresonant component (Belle uses $K^{*0}(1430)$ only)
- \triangleright Evidence for direct *CP* violation in the $\rho^0(770)K^{\pm}$ mode

CP in charged B decays?

- ✓ Large A_{CP} in agreement with predictions based on flavour SU(3) symmetry (19-24)% Chiang *et al.*, PRD 69, 034001 (2004)
 - Interesting to see the results with higher statistics...

20

Time-dependent Dalitz plot analysis of $B^0 \to K_S \pi^+ \pi^-$

Motivations

- Dominantly $b \rightarrow s$ penguin transition \Longrightarrow prone to NP effect
- Provides a test if mixing-induced eP asymmetry equals to that of tree-level transition $b \to c\overline{c}s$
- Measure β^{eff} in Q2B modes unambiguously interference term allows determination of cosine term (beauty of DP)
- We can determine the relative phase between $B^0 \rightarrow K^{*+}(892)\pi^{-}$ and $\overline{B^0} \rightarrow K^{*-}(892)\pi^{+}$ access to CKM angle γ Deshpande *et al.*, PRL 90, 061802 (2003) Ciuchini *et al.*, PRD 74, 051301 (2006) Gronau *et al.*, PRD 75, 014002 (2007)

Existing Measurements

Time-dependent Q2B

CP parameters	BaBar hep-ex/0408095	Belle hep-ex/0507037
$S(f_0(980)K_S^0)$	$-0.95^{+0.32}_{-0.23} \pm 0.10$	$-0.47 \pm 0.36 \pm 0.08$
$C(f_0(980)K_S^0)$	$-0.24 \pm 0.31 \pm 0.15$	$-0.23 \pm 0.23 \pm 0.13$
$S(ho^0(770)K_S^0) \ C(ho^0(770)K_S^0)$	$0.20 \pm 0.52 \pm 0.24$	_
$C(ho^0(770)K_S^0)$	$0.64 \pm 0.41 \pm 0.20$	_

	Time-integrated Q2B	Time-integrated DP
$\mathcal{B}(B^0 o Mode)[10^{-6}]$	BaBar PRD 73, 031101	Belle PRD 75, 012006
$K_S^0\pi^+\pi^-$	$43.0 \pm 2.3 \pm 2.3$	$47.5 \pm 2.4 \pm 3.7$
$f_0(980)(o\pi^+\pi^-)K^0_S$	$5.5 \pm 0.7 \pm 0.5 \pm 0.3$	$7.6 \pm 1.7 \pm 0.7^{+0.5}_{-0.7}$
$ ho^0(770)K_S^0$	_	$6.1 \pm 1.0 \pm 0.5^{+0.6}_{-0.4}$
$K^{*+}(892)\pi^{-}$	$11.0 \pm 1.5 \pm 0.5 \pm 0.5$	$8.4 \pm 1.1 \pm 0.8^{+0.6}_{-0.4}$
$K_0^{*+}(1430)\pi^-$	_	$49.7 \pm 3.8 \pm 6.7_{-4.8}^{+1.2}$
nonresonant $K_S^0\pi^+\pi^-$	< 2.1 @ 90% CL	$19.9 \pm 2.5 \pm 1.6^{+0.7}_{-1.2}$
${\cal A}_{CP}(K^{*+}\pi^-)$	$-0.11 \pm 0.14 \pm 0.05$	_

- ☐ Both agree reasonably well
 - **★** Discrepancy in the nonresonant contribution
 - **×** Belle also observes structure near 1.3 GeV/c² in the $\pi^+\pi^-$ spectrum

Signal Yield

- Simultaneous fit including
 - $-m_{\rm ES}$, ΔE , NN, Δt and tagged $(B^0/\overline{B^0})$ DP variables

➤ Signal: (2172±70) in total candidate sample of 22525

Dalitz plot Content

Time-dependent CP violation

Time-dependent *CP* asymmetry measured at each point in the $K_S\pi^+\pi^-$ Dalitz plot for the first time

arXiv:0708.2097

CP parameters	arXiv:0708.2097 [hep-ex]
$C(f_0(980)K_S^0)$	$0.35 \pm 0.27 \pm 0.07 \pm 0.04$
$S(f_0(980)K_S^{\tilde{0}})$	$-0.94^{+0.07}_{-0.02}^{+0.05}_{-0.03} \pm 0.02$
$2eta_{eff}(f_0(980)K_S^0)$	$-0.94^{+0.07}_{-0.02}{}^{+0.05}_{-0.03} \pm 0.02$ $(89^{+22}_{-20} \pm 5 \pm 8)^{\circ}$
$C(\rho^0(770)K_S^0)$	$0.02 \pm 0.27 \pm 0.08 \pm 0.06$
$S(\rho^{0}(770)K_{S}^{\tilde{0}})$	$0.61^{+0.22}_{-0.24} \pm 0.09 \pm 0.08$
$2eta_{eff}(ho^0(770)K_S^0)$	$(37^{+19}_{-17} \pm 5 \pm 6)^{\circ}$

- **x** $f_0(980)K_S$ value 2.1 σ above charmonium
- \checkmark ρ⁰ K_S consistent with the world-average

WARWICK

CP violation in DP amplitudes

Advantage of time-dependent Dalitz plot probes

CP violation from two orthogonal directions

arXiv:0708.2097 Contrib. LP2007

$\Delta \phi(f_0(980)K_S^0, \rho^0 K_S^0)$	$(-59^{+16}_{-17} \pm 6 \pm 6)^{\circ}$
Frac $(f_0(980)K_S^0)$	$(14.3^{+2.8}_{-1.8} \pm 1.5 \pm 0.6)\%$
$Frac(ho^0(770)K_S^{\widetilde{0}})$	$(9.4 \pm 1.4 \pm 1.1 \pm 1.1)\%$
$\Delta\phi(K^*(892)\pi)$	$(-164 \pm 24 \pm 12 \pm 15)^{\circ}$
$A_{CP}(K^{*+}(892)\pi^{-})$	$-0.18 \pm 0.10 \pm 0.03 \pm 0.03$
Frac $(K^*(892)\pi)$	$(11.7 \pm 1.3 \pm 1.3 \pm 0.6)\%$

Phase diff in
 K*π mode is significantly different from zero

sin2β in Penguins

				00		PRELIMINARY
b⊸ccs	World Av	erage	SII	125	i i	0.68 ± 0.03
	BaBar		-	- 0 5		$0.21 \pm 0.26 \pm 0.11$
÷ %	Belle			A 8		0.50 ± 0.21 ± 0.06
-	Average			主品		0.39 ± 0.17
0	BaBar			- 4		$0.58 \pm 0.10 \pm 0.03$
η´Κ°	Belle			₩		$0.64 \pm 0.10 \pm 0.04$
1	Average			<u> </u>		0.61 ± 0.07
₹	BaBar			U		0.71 ± 0.24 ± 0.04
₹ _e	Belle		÷	<u></u>		$0.30 \pm 0.32 \pm 0.08$
s	Average			三十	-	0.58 ± 0.20
_	BaBar			- 5 - 5 -		$0.40 \pm 0.23 \pm 0.03$
× ×	Belle		+	20 A		$0.33 \pm 0.35 \pm 0.08$
°E	Average			호 유		0.38 ± 0.19
₹	BaBar			V V	<u></u> 0	.61 ^{+0.22} ± 0.09 ± 0.08
ಿ	Average				-	0.61 +0.25
	BaBar			<u> </u>		$0.62^{+0.25}_{-0.30} \pm 0.02$
® K _s	Belle	-	\rightarrow	× × ×		0.11 ± 0.46 ± 0.07
5	Average					0.48 ± 0.24
0	BaBar				i i j	0.89 ± 0.07
ر ہ	Belle		-	* •	1	$0.18 \pm 0.23 \pm 0.11$
1	Average					0.84 ± 0.07
₹.	BaBar	<u> </u>			- / - / - /	-0.72 ± 0.71 ± 0.08
°k	Belle	→	++			-0.43 ± 0.49 ± 0.09
° _E	Average	- 	- j.			-0.52 ± 0.41
~	BaBar					$0.76 \pm 0.11 ^{+0.07}_{-0.04}$
\prec	Belle			-	e d	$0.68 \pm 0.15 \pm 0.03^{+0.21}_{-0.13}$
: 🛨	Average				-	0.73 ± 0.10
_						
-2	-	1	0		1	2

♦≡ New/Updated BaBar/Belle Result

$$\langle \sin 2\beta_{eff} \rangle = 0.67 \pm 0.04$$

1% CL for the average

New naïve HFAG average <1_σ from the charmonium mode sin2β value

Slide from LP2007

(Dave Brown)

Conclusions

- \square First measurement of the inclusive mode $B^+ \to K^+K^-\pi^+$
- \Box DP measurements in the charged $K\pi\pi$ and $\pi\pi\pi$ modes
- □ Evidence of direct *CP* violation in the $\rho^0(770)K^{\pm}$ mode of charged $K\pi\pi$ final state
- $\square \beta_{\text{eff}}$ measured without any sign ambiguity (thanks to the time-dependent DP technique)
- ☐ Measured *CP* violation parameters agree reasonably well with SM predictions
- Look forward to last run that along with run 6 would double the dataset crucial for many rare modes

Bonus slides

Scalar $K\pi$ near 1.4 GeV/c²

➤ BW for K*(1430) plus an effective range NR component

$$rac{m_{K\pi}}{qcot\delta_B-iq}$$
 where $cot\delta_B=rac{1}{aq}+rac{rq}{2}$

> Flat NR component

- parameters a,r taken from LASS experiment(*)
- valid up to 1.8GeV

(*) LASS, $K\pi$ scattering at 11GeV at SLAC

- ➤ BW for K*(1430)
-) DW 101 IX (1430)