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In the beginning ...

 SLD's VXD3 (1996)

− 307 Million channels

− 20 µm pixels

 The Grandfather of all 
LC pixel detectors

 Still provides valuable 
“lessons learned” 
from SLC

 Starting point for ILC 
pixel R&D
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How does a Silicon Pixel work ?
 From a semiconductor perspective

− Silicon pn-junction (aka Diode)

− not really that different from a strip 
detector ...

 Particle passing through

− always treated as MIP

− generate electron-hole pairs

− 80 e/per µm 

 Reverse bias pn junction

− can fully deplete bulk

− either collect holes or electrons

–

h+ e-

+

© Rainer Wallny
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Materials
 High resistivity Silicon

− R = 1kΩcm

 used mostly for detectors

 Quite expensive

 Charge Collection

− thickness up to 500 µm

− Fully depleted

− Collect charge via drift

− Fast (~ 10 ns)

− small charge spread

 Low resistivity Silicon

− R = 10Ωcm

 Used in CMOS industry (epi)

 Cheap

 Charge collection

− thin (10 µm)

− basically undepleted
− collect charge via diffusion

− Slow ( ~ 100 ns)

− larger charge spread
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Reality is more complex !

There are more things between p and n, 
Horatio, than are dreamt of in 

your philosophy !
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Pixel RD for the ILC
 Very active field for the last ten years

 Plenty of groups involved in all 3 ILC regions

− Europe 

− Asia

− Americas

 A lot of progress has been made 

 I'll focus on

− Pixel technologies

− Silicon-only pixels

 Apologies in advance for omissions ...
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SiD -  a typical ILC detector

Vertex
Detector

ECAL

HCAL

Solenoid

Tracker

Muon 
Chambers

Letter of Intent submitted 31st of March 
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ILC Detector Requirements
 Impact parameter resolution

 Momentum resolution 

 Jet energy resolution goal 

 Detector implications  
− Calorimeter granularity 
− Pixel size 
− Material budget, central 
− Material budget, forward

σ rφ≈σ rz≈5⊕10 / p sin
3 /2 σ rφ=7 .7 ⊕33 / p sin

3 /2

σ  1pT =5× 10
−5 GeV−1 

σ E
E
=
30%
E

σ E
E
=
60%
E

 Need factor 3 better than SLD

 Need factor 10 (3) better than LEP (CMS)

 Need factor 2 better than ZEUS

 Detector implications
− Need factor ~200 better than LHC 
− Need factor ~20 smaller than LHC
− Need factor ~10 less than LHC
− Need factor ~ >100 less than LHC

Highly segmented, low mass detectors required -> pixels !
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The ILC Vertex Detector
 5 layers, either

− long barrels

− barrels + endcap disks

− gas-cooled

 First layer ~ 1.2 cm away from primary vertex

 Occupancy 1 %

 Material budget: ~1 % X0
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And the pixels spread ...
 Pixels originally only intended for the vertex detectors

− like SLD ...

 But pixels are becoming affordable

− Pixel detectors spread outwards

 Silicon pixel trackers are now feasible

− ~70 m2 silicon , 30 Gigapixel

 Digital EM calorimetry using pixels as particle counters

− 2000 m2 area, 1 Terapixel
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Pixels everywhere ...
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ILC timing

 ILC environment is very different compared to LHC

− Bunch spacing of ~ 300 ns (baseline)

− 2625 bunches in 1ms

− 199 ms quiet time

 Occupancy dominated by beam background & noise

 Readout during quiet time possible

2625
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ILC Pixels : Timing and Readout
 Time stamping

− single bunch resolution

− buffer hits 

− readout during quiet time

 Time slicing

− divide train in n slices

− readout during train/quiet 
time

 Time-integrating

− no bunch information

− readout during quiet time

 On-Pixel processing

− each pixel self-sufficient

− digital data stream off pixel

− minimal amount of 
interconnects

 Off-Pixel processing

− data is moved to a readout 
chip

− requires additional circuitry 
and interconnects
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How to achieve Occupancy goal ?
 Goal is 1 % occupancy

− can't be just done by integrating over the entire train

− Especially for the inner layers

 Pixel size

− go to very small pixels

 Time stamping and buffering

− read and store hits on pixel

 Time Slicing

− read out the entire detector n times during the train

 Combination of the above
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And CLIC ?
 CLIC is an alternative proposal for a linear 

collider driven by CERN

− Up to 3 TeV center-of-mass energy 

− 48 km long

 Innovative “Drive-Beam” Technology

− Drive beam is used to generate 
accelerating field for main beam

− Proof -of-principle ongoing

− CTF3 at CERN is becoming online now

 Very small beams

− Larger beam backgrounds

− vertex detector moves outwards (~ 4 cm)
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CLIC Bunch structure

Train repetition rate 50 Hz

CLIC

CLIC: 1 train = 312 bunches 0.5 ns apart 50 Hz

ILC: 1 train = 2680 bunches 337 ns apart5 Hz

 Assess need for detection layers with time-stamping

− Innermost tracker layer with sub-ns resolution

− Additional  time-stamping layers for photons and for neutrons 

 Readout electronics will be different from ILC

 Consequences for power pulsing?

Consequences for a CLIC detector:
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Why not using LHC-style pixels ?
 LHC requirements

− extremely rad hard

− very fast (25 ns)

 LHC pixels ..

− “large“

− cooling required

 ILC requirements

− slow and not rad-hard

 ILC pixels

− very low material budget

− high granularity

CMS Barrel Module
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The material budget

ATLAS ATLAS

ILC Goal for whole Tracking System
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Other short comings
 Excessive use of bump-bonding

− difficult

− yield issues

− limits minimum pixel size ...

 Cooling requirements

− more material

− more complexity

 Manufacturing & Cost

− Everything is custom-made (meaning expensive) 

− Cost per m2 too high for large systems
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CCD
MAPS

SoI-MAPS
ISIS

3D Pixels

DEPFET

Pixel Technology Tree
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CCD

CPCCD

FPCCD
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CCD's
 Charge-Coupled Device

 Extensively used in imaging

 Established technology

 SLD's VXD3 used CCD's

 Basic working principle 

− charge storage

− readout as bucket-chain

− robust against pick-up

 Require 

− high charge transfer efficiency

− cooling to -20 C

− high drive currents



Marcel Stanitzki23

CPCCD (LCFI)
 “Classic “ CCD readout is slow

 Column Parallel CCD

 Idea: divide readout chain into 
columns

− Higher speeds possible (50 MHz)

− Time slicing approach (20 frames) 

−  20 µm pixels

 CPCCD requires a dedicated 
readout chip

 High currents driving the readout

 already second generation design

“Classic CCD”
Readout time ≈  

N× M/fout

N

M

N

Column Parallel 
CCD

Readout time = 
N/fout

M
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A CPCCD Module

CCD
Driver Chips

Readout 
ASIC
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FPCCD (KEK et. al.)
 Fine Pixel CCD

 Time-integrating

− Instead of time slicing ...

− requires 5 µm pixels

 Fully depleted epitaxial layer 

− minimize the number of hits 
due to charge spread

 Requires cooling

 Readout similar to CPCCD

 currently 12 µm pixel size

− Expect 5 µm pixels in 2011

Layout of prototype

 ASIC

Amp. LPF CDS

CCD

ADC

First Prototype 12 First Prototype 12 µµm m 
pixels 512x128x4 pixels 512x128x4 
pixels totalpixels total
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ISIS



Marcel Stanitzki27

p+ shielding implant

n+
buried channel (n)

Charge collection

p+ well 

reflected charge

reflected charge
High resistivity epitaxial layer (p)

storage 
pixel #1

sense 
node (n+)

row 
select

reset 
gate

Source follower

VDD
photogate

transfer
 gate

Reset transistor Row select transistor

output
gate

to column 
load

storage 
pixel #20

substrate (p+)

ISIS (LCFI)
 In Situ Image Storage

− charge collection with
photo diode

− Transfer to CCD-like
structure

− Time-slicing (20x)

 Readout chips separate

− semi-integrated pixels

− plans for full integration

 First proof of principle 
devices

− ISIS1

− Successor ISIS2 has 
shown ”signs of life”

Output and reset 
transistors

CCD (5x6.75 μm pixels)

Photogate aperture (8 μm square)
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DEPFET
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DEPFET (DEPFET collaboration)
 DEpleted P-channel FETs

 Basic principle

− Bulk fully depleted

− Collection by drift

− Internal gate collects charge

 Clear gate necessary

 Charge collection with FET's 
switched off, low power

 Unique process developed by 
MPI Halbleiterlabor München

 Leading Candidate for Super-
Belle Vertex Detector
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DEPFET Prototypes
 DEPFET readout

− External gate row select

− Signal charge modifies 
current

− CDS style readout using 
Clear gate

 Two driver ASICs needed

 Latest version PXD05

− 24 µm pixel size

− tests ongoing

n x m
pixel

IDRAIN

DEPFET- matrix

VGATE, OFF

off

off

on

off

VGATE, ON

gate

drain VCLEAR, OFF

off

off

reset

off

VCLEAR, ON

reset

output

0 suppression

VCLEAR-Control
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MAPS

TPAC

Chrono
pixels

Mimosa DNW-
MAPS

LDRD
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MAPS basic principle
 Monolithic Active Pixel Sensors

 CMOS technology

− Down to 180 nm/130 nm

 Charge is collected by diffusion

− Slow > 100 ns

 Integrated readout

 Thin Epi-layers (< 15 µm)

 Parasitic charge collection

− can't use PMOS ...

 Basic MAPS cell for Particle 
Physics

− The 3T array

3T cell
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MIMOSA (IRES et. al.)
 MIMOSA family

− 3T architecture

− Restricted to NMOS

 MIMOSA 22

− 0.35 µm AMS OPTO process

− 18.4 µm pixel size

− 128 columns

− 128 x 576 pixels in total

− Read-out time 100 μs

 Readout as Rolling-Shutter

− One column read out at a 
time
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 LDRD (LBNL et. al.)
 Current: LDRD03

− 3T with in-pixel “CDS”

− Readout at the end of a 
column

− Made in 0.35 µm AMS OPTO 
process

− 20 µm Pixels 

− 96 columns with 96 pixels 
each

 Rolling-Shutter readout

1
 m

m

20x20 µm2

pixels

ADCs

SRAM
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Overcoming the limits
 Two approaches

 Deep n-well

− n-well diode as a deep 
implant covering most of 
pixel

− Can have PMOS (small 
number)

 Deep p-well

− Encapsulate electronics n-
wells with deep p-implant

− shielding, so no parasitic 
charge collection

− Realized e.g. in INMAPS 
process and in ISIS
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Deep n-Well MAPS (INFN)
 Made in ST 130 nm process

− Triple-well approach

 25 x 25 µm pixels with 
binary readout

− Goal 15 x 15 µm

 Integrated electronics

− Pre-amp, discriminator

− Sparsification, time-
stamping

 Plans to explore smaller 
feature sizes

2
5

 µ
m

25 µ m

DNW sensor

•Preamplifier

•Discriminator

Time stamp register

S
p
a
r
s
i
f
i
c
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t
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o
g
i
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TPAC (CALICE-UK)
 50 x 50 µm with binary 

readout

− Deep p-well/INMAPS 180 nm

− Pixel developed for digital EM 
calorimetry 

− Different optimization

 integrated electronics

− Pre-amp, comparator

− Pixel masks and trim 

 Logic strips

− Hold buffers and time- 
stamping

− Add ~ 11 % dead area

37

Deep p-well

Circuit 
N-Wells

Diodes
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Chronopixels (Yale/Oregon)
 Similar to previous pixels

− In-pixel electronics

− Hit buffering

− Time-stamping

− Binary readout

 Prototype made in 180 nm 
TSMC 

− Pixel size 50 x 50 µm

 Goal

− 45 nm process

− 10 x 10 µm pixels

− Deep p-well and high-res 
epi
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SoI-MAPS

Fermilab
SOI LDRD

SOI
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SoI Basics
 Silicon on Insulator (SoI)

 Thin active circuit layer on  
insulating substrate 

 ~200 nm of silicon on a 
“buried” oxide (BOX) carried 
on a “handle” wafer.

 Handle wafer can be high 
resistivity silicon 

 Integration of electronics 
and fully depleted detectors 
in a single wafer

 Diode implant through the 
buried oxide

(Soitech illustration)

Active

BOX

Substrate
(detector material)
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MAMBO (Fermilab)
 Monolithic Active pixel 

Matrix with Binary cOunters

 Made in 150 nm Oki Process

− 200 nm BOX layer

 Pixel size is 26 x26 µm

− Implements a 12 bit 
counter

 Common problem for all SoI

− Backgate effect handling 
wafer

− Can be fixed by using 
thicker BOX layer

− Alternatively design work-
arounds
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3D Pixels
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3D Pixels
 The ultimate dream of any 

pixel designer

− Fully active sensor area 

− Independent control of 
substrate materials for each 
of the tiers

− Fabrication optimized by 
layer function

− In-pixel data processing

− Increased circuit density 
due to multiple tiers of 
electronics

 A new way of doing things

Conventional MAPS

pixel

Addressing
A/D, CDS, …

A
dd

re
ss

in
g Diode

3T

3-D Pixel

pixel

Detector

ROIC

Processor
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VIP-I (Fermilab)
 Vertically Integrated Pixel

 Pixel array 64x64, 20x20 
µm pixels

− Analog and binary readout 

− 5-bit Time stamping

− Sparsification

 Designed for 1000 x 1000 
array

 Chip divided into 3 tiers 

 Made in MIT-LL process

 VIP2a is on its way

Tier 3
8.2 µm

Tier 2
7.8 µm

Tier 1
6.0 µm

oxide-oxide bond

3D Via
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3D Process Developments
 The MIT LL process

− Demonstrated a fully 
functional device

   However:

− Poor yield- both processing 
problems and overly 
aggressive design

− VIP2 will use degraded 
design rules (0.15 -> 0.2 or 
0.3 µm) with improved 
transistor models

− Analog SoI design is 
challenging

− Long turn-around time

− Not a commercial process 

 Tezzaron 130 nm

− Existing rules for vias and 
bonding

− Relatively fast turn around

− One stop shop for wafer 
fabrication, via formation, 
thinning, bonding

− Low cost

− Process is available to 
customers from all 
countries
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Future Trends
 Always in motion the future is ...

− especially for pixels

 Higher integration

− Smaller feature sizes and 3D integration will make this possible

 Larger sensor areas

− Real CMOS Stitching allow wafer-scale sensors

 Low power designs

− Large pixel system will need to reduce power usage per channel
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Why not deep submicron ?

 Some problems

− Mostly pure digital processes (CPU, DRAM, etc)

− Leakage Currents become a problem 

− small dynamic range due to operating voltage of 1 V
 ADC design becomes way more difficult

− New design kits, tools etc

− Smaller process does not automatically mean smaller pixels

 Access to deep submicron processes

− Very difficult, foundries are not keen on a runs with a few 
wafers only

− Costs are not compatible with STFC funding
 180 nm mask set (~ 50.000 US-$)
 65 nm mask set  ( 1.000.000 US-$)
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Large CMOS sensors
 CMOS structures have size limits

− the reticle size

− process-dependent

− usually 25x25 mm

 This is a technology limit for large sensors

 Mainstream Industry not very interested

− e.g. Intel Core2 (65 nm) 12x12 mm

− Only interesting for imaging applications

 Way out : Stitching sensors
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Stitching

Original
Sensor Design

AB B

B

B

C C

CC

Stitchable
Sensor Design

AB B

B

B

C C

CC

Stitched
Sensor Design

B

B

B

B

B

B

B

B

A A A A

A

A

A A A A

A

AAA

A A

C

C CB B B B

C CB B B B

2 cm 2 cm

5 cm
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Some comments
 Stitching can't be a second thought

− design for it from beginning

 Stitchable designs are more complex

 Mask set more expensive ..

 But then

− normal wafer costs

− mass producible

− wafer size (300 mm) is the limit

 Caveat

− larger structures mean lower yield ...

− Compensate by robust/simple designs
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Which Technology to choose?
 Even more difficult to make a forecast

 For a vertex detector

− Small area (~ 1 m2) so choose technology that can do the job

− Cost is a minor issue

 For Silicon Pixel Trackers/ECAL etc

− Industrial processes

− Mass producible and cheap (large areas)

− Minimize interconnects

 Interesting times ahead ...
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SPiDeR
 CALICE-UK and LCFI got canceled by STFC

− despite being major players in the pixel world

− big innovations

 UK Pixel Community made a new proposal

 SPiDerR (Silicon Pixel Detector R&D)

− Birmingham, Bristol, Imperial College, Oxford and RAL

 3 year Program

− Generic Pixel R&D (TPAC, Novel Structures)

− Generic Techniques using Pixels (DECAL)

− ISIS support was canceled by STFC
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Summary
 If you like to know more ...

− The ILC R&D reviews are an excellent summary of the activities
− http://www.linearcollider.org/wiki/doku.php?id=drdp:drdp_home 

 Thanks to 

− J. Brau, C. Damerell, M. Demarteau, T. Greenshaw, L. Linssen, 
R. Lipton,  K.D. Stefanov, Y. Sugimoto, R. Turchetta, M. Tyndel, 
N. Wermes  for material, comments and discussion

http://www.linearcollider.org/wiki/doku.php?id=drdp:drdp_home%20
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Who is doing what
 LCFI (UK collaboration)

− CPCCD/ISIS

 FPCCD group

− FPCCD

 DEPFET Collaboration

− DEPFET

 LBNL/INFN/Purdue

− MAPS/SoI MAPS

 Fermilab

− SoI MAPS/3D Pixels



 CALICE-UK

− MAPS (TPAC)

 CMOS-VD

− MAPS (MIMOSA)

 Hawaii

− CAP

http://hepwww.rl.ac.uk/lcfi/
http://www.depfet.org/
http://ilc.fnal.gov/detectors/main.html
http://www.hep.ph.ic.ac.uk/calice/
http://wwwires.in2p3.fr/ires/web2/rubrique.php3?id%20rubrique=63
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