

Introduction to C/C++ Day 2

Mark Slater

Overview

1. Quick Review

2. Pointers and References

3. Arrays

1. Quick Review

#include <iostream>
int main()
{
// Read and print three
// floating point numbers
std::cout << "Give 3 nums" << std::endl;
float a, b, c;
std::cin >> a >> b >> c;
std::cout << "Your gave... ";
std::cout << a << ", " << b << ", " << c
<< std::endl;
return 0;
}

It would probably be beneficial to cover the main points from the
last session. First, building your program from your source:

Raw Code

Compiled Code Additional Libs

Executable

Recap - Writing and Compiling Code

In this session you will extend on the basics of
using a single code file

You will start to use header files and create
library files that must be linked to produce the

final program

#include <iostream>

int main()
{

// This is a comment
/* This is a

Multiline comment */

std::cout << “Hello World!\n”;

return 0;
}

We covered the basic syntax of C++, including many keywords and
operators

Preprocessor directive. In this
case, including other code

The braces indicate blocks of
code, in this case a function

It is good practise to add
comments to your code –
these are ignored by the

compiler but help you
explain what you're
trying to do, both to

other people and
yourself a few months

on!

A function definition
(see later!)

Every statement in C/C++ must be ended
with a semi-colon. This is a frequent cause

of compiler errors so watch out!

Recap - Basic Syntax of a C/C++ Program

Variable declaration and the consequence for memory was
covered as well as the use of operators

➔ A boolean (true/false) – 'bool'
➔ Integer number – 'int'
➔ Floating point number – 'float'
➔ Double precision number – 'double'
➔ Single Character/0-255 number – 'char'

➔ Multiplication: a * b
➔ Addition: a + b
➔ Increment: a++
➔ Bitwise shift/stream: a << b
➔ Modulus: %
➔ Array: []

Note that numerical variables
can also be 'signed' (default)

or 'unsigned'

Recap – Objects and Operators

Operators have
precedence, just like
in maths, as well as
associativity (left ↔
right) and arity (# of

operands)

We will start covering
significantly more

complicated objects, but
remember – THEY ARE JUST
LIKE THE BASIC VARIABLES!

2. Pointers and References

Introducing Pointers

● We will now move on to what can be the most troublesome,
but is also one of the most powerful aspects of C++: Pointers.
They get a lot of bad press, mostly due to their misuse, but
they are quite simple to understand

● Essentially, a pointer is an object that 'points' to another
memory location. Therefore, the variable itself doesn't contain
the data but only a reference to memory

● You can create pointers to any object available, but to create a
persistent object that doesn't go 'out-of-scope', use the 'new'
operator. However, you must remember to call the 'delete'
operator on it after you've finished!

To demonstrate how pointers
work, we will return to our
basic memory picture shown
before

90343 21

Pointers in Action (1)

Memory Locations
#include <iostream>

int main()
{

int *a, *b;

a = new int;
b = new int;

*a = 5;
*b = 7;

int c = (*a) + (*b);
int *d = &c;

delete a;
++a;

std::cout << d << “: “ <<
*d << std::endl;

return 0;
}

 b a

Pointers in Action (2)

First, two pointers to ints (a and
b) are declared

Note that, at present, they point
to “nothing” and would
(hopefully!) produce a crash if
accessed at this point – this is
the primary cause of problems!

#include <iostream>

int main()
{

int *a, *b;

a = new int;
b = new int;

*a = 5;
*b = 7;

int c = (*a) + (*b);
int *d = &c;

delete a;
++a;

std::cout << d << “: “ <<
*d << std::endl;

return 0;
}

 b a

Pointers in Action (3)

Next, the memory for two
integers are allocated and the
addresses of these allocations
are assigned to the pointers

At this point, a and b now point
to useful memory locations, but
the values are still not
initialised (i.e. junk!)

#include <iostream>

int main()
{

int *a, *b;

a = new int;
b = new int;

*a = 5;
*b = 7;

int c = (*a) + (*b);
int *d = &c;

delete a;
++a;

std::cout << d << “: “ <<
*d << std::endl;

return 0;
}

 b a

Pointers in Action (4)

To actually assign values to the
integers, we dereference the
pointers

This essentially means 'assign
this value to the object that is
pointed to'

#include <iostream>

int main()
{

int *a, *b;

a = new int;
b = new int;

*a = 5;
*b = 7;

int c = (*a) + (*b);
int *d = &c;

delete a;
++a;

std::cout << d << “: “ <<
*d << std::endl;

return 0;
}

75

 b a

Pointers in Action (5)

Next, we create a normal
integer variable and assign the
sum of the two integers pointed
to by a and b

After this, we create another
pointer (d) and assign it to the
address of the variable c by pre-
fixing with the 'address-of'
operator

#include <iostream>

int main()
{

int *a, *b;

a = new int;
b = new int;

*a = 5;
*b = 7;

int c = (*a) + (*b);
int *d = &c;

delete a;
++a;

std::cout << d << “: “ <<
*d << std::endl;

return 0;
}

75

 c d

12

 b a

Pointers in Action (6)

Just to show what happens, we
now delete the memory
allocated to the pointer a

To show that this doesn't affect
the variable itself, we
increment it

This has the affect of
incrementing the address, not
what was pointed to

#include <iostream>

int main()
{

int *a, *b;

a = new int;
b = new int;

*a = 5;
*b = 7;

int c = (*a) + (*b);
int *d = &c;

delete a;
++a;

std::cout << d << “: “ <<
*d << std::endl;

return 0;
}

7

 c d

125

 b a

Pointers in Action (7)

To give you an idea of what the
contents of these variables are,
we now print out the pointer
and the dereferenced pointer

#include <iostream>

int main()
{

int *a, *b;

a = new int;
b = new int;

*a = 5;
*b = 7;

int c = (*a) + (*b);
int *d = &c;

delete a;
++a;

std::cout << d << “: “ <<
*d << std::endl;

return 0;
}

7

 c d

125

Pointers in Action (8)

Finally, on exit of this scope, we
see that because we only
deleted one of the integers
created with 'new', we're left
with memory allocated that is
no longer referenced, i.e. it does
not go out of scope

This is the other major problem
with pointers: memory leaks!

#include <iostream>

int main()
{

int *a, *b;

a = new int;
b = new int;

*a = 5;
*b = 7;

int c = (*a) + (*b);
int *d = &c;

delete a;
++a;

std::cout << d << “: “ <<
*d << std::endl;

return 0;
}

75

#include <iostream>

void change(double& a, double& b)
{

a = 10;
b = 2;

}

int main()
{

int a = 43, b = 21;

change(a, b);

return 0;
}

● We saw last week that functions could not change objects passed to them
as they only had copies of the object. This was called 'passing by value'.

● Pointers enable us to pass the object itself but this is not entirely trivial.
In C++, the concept of references was introduced which was simply
applying a new label to an object. This is termed 'passing by reference'.

The function definition
has the references of
two doubles, NOT just

doubles

After calling the
function, the values

of a and b are
changed

Note that this is
different to the

'address-of' operator –
double& is a different

object type!

References

● In preparation for the homework, we will be adding a 'sort'
function to your code

● The first step in this process is to provide a function that swaps
two given numbers

By 'passing by reference', add a function to your code that takes two
doubles and swaps them

Sorting an Array (Ex. 1)

● In addition to the 'swap' function, we can also use 'passing by
reference' to improve the maths function code you already
have. Depending on how you coded it, to get both roots from
the quadratic function, you will probably have had to call it
twice as it only returns one number

● To get around this, we can pass pointers to the function that
get filled with both positive and negative solutions. This also
allows the return value of the function to be a boolean and
therefore show if a successful solution was found rather than
checking a set 'error value'

Try to alter the maths functions you currently have in your code to pass
variables by reference for the answer. Also, where necessary make the
return value indicate a valid answer has been returned

Some Improvements (Ex. 2)

3. Arrays

● Arrays that hold multiple values are intimately linked to
pointers due to the way they are handled

● Essentially, to create an array, you do exactly as was done for a
single variable allocation but add the array size in square
brackets afterwards. This produces a variable that represents
the full memory allocated

Introducing C-Style Arrays

And (for the last time!) here is
an example of the memory
allocation going on behind the
scenes

90343 21

Arrays in Action (1)

Memory Locations
#include <iostream>

int main()
{

int a[3];

a[0] = 2;
a[1] = 7;
a[2] = a[0] * a[1];

int *b = a;

int *c = new int[3];

c[2] = b[2] - a[0];

c += 2;
std::cout << *c << std::endl;

// should have done:
// c -= 2
// delete [] c;
return 0;

}

First, we declare an array

This allocates the memory
requested and 'links' it to the
variable a

903 21

Arrays in Action (2)

#include <iostream>

int main()
{

int a[3];

a[0] = 2;
a[1] = 7;
a[2] = a[0] * a[1];

int *b = a;

int *c = new int[3];

c[2] = b[2] - a[0];

c += 2;
std::cout << *c << std::endl;

// should have done:
// c -= 2
// delete [] c;
return 0;

}

 a

As always, the actual values are
not initialised, so we now do
that

903 21

Arrays in Action (3)

#include <iostream>

int main()
{

int a[3];

a[0] = 2;
a[1] = 7;
a[2] = a[0] * a[1];

int *b = a;

int *c = new int[3];

c[2] = b[2] - a[0];

c += 2;
std::cout << *c << std::endl;

// should have done:
// c -= 2
// delete [] c;
return 0;

}

 a

142 7

To show the similarities
between arrays and pointers,
we now create a basic pointer
and assign it to point to the
array

903 21

Arrays in Action (4)

#include <iostream>

int main()
{

int a[3];

a[0] = 2;
a[1] = 7;
a[2] = a[0] * a[1];

int *b = a;

int *c = new int[3];

c[2] = b[2] - a[0];

c += 2;
std::cout << *c << std::endl;

// should have done:
// c -= 2
// delete [] c;
return 0;

}

 a

142 7

 b

We now demonstrate the other
way of creating arrays, by using
the 'new' operator

903

Arrays in Action (5)

#include <iostream>

int main()
{

int a[3];

a[0] = 2;
a[1] = 7;
a[2] = a[0] * a[1];

int *b = a;

int *c = new int[3];

c[2] = b[2] - a[0];

c += 2;
std::cout << *c << std::endl;

// should have done:
// c -= 2
// delete [] c;
return 0;

}

 a

142 7

 b c

Again we fill the values in this
new array

903

Arrays in Action (6)

#include <iostream>

int main()
{

int a[3];

a[0] = 2;
a[1] = 7;
a[2] = a[0] * a[1];

int *b = a;

int *c = new int[3];

c[2] = b[2] - a[0];

c += 2;
std::cout << *c << std::endl;

// should have done:
// c -= 2
// delete [] c;
return 0;

}

 a

142 7

 b c

12

As with pointers, if we
increment the variable, we are
incrementing the pointer, not
the value pointed to

903

Arrays in Action (7)

#include <iostream>

int main()
{

int a[3];

a[0] = 2;
a[1] = 7;
a[2] = a[0] * a[1];

int *b = a;

int *c = new int[3];

c[2] = b[2] - a[0];

c += 2;
std::cout << *c << std::endl;

// should have done:
// c -= 2
// delete [] c;
return 0;

}

 a

142 7

 b c

12

Finally, after we go out of scope,
we can see that because we
didn't delete the 'new'd array,
it's still present but the hard-
coded array has been deleted

903

Arrays in Action (8)

#include <iostream>

int main()
{

int a[3];

a[0] = 2;
a[1] = 7;
a[2] = a[0] * a[1];

int *b = a;

int *c = new int[3];

c[2] = b[2] - a[0];

c += 2;
std::cout << *c << std::endl;

// should have done:
// c -= 2
// delete [] c;
return 0;

}

142 7 12

● Before we move on to adding some statistics functions to the
code you got already, we can now return to our sorting
function. To do this, we will implement a useful (if not overly
efficient!) sorting algorithm called a 'Bubble Sort':

Create a function that takes an array and sorts it using the above
algorithm and your 'swap' function previously

Sorting an Array (Ex. 3)

1st Pass

5

10

4

8

6

10

5

4

8

6

10

5

4

8

6

10

5

8

4

6

10

5

8

6

4

2nd Pass

10

5

8

6

4

10

8

5

6

4

10

8

6

5

4

10

8

6

5

4

3rd Pass

10

8

6

5

4

10

8

6

5

4

10

8

6

5

4

10

8

6

5

4

● Before we move on to makefiles and using libraries and header files, there are
just a couple of more advanced points you may want to be aware of:

1. Heap vs. Stack

When local objects are created, they are on the 'stack' part of memory. If the
'new' operator is used, these are placed on the 'heap'

2. Addresses are not quite the same as References

Addresses (e.g. &a) are different to passing-by-reference. The latter involves the
symbol table of the compiler rather than an actual address

3. Pointers and Arrays are different

Though they can mostly be used interchangeably, there is a difference between
them. See http://www.lysator.liu.se/c/c-faq/c-2.html

4. '\n' and std::endl are different

std::endl also causes a stream to be 'flushed'

Don't worry about most of these – as long as you can do the basics, you'll be OK!

A Few Points

http://www.lysator.liu.se/c/c-faq/c-2.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

