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Preface

This section of the module introduces some quantum theoretic techniques used across different
areas of physics. The description of these techniques and their successes can become detailed
very quickly and much of the detail belongs in graduate texts. However, with a little effort it
is possible to understand how they might make sense.

As this module is also designed to support other more research-oriented modules in the fourth
year, we will concentrate on ideas explored further or used in other modules. They are the
idea of field operators and the density matrix. Quantum field theories (QFT) are important
in condensed matter physics, nuclear physics, particle physics and statistical physics. They
were first introduced in the 1920’s by Dirac and others but it took a long time before they
were developed into reliable tool for describing and predicting phenomena. We will introduce
field operators and explain how they describe free bosons and free fermions. The only system
involving interactions, that we will have time to look at, is that of a superconductor.

The density matrix is another old idea, also introduced in the 1920’s, that has become increas-
ingly important recently. von Neumann and Landau both introduced the idea of the density
matrix in 1927. It is important for treating open systems, where the interaction of a sub-
system with a larger system, which might be the environment, needs a quantum treatment.
It is also important in quantum information theory.

i



PREFACE 1



Chapter 1

Introducing QFT

The message you may have picked up from the quantum mechanics (QM) you have studied
until now is that something is not quite right. And some people may have suggested that
quantum field theory (QFT) solves the problems. QFT has its own problems but does indeed
solve many issues from QM. It allows us to explain and predict new things—the hugely
successful Standard Model of particle physics is a QFT after all.

As you have just seen, Dirac’s equation describes beautifully the behaviour of an electron
but at the price of introducing an infinite sea of negative energy states. One way of
rationalising these states is to assume that they are all filled. If we ignore any interaction
between the electron in a positive energy state with this infinite sea of electrons occupying
the negative energy states, we can often get away with thinking we are doing quantum
mechanics—writing a wave-function for a single particle, or small number of particles, and
ignoring the infinitely many states with negative energy. However, these extra particles are
there. Interactions can lead to electron-positron creation and hence to a system with a
changing number of particles. A state-function for such a system needs to be able to
encompass such possible changes in the numbers of particles. This is one thing that QFT
was invented to handle.

We also need to discuss how to quantise theories that are already field theories classically.
An example that should be familiar is electromagnetism. The fields E(t, r) and B(t, r), or
equivalently the corresponding four potential A with its contravariant components
Aα = (φ/c,A), are defined at all points in space-time. There are infinitely many points and
hence infinitely many degrees of freedom to keep track of. Maxwell’s equations determine
the classical values of these fields. The quantised theory needs to describe how light
particles, the photons with energy h̄ω, appear in the theory.

What is a Quantum Field Theory?
The boundary between quantum mechanics and quantum field theory is not always clear.
Roughly speaking, mechanics describes systems with a finite number of degrees of freedom
(DoF) while field theories describe systems with infinitely many DoF. This is true both
classically and after quantisation. We will look first at a single oscillator then a 1D chain of
ions, with length La where a is the lattice parameter. The oscillator has 1 DoF and the
chain of ions has L DoF so both are systems described by mechanics. The continuum
version of this lattice model described in Appendix A, and electromagnetism described in
Appendix B, have infinitely many DoF and are therefore described by field theories. The
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CHAPTER 1. INTRODUCING QFT 3

point about the Dirac equation is that it starts out as a wave equation (quantum mechanics)
for a single electron but ends up requiring infinitely many electrons occupying the negative
energy states, and so needs reformulating as a quantum field theory.

While the distinction between mechanics and field theory based on the number of DoF is
conventional, many people refer to field operators for particles or excitations whether or not
there are infinitely many of them and this is what we will do. The central properties of field
operators are their commutation relations which are similar in the case of quantum
mechanical systems and quantum field theories. These operators can change the number of
particles in a system. They are the tool used to understand how to handle the question of
the infinity of negative energy states in the Dirac equation mentioned above (and see
Chapter 2). Working with field operators, rather than wave-functions, will be the theme of
the first four chapters of these notes.

Field Operators in the Simple Harmonic Oscillator
Funnily enough you should have met precursors of field operators. These are the raising and
lowering operators used to characterise the quantum states of a simple harmonic oscillator
(SHO). The classical Hamiltonian for a particle of mass m, with coordinate x, and
momentum p, moving in a quadratic potential (V = kx2/2) in 1D is

H =
p2

2m
+
k

2
x2

ω2
0=k/m
=

p2

2m
+
mω2

0

2
x2. (1.1)

We can write this as (so far the Hamiltonian is classical but it helps to put in h̄ as we know
that the energy scale after quantising will be h̄ω0)

H =
h̄ω0

2

(
p2

h̄mω0

+
mω0

h̄
x2
)

=
h̄ω0

2
(p′2 + x′2). (1.2)

We have introduced p′ = p/
√
h̄mω0 and x′ = x

√
mω0/h̄.

When we quantise the Hamiltonian, momentum and position become non-commuting
operators p̂ and x̂:

[x̂, p̂] = ih̄ or equivalently [x̂′, p̂′] = i. (1.3)

We have introduced the notation for a commutator [Â, B̂] ≡ ÂB̂ − B̂Â. We can factorise
the Hamiltonian in 1.2 in terms of two Hermitian-conjugate operators, â and â†, as follows

Ĥ =
h̄ω0

2
(p̂′2 + x̂′2) =

h̄ω0

2

(
(x̂′ + ip̂′)(x̂′ − ip̂′) + (x̂′ − ip̂′)(x̂′ + ip̂′)

2

)
=
h̄ω0

2

(
â†â+ ââ†

)
= h̄ω0

(
â†â+

1

2
[â, â†]

)
= h̄ω0

(
â†â+

1

2

)
, where â =

(x̂′ + ip̂′)√
2

, â† =
(x̂′ − ip̂′)√

2
. (1.4)

The position and momentum operators are

x̂′ =
â+ â†√

2
and p̂′ =

â− â†

i
√
2
. (1.5)

Both x̂′ and p̂′ are Hermitian as they should be.
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The commutator
[â, â†] = 1. (1.6)

Consider the harmonic oscillator in its ground state |0〉 with corresponding wavefunction
ψ0 = (1/

√
π) exp (−x′2/2). This function is annihilated by â:

â exp (−x′2/2) = 1√
2

(
x′ +

∂

∂x′

)
exp (−x′2/2) = 1√

2
(x′ − x′) exp (−x′2/2) = 0. (1.7)

The operator (â†)n generates n quanta of h̄ω0:

Ĥ (â†)n|0〉 = h̄ω0

(
â†â+

1

2

)
(â†)n|0〉 = h̄ω0

(
â†(â†)nâ+ â†[â, (â†)n] +

(â†)n

2

)
|0〉

= h̄ω0

(
â† [â, (â†)n] +

(â†)n

2

)
|0〉. (1.8)

The commutator

[â, (â†)n] = â(â†)n − â†â(â†)n−1 + â†â(â†)n−1 − (â†)2â(â†)n−2 + · · ·+ (â†)n−1ââ† − (â†)nâ

= [â, â†] (â†)n−1 + â† [â, â†] (â†)n−2 · · · (â†)n−1 [â, â†] = n(â†)n−1.

Inserting this result into 1.8 gives

Ĥ (â†)n|0〉 = h̄ω0

(
n+

1

2

)
(â†)n|0〉. (1.9)

This says that the state (â†)n|0〉 is an eigenstate of Ĥ with eigenvalue (n+ 1/2)h̄ω0. In
other words, the operator (â†)n introduces n quanta of h̄ω0. Here we have shown this only
when (â†)n acts on the ground state, but it is true whichever state it acts on.

We should normalise the state (â†)n|0〉. You should work through the algebra on the
problems sheet to convince yourself of the following results

|n〉 = 1√
n!
(â†)n|0〉 is the normalised eigenstate of Ĥ with n quanta

â†|n〉 =
√
n+ 1 |n+ 1〉, â|n〉 =

√
n |n− 1〉

â†â |n〉 = n |n〉.

(1.10)

(1.11)
(1.12)

The conjugate operators, â† and â, are usually called ladder (or raising and lowering)
operators in the context of the SHO. They will be called creation and annihilation operators
in the context of QFT. This is to reflect the idea that â† creates a quantum of energy h̄ω
while â annihilates a quantum of energy. The operator combination, â†â, is a counting
operator. It counts the number of quanta in the oscillator. The ground state |0〉 satisfies

â |0〉 = 0. (1.13)

Relation to Quantum Field Theories
Equation 1.4 will turn out to be the basis of any QFT we can solve, at least for bosonic
particles. In effect, there will be many modes into which we can introduce energy but the
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Hamiltonian will end up with creation and annihilation operators exactly as in 1.4 but with a
mode index l:

[âl, â
†
l′ ] = δl,l′ . (1.14)

The operators â†l and âl will be the creation and annihilation operators for particles or
quanta in modes denoted by l, where l might involve a wavevector, q, and a polarisation
index. The Hamiltonian for free bosons (which means non-interacting bosons) will be

Ĥ =
∑
l

h̄ωl

(
â†l âl +

1

2

)
. (1.15)

We will need to be careful to count modes correctly. If the system is a quantum mechanical
one, the sum will be a sum over discrete labels l. If there are infinitely many modes, then
the sum will become an integral over the quantum number(s) and involve a density of states
for these modes. In translationally invariant systems the sum over l will usually include an
integral over wave-vectors k.

1.1 Phonons and a 1D QFT

A quantum mechanical model, which can be solved using creation and annihilation
operators, describes the excitations of a chain of ions of mass m. The motion of the ions
from their equilibrium position is restricted to 1D. Each ion in the chain will be at la+ xl,
where xl � a is the displacement from equilibrium, which can depend on time. We are
assuming that, in the ground state, the ions sit on a lattice with lattice constant a. We will
identify the N ’th site in the lattice with the 0’th site (periodic boundary conditions). The
momentum of each ion pi = mẋi. The Hamiltonian is

H =
N−1∑
l=0

p2l
2m

+
N−1∑
l,l′=0

V (xl − xl′). (1.16)

The interaction (here assumed to be a pairwise interaction) between ions could be computed
from a realistic model using interionic potentials or first principles calculations (and this is
often done in practice). However, to illustrate the use of creation and annihilation operators,
we will assume that the energy involves nearest neighbours only:

N−1∑
l,l′=0

V (|xl − xl′|) →
k

2

N−1∑
i=0

(xl − xl+1)
2 =

k

2

N−1∑
l=0

2x2l − xl (xl−1 + xl+1). (1.17)

(When writing out the term (xl−xl+1)
2 = x2l +x

2
l+1−2xlxl+1, we have put one of the terms

xlxl+1 with x2l and one with x2l+1 in the expression on the right.) In 1.17 take x−1 = xN−1.

As this system is periodic, working with Fourier decompositions should be helpful. We write
xl = (1/

√
N)
∑

n un(t)e
iqnla and pn = (1/

√
N)
∑

l πn(t)e
iqnla, where qn = 2nπ/Na for
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integer n ∈ {−N/2, (N/2)− 1}, giving1∑
l

2x2l − xl (xl−1 + xl+1) =
1

N

∑
l,n,n′

unun′
(
ei(qn′+qn)la(2− (e−iqn′a + eiqn′a))

)
=
∑
n,n′

unun′ δn+n′ (2− 2 cos(qn′a))

=
∑
n

u−nun (2− 2 cos(qna)) while

∑
l

1

2m
p2l =

1

2m

∑
n

πnπ−n.

Inserting the Fourier decompositions into 1.16 gives

H =
∑
n

πnπ−n

2m
+

4k sin2(qna/2)

2
unu−n =

∑
n

πnπ−n

2m
+
mω2

n

2
unu−n,

=
∑
n

1

2
h̄ωn

(
π′
nπ

′
−n + u′nu

′
−n

)
(1.18)

where ω2
n = 4k sin2(qna/2)/m and we have introduced scaled quantities: u′n = un

√
mωn/h̄

and π′
n = πn/

√
h̄mωn.

We can write 1.18 as

H =
∑
n

1

2
h̄ωn

(u′−n − iπ′
n)(u

′
n + iπ′

−n) + (u′−n + iπ′
n)(u

′
n − iπ′

−n)

2
. (1.19)

The requirement, that xl and pl are real, forces un = u∗−n and πn = π∗
−n (the coefficients of

eiqnla and e−iqnla must be complex conjugates of each other). This means that (u′−n + iπ′
n)

is the conjugate of (u′n − iπ′
−n). Defining conjugate variables

an =
u′n + iπ′

−n√
2

and a∗n =
(u′n)

∗ − i(π′
−n)

∗
√
2

=
u′−n − iπ′

n√
2

, (1.20)

the Hamiltonian becomes
H =

∑
n

1

2
h̄ωn (ana

∗
n + a∗nan) . (1.21)

(The term (u′−n + iπ′
n)(u

′
n − iπ′

−n) → a−na
∗
−n and has been switched with the

corresponding term with n→ −n in the sum.)

The Hamiltonian 1.19 is equivalent to that of N harmonic oscillators (see 1.2). With

u′n =
an + a∗−n√

2
and π′

n =
an − a∗−n

i
√
2

, (1.22)

the general expressions for xl and pl are

xl =
1√
N

∑
n

√
h̄

2mωn

(
an + a∗−n

)
eiqnla =

1√
N

∑
n

√
h̄

2mωn

(
ane

iqnla + a∗ne
−iqnla

)
pl =

−i√
N

∑
n

√
h̄mωn

2

(
an − a∗−n

)
eiqnla =

−i√
N

∑
n

√
h̄mωn

2

(
ane

iqnla − a∗ne
−iqnla

)
(1.23)

1Care needs to be taken to distinguish between rings with an even number of sites, n ∈ [−N/2, (N/2)−1],
or an odd number of sites, n ∈ [−(N − 1)/2, (N − 1)/2)].
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Here the dummy variable n has been replaced by −n for the term involving a∗−n to obtain
the obviously real forms on the right. The factors of

√
h̄/mωn are the analogues of those

relating x′ and p′ to x and p in 1.2, but scale individual modes labelled by n differently.

Everything in 1.21 is classical. We quantise by writing:

an → ân and a∗n → â†n, with [ân, â
†
n′ ] = δn,n′ . (1.24)

This is analogous to what we had in 1.4 but with a creation and annihilation operator for
each mode now labelled by n. The form for the quantised Hamiltonian is

Ĥ =
∑
n

h̄ωn

(
â†nân +

1

2

)
. (1.25)

The operators, â†n and ân are the creation and annihilation operators for what are called the
phonon excitations of the 1D chain. For a finite system on a lattice, we are doing the same
quantum mechanical calculations that were used to solve the simple harmonic oscillator.
There are now N modes with frequencies given by ωn. The operator â†nân is the counting
operator for quanta (see Eq 1.12, with different modes labelled by n). We see that the
energy of the system includes a sum over the phonon modes of the number of phonons in
each mode times its energy h̄ωn. Eq 1.25 is in the form we predicted in 1.15, with the mode
index l given by the index n.

Imposing the commutation relations 1.24 gives the correct commutation relations between
position and momentum:

[x̂l, p̂l′ ] = ih̄δll′ , [x̂l, x̂l′ ] = 0 and [p̂l, p̂l′ ] = 0. (1.26)

Note that imposing the result 1.26 is the canonical quantisation process. We have chosen to
impose the corresponding commutator on the creation and annihilation operators to bring
out the connection to the SHO.

The notation is compact and reduces all calculations to algebra (of the creation and
annihilation operators). The phonon modes in this model are independent but, if the original
potential function in 1.17 included higher order terms, the modes would be coupled. The
relation of 1.24 to 1.23 is behind the notion of second quantisation. It is the amplitudes of
the waves that have become operators. They generate states in the space of allowed states
of the quantum system with well-defined numbers of energy quanta, h̄ωn.

A continuum version of the phonon system is included in Appendix A and some relativistic
fields are discussed in Appendix B.

1.2 Time-Dependence

The classical fields in 1.23 are time-dependent—the displacement is varying as a function of
time. This means that un and πn, and the an and a∗n, are time-dependent. (In fact we know
what the dependence is as the modes are those of simple harmonic oscillators, so
un ∼ e−iωnt.) When quantising the amplitudes in 1.24, there is a choice where to put the
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time-dependence. In the Schrodinger picture the time-dependence belongs to the
wave-function ψ(t) = e−iω0tψ(0), while the operators are time-independent.

There is an alternative picture in which the wave-function or state-function is
time-independent and the operators become time-dependent. This is called the Heisenberg
picture. The derivation of the correct time-dependence of the operators ân and â†n is left as
an exercise on the examples sheet. We find ân ∼ e−iωnt and â†n ∼ eiωnt. It is not necessary
to work in the Heisenberg picture but, in establishing QFTs, it is usual. It makes the
notation easier.

Where does this apparent ambiguity come from? In quantum theory, what matter are matrix
elements between states. The matrix element structure allows us to put the
time-dependence where we want it. It can be associated with the state-function |ψ(t)〉, or
with the operators Ô. (In fact, when doing calculations it is often split between the two.
Whatever makes the calculations easier to do safely is what people usually do.) The idea of
this transformation is that, in the Schrodinger picture, the state-function satisfies

ih̄
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 ⇒ |ψ(t)〉 = e−iĤt/h̄|ψ(0)〉 ≡ Û(t)|ψ(0)〉. (1.27)

When computing the matrix elements of an operator we can write

〈ψ′(t)|ÔS|ψ(t)〉 = 〈ψ′(0)|Û †(t)ÔSÛ(t)|ψ(0)〉 ≡ 〈ψ′(0)|ÔH(t)|ψ(0)〉. (1.28)

Here ÔH(t) is the operator in the Heisenberg representation. The matrix element (matrix
elements define what is measurable) is the same in both pictures. The relation between the
Heisenberg representation of an operator, ÔH(t), and the Schrodinger representation, ÔS, is

ÔH(t) = Û †(t)ÔSÛ(t). (1.29)

1.3 Summary and questions

We have introduced the Hamiltonians for some free bosonic fields. The QFTs are essentially
the same for these systems, namely 1.15. We have looked at the phonon system 1.25 and
the field theoretic model of oscillations in Appendix A, see A.12. The KG field B.3 and
electromagnetic waves B.10 are outlined in the Appendix B. There may be different
dispersion relations and a different number of modes but the form of the Hamiltonians is
similar in each case. The creation and annihilation operators describe how particles/quanta
are created and annihilated in the system. The number operator, â†l âl, counts the number of
particles or quanta that are added2 in mode l. In the continuum cases, the operator â†pâp
gives a density or energy density operator in momentum space depending on how the
creation and annihilation operators have been normalised. The fields are free in the sense
that the Hamiltonian contains only terms involving the number (or density) operator. We
also call fields free, if we can find a transformation that takes the Hamiltonian to this form.

An issue relating to QFT is illustrated perfectly by the 1D continuum theory of elastic
waves. The field theory includes the limit q → ∞ corresponding to infinitely many

2We will tend to refer to quanta in a wave-system in which m0 = 0 and particles when m0 > 0.
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excitations with energies tending to infinity. Of course we know in the case of the 1D ionic
chain that these are unphysical modes. Any mode with a wavelength on length scales less
than the lattice spacing is not physical—on this length scale there is nothing that can
oscillate! But what happens in the KG case or the case of the EM field? In both these cases
there are also infinitely many modes (p→ ∞).

One approach to dealing with these modes is to assume that there must be a high frequency
cutoff (as there clearly is in the case of the elastic waves) or equivalently argue that the
theory is a long wavelength effective theory. We can ask what might set such a limit in other
cases. Here’s an argument to show that EM Theory cannot be right for arbitrarily large
wavenumber. If a photon wavepacket has wavelengths less than λm, it can be localised in a
spherical region of radius ∼ λm. A wavepacket with only one photon on average would have
energy > hc/λm equivalent to a mass of h/cλm. If λm is less than the Schwarzschild radius
for the one-photon wavepacket mass (rS = 2GM/c2 ∼ 2Gh/c3) a single photon will create
its own black hole. At such short wavelengths the theory cannot be right.

Another worry is the role of zero-point energy, E0, which is infinite (the sum
∑

q h̄ωq/2 is
unbounded). One could argue that E0 is not physical as it is not measurable within the
QFT. All spectroscopic and thermodynamic quantities depend only on energy differences and
so E0 drops out. But, if this energy is there, it should couple to gravity and contribute to
the stress-energy tensor.

Quantum theory was introduced by Planck to explain the absence of an ultra-violet
divergence (the infinite number of short wavelength modes implied infinite radiation
according to classical thermodynamics). We have ended up QFTs which contain similar
problems—unphysical infinities.



Chapter 2

QFT—Fermions

We will “guess” how to construct field operators to describe fermions. It is possible to get a
long way from first principles but this approach is probably better suited to a full length
graduate module. It is covered in all the main textbooks on QFT. We will take the line that
the justification is always empirical anyway—if it describes and predicts what we observe
then that’s good enough. Good sources for more extensive treatments are Eduardo Fradkin
and David Tong.

We assume that there are field operators ĉλ and ĉ†λ, which annihilate and create fermions in
some mode or state labelled by λ. λ could include orbital and spin indices. If we take a
simple one-state system (the rough equivalent of the harmonic oscillator for the boson), we
obtain most of the answer. There are two states, the empty state or vacuum |0〉 and the
occupied state |1〉:

ĉ†|0〉 = |1〉, ĉ |1〉 = |0〉, while ĉ†|1〉 = 0 ĉ |0〉 = 0. (2.1)

The first two identities are as for bosons, see 1.11, but allowing only occupation n = 0 or
n = 1. The third result encodes Pauli’s exclusion principle, which states that a single
quantum state can contain no more than one fermion. These results can be written as
follows

{ĉ, ĉ†} ≡ ĉ ĉ† + ĉ†ĉ = 1, {ĉ, ĉ} = 0, {ĉ†, ĉ†} = 0. (2.2)

The quantity {Â, B̂} is called the anticommutator of Â and B̂. The first result follows by
considering the action of the anticommutator on the states of the system, which are |0〉 and
|1〉. If the operator identity holds when acting on all states for the system (there are only
two here) then it is true as an operator identity.

What’s left is the so-called spin-statistics theorem. The state-function for a system of
indistinguishable fermions must be antisymmetric with respect to the interchange of any two
particles. The idea is that, as the particles are indistinguishable, no measurement can
distinguish between permutations of the coordinates of the indistinguishable particles, so
ψ(r1, r2, . . . ri, . . . rj, . . .) and ψ(r1, r2, . . . rj, . . . ri, . . .) must describe the same state.
Permuting the positions of two particle positions twice takes the wavefunction back to where
it started. It follows that, under permutation of indistinguishable particles (here particles i
and j), a state-function must satisfy

ψ(r1, r2, . . . rj, . . . ri, . . .) = ±ψ(r1, r2, . . . ri, . . . rj, . . .). (2.3)

10

http://eduardo.physics.illinois.edu/phys582/physics582.html
https://www.damtp.cam.ac.uk/user/tong/qft
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The symmetric case (plus sign on rhs of 2.3) is correct for bosons. The antisymmetric case
(minus sign in 2.3) applies in the case of fermions1. It is possible, at least for free particles,
to show that the only consistent quantisation of the Dirac equation describes fermions.
However, we will take this to be an axiom.

If we allow for the fermion to have two spin states which we label ↑ and ↓, the possible
states of the single-orbital two spin state system are: |0〉 (the vacuum), |↑〉 = ĉ†↑|0〉,
|↓〉 = ĉ†↓|0〉 and |↑↓〉 = ĉ†↑ĉ

†
↓|0〉. The antisymmetric condition translates into the following

anticommutation relations

{ĉσ, ĉ†σ′} = δσ,σ′ , {ĉσ, ĉσ′} = 0 = {ĉ†σ, ĉ
†
σ′}. (2.4)

For example the antisymmetric condition for the two fermion state is

ĉ†↓ĉ
†
↑ |0〉 = −ĉ†↑ĉ

†
↓ |0〉, which can be written (ĉ†↓ĉ

†
↑ + ĉ†↑ĉ

†
↓ )|0〉 = 0 |0〉. (2.5)

The first equation says that if we change the order, in which we populate the two spin states
with the fermions, the state-function must change sign. The second equation is the first
equation written in terms of the anticommutator of ĉ†↑ and ĉ†↓. You can check that the action
of the operators, as they appear in the anticommutators, on all four states of the system is
correct. If it is true for all states in a complete basis, then it is true as an operator identity.

The general result corresponding to 2.4 for fermionic states (not just the two-spin
one-orbital case that we have considered) is

{ĉλ, ĉ†λ′} = δλ,λ′ , {ĉλ, ĉλ′} = 0 = {ĉ†λ, ĉ
†
λ′}. (2.6)

The number operator for a single quantum state (here labelled by λ) is

n̂(λ) = ĉ†λĉλ. (2.7)

The operator n̂(λ) has eigenvalues 0 or 1, as no single quantum state can be occupied by
more than one fermion.

The index λ is in general some composite index. Examples we will mention are a Helium
atom, free non-relativistic fermions described by Schrodinger’s equation, and Dirac fermions.
Before looking at some examples, let’s ask what the wavefunctions generated by the ĉ†λ look
like. Suppose λ characterises both an orbital in some atom and the spin state. The state
|ψ 〉 = ĉ†1ĉ

†
2|0〉 corresponds to occupation of state χ1 and state χ2 by fermions. For example,

χ1 could be an s-orbital with spin ↑ and χ2 could be a p-orbital in an atom with spin ↓. The
wavefunction cannot be χ1(r1)χ2(r2) as this has particle 1 in state 1 and we cannot know
which state a particular particle occupies. The wavefunction must be antisymmetric with
respect to permutation of the particles. We must therefore add all permutations of the
assignment of the particle coordinates and spins to the orbitals and spin states that are
occupied, with a sign determined by how many permutations are needed to get to a given
term from some reference state. (Any state can be the reference state as the overall phase
of the wavefunction is not important.) We also need to normalise correctly.

1The more precise argument takes account of what can happen when a particle encircles another. In the 3D
this is equivalent to no change as the path can be shrunk to a point without crossing the other particle. This
means that bosons and fermions are the only possibility. In 2D this is not true, a fact behind the phenomena
of anyons and non-abelian statistics.
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For the two state case the wavefunction corresponding to |ψ〉 = ĉ†1ĉ
†
2|0〉 would be

ψ(r1, r2) =
1√
2
(χ1(r1)χ2(r2)− χ2(r1)χ2(r2)) =

1√
2!

∣∣∣∣∣ χ1(r1) χ1(r2)

χ2(r1) χ2(r2)

∣∣∣∣∣ . (2.8)

Writing the antisymmetric combination in the two-particle case as a determinant generalises
naturally to the N -particle case, |ψ〉 =

(
ΠN

i=1ĉ
†
i

)
|0〉,

ψ(r1, . . . rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(r1) χ1(r2) · · · χ1(rN)

χ2(r1) χ2(r2) · · · χ2(rN)
... ... · · · ...

χN(r1) χN(r2) · · · χN(rN)

∣∣∣∣∣∣∣∣∣∣
. (2.9)

States of this type are called Slater determinants. The structure of the determinant means
that, if any two or more of the states are the same, two (or more) rows of the matrix
become identical and the determinant vanishes. This ensures that Fermi’s exclusion principle
is satisfied automatically for these many-particle fermionic wavefunctions. The spin-statistics
theorem is also satisfied as exchanging any two rows (or columns) corresponds to permuting
the corresponding orbitals (or particles) and leads to a change in sign.

Helium Atom
The single-particle states in a Coulomb potential are characterised by the principal quantum
number n = 1, 2 . . . , the angular momentum l = 0, 1, . . . (n− 1), and the projection of the
angular momentum along some direction usually denoted by z, mz = l, (l − 1), . . .− l. Each
of these orbitals can be occupied by a particle with spin ↑, and with spin ↓. If we ignore the
interaction between the two electrons, we would write the ground state as:

|gs〉He = ĉ†1,0,↑ĉ
†
1,0,↓|0〉. (2.10)

This describes a state with two electrons with opposite spin both occupying the 1s orbital.
Here the labels denote, n = 1 and l = 0 (it is not strictly necessary to specify a value of l as
this is automatically zero when n = 1). Let’s look at what this means in terms of
wavefunctions. The states in 2.8 are χ1, which has n = 1, l = 0 and σ =↑ while χ2 has
n = 1, l = 0 and σ =↓:

φ(r1, σ1, r2, σ2) = φ1,0(r1)φ1,0(r2)

(
↑1↓2 − ↓1↑2√

2

)
. (2.11)

In this case the wavefunction factorises into a spatial part, that is symmetric with respect to
the interchange of the particles, and a spin part that is antisymmetric. (Note that not all
states separate into spin and orbital parts like this.) The suffix in 2.10 is only there to
emphasise that the ‘vacuum’, |0〉, is for a He atom. In future, we will assume that, unless
discussed specifically, it is clear which is the relevant “vacuum”.

An excited state could take an electron out of the n = 0 shell and put it in a higher shell.
An example of an excited state (es) would be

|es〉He = ĉ†2,1,−1↑ĉ1,0,↑|gs〉He = ĉ†2,1,−1↑ĉ1,0,↑ĉ
†
1,0,↑ĉ

†
1,0,↓|0〉He

= ĉ†2,1,−1↑ĉ
†
1,0,↓|0〉He. (2.12)
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The excited state has one electron in the n = 1 shell and another in the n = 2 with total
angular momentum quantum number l = 1 and projection of the angular momentum along
the z−axis of mz = −1.

The Slater determinant states involve products of single-particle states. We have put
electrons in one-particle orbitals, which we assume are the best solutions for the eigenstates
of some effective one-particle Hamiltonian. This approach can be made to treat the
interactions between the electrons but only on average. However, the motion of the two
electrons can be correlated, in which case the Slater determinant states form a basis for the
true eigenstates of the two-body interacting Hamiltonian (see below), but these eigenstates
will be superpositions of Slater determinants given in 2.9.

Fock Space
The notion of working with states characterised by the occupation numbers of modes rather
than explicit wavefunctions is sometimes referred to as second quantisation. The space, in
which states with different or varying numbers of particles (bosons or fermions) are possible,
is called the Fock space. Implicitly we have been identifying states via the occupation
numbers of single-particle states. This is almost always what one does. While it is essential
to define this space in QFT when particle numbers are changing, it is also sometimes helpful
to work with the Fock space even when the particle number is not changing. One may want
to compute matrix elements of operators at fixed particle number by allowing the particle
number to change and then come back to its original value.

2.1 Non-relativistic QFT for electrons

The bosonic general Hamiltonian 1.15, suggests that the Hamiltonian for free
non-interacting fermions governed by the Schrodinger equation should be

Ĥ =
∑
σ=↑,↓

∑
k

Ekĉ
†
k,σ ĉk,σ. (2.13)

The label λ in 2.6 has become the momentum label k and the spin label σ. The energy of
the fermion is Ek = h̄2k2/2m. The number operator for a single quantum state (here
labelled by k, σ), is (see 2.7)

n̂σ(k) = ĉ†k,σ ĉk,σ. (2.14)

The Hamiltonian 2.13 sums the energies Ek of the occupied states (n̂σ(k) = 1).

We can write the ground state of the free Fermi gas by occupying all the states with
energies up to and including the Fermi energy EF, corresponding to wavenumber kF. We
will call this state the Fermi Sea (FS):

|FS〉 =

 ∏
|k|<kF

∏
σ=↑,↓

ĉ†k,σ

 |0〉. (2.15)

This is a formalised way of writing down the ground state of a Fermi gas. The idea of filling
states up to the Fermi level should be familiar from earlier year modules.
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We can ask what are the operators which create and annihilate particles locally in space.
They are

ψ̂†
σ(x) =

∑
k

ĉ†k,σe
−ik·x and ψ̂σ(x) =

∑
k

ĉk,σe
ik·x. (2.16)

We should be careful about the notation of the sums. In 2.16 we are using the sum over
wavevectors rather loosely to represent either a sum over a discrete set of wavevectors or an
integral over wavevectors. If the system is finite, then we would normally impose periodic
boundary conditions and the sum would be over the discrete values of k consistent with the
conditions. We would normalise the plane wave with the factor 1/

√
V (this is similar to the

factor 1/
√
L in A.8). The same factor would go into the definition of the Fourier amplitude,

f(k):

f(r) =
1√
V

∑
k

f(k)eik·r and f(k) =
1√
V

∫
d3rf(r)e−ik·r. (2.17)

If the system is defined over all space then 1√
V

∑
k · · · →

∫
d3k
(2π)3

· · · in the infinite system
limit. The factors of 2π have been put in the inverse Fourier transforms but can also be split
between this and the Fourier transform.

Their anticommutation relations are

{ψ̂σ(x), ψ̂
′†
σ (x

′)} =
∑
k

∑
k′

{ĉk,σ, ĉ†k′,σ′} eik·xe−ik′·x′

=
∑
k

∑
k′

δσ,σ′δk,k′eik·xe−ik′·x′
= δσ,σ′

∑
k

eik·(x−x′)

putting in the normalisation → δσ,σ′

∫
d3k

(2π)3
eik·(x−x′)

= δσ,σ′δ(3)(x− x′).

(2.18)

(2.19)

Here δ(3) is the 3D delta function and we have used the infinite system normalisation. The
result 2.19 shows that the anticommutator is not a number but a density (you have to
integrate the δ−function over a volume to get a number). The operators ψ̂†(x) and ψ̂(x)
create and annihilate fermions at the point x while |x〉 = ψ̂†(x)|0〉 describes one particle
exactly at this point. The corresponding wavefunction satisfies |ψ(x)|2 = δ(3)(x), suggesting
ψ(x) =

√
δ(3)(x). This is actually correct. However, you should see this more as a formal

device than a wavefunction that is ever occupied (the fermion would have infinite kinetic
energy).

The operator ψ̂†
σ(x)ψ̂σ(x), rather than being a number operator (see 2.7), is the density

operator:
ρ̂(x) =

∑
σ

ψ̂†
σ(x)ψ̂σ(x). (2.20)

(If the anticommutator is a density as in 2.19, so must its two component terms be.) Its
Fourier transform is

ρ̂(q) =
1√
V

∑
σ

∑
k

ĉ†k+q,σ ĉk,σ. (2.21)
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Added for Interest To derive the result in the form given, we will work in a finite system
of volume V . Then

ρ̂(q) =
1√
V

∫
V

d3x eiq·xρ̂(x) =
1√
V

∑
σ

∫
V

d3x eiq·xψ̂†
σ(x)ψ̂σ(x)

=
1√
V

∑
σ,k,k′

∫
V

d3x eiq·xĉ†k,σ
e−ik·x
√
V
ĉk′,σ

eik
′·x

√
V

=
1√
V

∑
σ,k,k′

ĉ†k,σ ĉk′,σδ−k+q+k′.0 =
1√
V

∑
σ,k′

ĉ†k′+q,σ ĉk′,σ (2.22)

(A factor of V is cancelled by the integral over V .)

We will look at the role of interactions later, but we will write here the operator
corresponding to the Coulomb interaction. This is a term that needs to be added to the
Hamiltonian (and is behind all the problems worth studying in materials). We can write the
Coulomb interaction (ε0 = 1) in Fourier space:

V (x− x′) =
e2

4π|x− x′|
=

1

V

∑
q

e2

|q|2
eiq·(x−x′) ≡ 1

V

∑
q

v(q)eiq·(x−x′) (2.23)

where v(q) = e2/|q|2. The final result for the interaction part of the Hamiltonian is

V̂ =
1

2

∑
q

v(q)ρ̂(q)ρ̂(−q). (2.24)

It is derived in the box below. This result is a natural one. The Coulomb interaction, actually
any interaction in a translationally invariant system, can scatter an electron from state k to
a state k+ q (this is the effect of the operator ρ̂(q)) if another electron is scattered from
state k′ to a state k′ − q (the effect of the operator ρ̂(−q)). This conserves total
momentum. The matrix element for this scattering is v(q). It is almost more important to
think of things this way than to worry about the full derivation for the particular interaction,
in this case the Coulomb interaction. Any interaction which is translationally invariant
(shifting all particles by the same amount in real space maps the system to itself) will have
the same structure for V̂ with details about the nature of the interaction encoded in v(q).

Added for Interest Being able to derive 2.24 is not necessary for what we want to do and
is included here as additional information. The result follows after inserting the expression
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for the density operators at x and x′, see 2.20 (set e2/4πε0 = 1 for the time-being):

V̂ =
1

2

∫
d3x

∫
d3x′ ρ̂(x)ρ̂(x

′)

|x− x′|
=

1

2

∫
d3x

∫
d3x′ ψ̂

†(x)ψ̂(x)ψ̂†(x′)ψ̂(x′)

|x− x′|

=
1

2

∫
d3x

∫
d3x′ 1

V

∑
q

v(q) ρ̂(x)ρ̂(x′)eiq.(x−x′)

=
1

2

∑
q

v(q)ρ̂(q)ρ̂(−q). (2.25)

The result is the one we wrote down in 2.24. The factor of 1/2 is there to avoid double-
counting of the interaction.The (missing) factor of e2/4πε0 is usually absorbed into v(q).

There is one other comment about pesky normalisations used here. The form quoted for
v(q) in 2.24 is the form correct in infinite systems, not for finite systems. You can see
that this is dimensionally correct. The Coulomb interaction varies like 1/r ie as inverse
length. The integral of 1/q2 over 3D q-space also varies with length -1. However the
sum over discrete wavevectors of 1/q2 will vary with length as r2. This is brought down
to r−1, by the factor 1/V added in to 2.23.

In later chapters will be looking at interacting Fermi gases in the non-relativistic limit, i.e.
based on the Schrodinger equation.

2.2 Relativistic QFT for fermions

Following 2.13 we should expect the Hamiltonian for Dirac fermions to be something like

Ĥ =
∑
σ=1,2

∑
p

p0

(
â†σ,+(p)âσ,+(p)− â†σ,−(p)âσ,−(p)

)
. (2.26)

The operator âσ,s(p) annihilates a fermion in a state with wavevector p, with “spin” σ. The
label, s = ±, denotes whether the state has positive energy p0 =

√
m2 + p2 or negative

energy p0 = −
√
m2 + p2. For the time-being, assume that the sum over p is a sum over

discrete momenta.

Dirac suggested that all the negative energy states were occupied in the ground state and
defined a new vacuum state |vac〉 to be

|vac〉 =
∏
σ,p

â†σ,−(p)|0〉. (2.27)

This recipe would not work for bosons. Essentially the equation itself “knows” that it can
describe fermions and not bosons—the corresponding QFT is only possible using
anticommutation relations between the creation and annihilation operators. (Trying to use
commutation relations quickly leads to contradictions, see Fradkin for more on this.)

It is also canonical to introduce separate operators for the positive and negative energy
states as follows:

b̂σ(p) = âσ,+(p) and d̂σ(p) = â†σ,−(p). (2.28)

http://eduardo.physics.illinois.edu/phys582/physics582.html
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The corresponding operators, b̂†σ(p), create particles (electrons for example) while the d̂†σ(p)
create antiparticles (positrons for example). The vacuum state for the QFT is the one
satisfying

b̂σ(p)|vac〉 = 0 = d̂σ(p)|vac〉 ∀p, ∀σ. (2.29)
This can be read as stating that the vacuum state of the QFT is the one containing no
particles and no antiparticles.

The Hamiltonian 2.26 is

Ĥ =
∑
σ=1,2

∑
p

p0

(
b̂†σ(p)b̂σ(p)− d̂σ(p)d̂

†
σ(p)

)
=
∑
σ=1,2

∑
p

p0

(
b̂†σ(p)b̂σ(p) + d̂†σ(p)d̂σ(p)− 1

)
, (2.30)

where we have assumed the standard anticommutator 2.6 for fermions described by discrete
labels (in this case λ = {p, σ}). Note that the zero of energy is now negative. When we
complete the sum over p, it adds another infinity in to the mix.

When we define field operators as integrals over wavevectors p, we need to be careful about
the normalisation used—as we had to be when defining field operators for bosons, see for
example B.18. We will take the Hamiltonian to be given by

Ĥ =

∫
d3p

(2π)3
m

p0

∑
σ=1,2

p0

(
b̂†σ(p)b̂σ(p)− d̂σ(p)d̂

†
σ(p)

)
(2.31)

with the following anticommutation relations

{b̂σ(p), b̂σ′(p′} = 0 = {d̂σ(p), d̂σ′(p′}
{b̂σ(p), d̂σ′(p′} = 0 = {b̂σ(p), d̂†σ′(p

′}

{b̂σ(p), b̂†σ′(p
′)} = (2π)3

p0
m
δ(3)(p− p′)δσ σ′ = {d̂σ(p), d̂†σ′(p

′)}. (2.32)

The field operators, ψ̂α(x), carry an index α to denote the component of the Dirac spinors,
u(σ) or v(σ), which are the wavefunctions you studied in the first half of the module. They
are defined in the Heisenberg representation, so include time-dependence, with
p · x = p0x0 − p · x, as follows

ψ̂α(x) =

∫
d3p

(2π)3
m

p0

∑
σ=1,2

[
b̂σ(p)u

(σ)
α (p) e−ip·x + d̂†σ(p)v

(σ)
α (p) e+ip·x

]
. (2.33)

Here the spinors are given by

u(σ)(p) =

 √
p0+m
2m

φ(σ)

σ·p√
2m(p0+m)

φ(σ)

 and v(σ)(p) =

 σ·p√
2m(p0+m)

φ(σ)√
p0+m
2m

φ(σ)

 , (2.34)

with φ(1) = (1, 0)T and φ(2) = (0, 1)T . The equal-time anticommutation relations for the
creation and annihilation operators are

{ψ̂α(x), ψ̂β(x
′)} = 0 = {ψ̂†

α(x), ψ̂
†
β(x

′)}
{ψ̂α(x), ψ̂

†
β(x

′)} = δαβδ
(3)(x− x′). (2.35)
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Normally, setting up the Dirac QFT starts by quantising field operators ψ̂α by introducing
the anticommutators in 2.35. It takes quite a long time to get to the Hamiltonian 2.31. At
some point you should probably work through these derivations but it is not the main point
of this part of the module. I have been following Eduardo Fradkin, but there are plenty of
others. Not everyone includes the factor m in the Hamiltonian (2.31) and sum over modes
(2.33). Whatever normalisation you use for the mode operators and spinors, b̂σ(p) and
u(σ)(p), the correct anticommutation relations for the field operators 2.35 must hold.

The effect of the field operators can be thought of as follows. The operator ψ̂†
α(x) creates a

fermion of “type” α at the point x in space-time. α refers to the component of the Dirac
spinor. The conjugate operator annihilates a fermion. As in the case of the bosonic KG field,
the product ψ̂†

α(x)ψ̂α(x) is a number density.

2.3 Normal ordering

One thing we have mostly been doing, without drawing attention to it, is to put the
operators in the Hamiltonian into what is called normal order. The idea is to commute (for
bosonic fields) or anticommute (for fermionic fields) all annihilation operators to the right.
An annihilation operator acting on the ground state or vacuum state will annihilate the
state. For example in the case of B.3 we converted âpâ†p → â†pâp + [âp, â

†
p]. We did

something similar for 2.30 using the anticommutator {d̂σ(p), d̂†σ(p)}.

It is also common to separate any constants from the operator. For example, the KG
Hamiltonian in B.3 might be written

Ĥ = :Ĥ : +E0 where

:Ĥ : =

∫
d3p

(2π)3
h̄ωpâ

†
pâp. (2.36)

We can write the Hamiltonian for the Dirac QFT 2.31 in normal ordered form as

Ĥ = :Ĥ : +E0 where

:Ĥ : =

∫
d3p

(2π)3
m

p0

∑
σ=1,2

p0

(
b̂†σ(p)b̂σ(p) + d̂†σ(p)d̂σ(p)

)
. (2.37)

The energy E0 here is negative. Using the anticommutator we find

E0 = −2V

∫
d3p
√
p2 +m2. (2.38)

The factor V is the volume of the system and is associated with the delta function

δ(0) = lim
p→0

δ3(0) = lim
p→0

∫
d3x

(2π)3
eip·x =

V

(2π)3
. (2.39)

The volume is assumed infinite, but is needed here to ensure that we keep track of the
various infinities. Interest in this particular infinity is rare and we will not consider these
issues further.

http://eduardo.physics.illinois.edu/phys582/582-chapter7-edited.pdf
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In almost all calculations, we work with the normal ordered operators, as we are interested in
differences with respect to the ground state. Normal ordering is not quite as simple as
commuting or anticommuting annihilation operators to the right. We need to know which
operators annihilate the ground state (also called the vacuum state) and for this we need to
know this state. The two questions are coupled. A simple case of this was that for Dirac
QFT, where the operators annihilating the vacuum state are the b̂σ(p) and the d̂σ(p) - not
the âs,σ(p), see 2.28. Another case is the BCS theory of superconductivity which we look at
next.

2.4 Interactions

You may be asking where are all the propagators and Feynman diagrams. Of course, we can
define the propagators (called Green’s functions in some branches of physics). However, the
fields for which we have defined creation and annihilation operators are called free fields.
There are no interactions yet. In essence there is nothing left to find, as we know the full
spectrum of all modes and these do not interact with each other.

The formalism of Feynman diagrams, which you may have met in the context of the
Standard Model, is needed to compute scattering amplitudes for various interactions. These
interactions are the result of coupling between the matter fields, leptons or quarks for
example, and bosonic fields such as photons.

We will look at the particular case of interactions in many-particle systems in condensed
matter. These are the result of the exchange of particles, such as photons or phonons,
between electrons. In the non-relativistic limit, the exchange of photons leads to the
Coulomb interaction mentioned above. As the speed of light is so much larger than electron
velocities, the Coulomb interaction can be treated as instantaneous without any need to
treat the photons explicitly. In diagrammatic terms the phonon and photon exchange would
look as below.

q

h̄ω(q)

k

k − q k′ + q

k′

Phonon exchange

q

k

k − q k′ + q

k′

Coulomb interaction

In the case of the phonon exchange, an electron with momentum k emits a phonon (lattice
oscillation) with wavevector q and is scattered into a state with wavevector k − q. The
phonon is absorbed by another electron with wavevector k′. This exchange is behind the
phenomenon of superconductivity which we consider in the next chapter (see also
Appendix C).



Chapter 3

Interacting
Electrons—Superconductivity

We will look at a system of interacting electrons. While solving for the eigenfunctions of the
Hamiltonians of many-particle systems is not usually possible, many of the approximate
treatments and some exact results for many-body systems are usually established using
QFT. We will not explore all of this. Instead we will illustrate the power of QFT by looking
at one of its greatest triumphs within condensed matter physics, namely the microscopic
theory of superconductivity. QFT will allow us to work with a system which does not have a
well-defined particle number and, rather surprisingly, this will lead to a relatively simple
problem to solve.

QFT is not the answer to all problems. As just mentioned, it is not possible to construct
many-body wavefunctions to describe the electronic structure of materials. However, it is
possible to work only with the density of the electrons. Finding the ground state density can
be shown to be equivalent to finding the eigenstates of an effective one-body Hamiltonian
and not the many-body wavefunction. This is the approach of density functional theory
(DFT). The many-body effects determine the effective one-body potential, which is of
course not known in general (we would need the many-body wavefunction to find it). It can
be approximated at each point by that for the homogeneous electron gas with the same
density. Corrections, consistent with various sum rules, can be added empirically to account
for variation of the density with position. The approach is amazingly successful and is widely
used across much of computational materials science.

3.1 Many-body systems

The interaction between electrons in a metal is the Coulomb interaction. We can estimate
orders of magnitude as follows. For a free electron gas with a number density n, we expect
the average separation of electrons to be rs = 3

√
3/4πn. (The quantity rs is the radius of a

sphere containing one electron on average.) Normally, when discussing materials, we
measure lengths in units of the Bohr radius a = 4πε0h̄

2/me2. This is the length scale of
electrons in an atom and expected to be the natural length scale for the outermost electrons
in an atomic orbital and in a conduction or valence band.

20
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The average kinetic energy of an electron in a free electron gas in 3D (using kF = (3π2n)1/3)

EK =
3

5
EF =

3

5

h̄2k2F
2m

=
3

5

h̄2

2m
(3π2n)2/3

=
3

5

h̄2

2m

(
9π

4

)2/3
1

r2s

≈ 1.1
h̄2

m

1

r2s
. (3.1)

We could have guessed the form of this answer—the Fermi wavenumber kF has the
dimensions of inverse length. The only length scale in a free electron gas is rs, so the kinetic
energy must be ∼ h̄2/(mr2s).

The average Coulomb interaction energy per particle should be close to VC = 1
2
e2/4πε0rs.

This is the interaction energy of two electrons a distance rs apart. The factor of 1/2 is there
to avoid double counting (half the energy can be thought of as “belonging” to one and half
to the other particle). The ratio of the potential energy to the kinetic energy is

VC
EK

≈ 1

2

(
1

1.1

e2

4πε0rs

mr2s
h̄2

)
≈ 0.45

rs
a
. (3.2)

When estimating rs for typical metals we should take the density of conduction band
electrons, as these are the ones modelled by a free electron gas. For most metals rs/a takes
values between 1 and 6. This is always quite shocking the first time you meet it. We are
modelling the metal as a free electron gas hoping that the interactions between electrons can
be treated perturbatively afterwards somehow. Yet in almost all cases the typical interaction
energy is comparable to (or even larger than) the typical kinetic energy. So how can we get
away with this approach? A lot of work has gone into this question. Most studies have used
the formalism of QFT, which makes it quite technical and long, and we will not cover it in
this module. The gist of the argument is quite simple though. It is that, in a metal, the
electron sea acting collectively screens the Coulomb interaction between individual particles
so that its effect is less than the order of magnitude estimate above suggests it might be.
There is also the ultimate argument: the method certainly works so let’s get calculating.

For the non-relativistic case that we are considering 3.2 shows that interactions are dominant
(V/EK � 1) in the low density limit rs/a� 1. In the high density limit the kinetic energy
dominates. This is because the interaction energy scales as 1/rs while the kinetic energy
scales as 1/r2s . Even though the interaction energies grow at high densities, the kinetic
energy grows faster. Because the Coulomb energy does not contain h̄, the low density
behaviour and the ground state should be more classical, and indeed they are. At very low
densities the free electron gas is expected to form a solid and its excitations are oscillations
of the electrons about their equilibrium positions. This state is called the Wigner crystal.

3.2 Cooper instability

Superconductivity was discovered in 1911 and the microscopic theory, BCS theory, appeared
in 1957. A microscopic theory took a long time coming! The idea that a microscopic theory
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was possible might seem far-fetched in the first instance given that the transition
temperatures were of the order of Kelvin, while the interaction energies were of the order of
10 eV or 110,000 K. How can one pick out an interaction effect “worth” 10K when overall
interaction effects are 104 times bigger in general?

The insight that made a microscopic theory possible was that of the Cooper instability. It
was known that there might be a residual attractive interaction between electrons due to
phonon exchange. Experiments had shown that phonons were implicated somehow.
Materials, containing different amounts of different isotopes for at least some of the ions,
had different transition temperatures (the transition temperature varied as M−1/2 where M
was the mass of the ion). However, estimates showed that this interaction was weak and it
was known that weak attractive interactions could not bind free electrons in 3D. Cooper
realised that it was essential to take account of the presence of the filled Fermi sea (FS).
Even if the direct interaction involving the electrons in the FS were not taken into account,
the filled states do affect all other electrons (in this case the additional pair of electrons just
outside the FS) by “blocking” the one-particle states.

In the free electron model, the orbitals for the free electrons will be ψk(r) = V −1/2eik·r,
where V is the volume of the system and k denotes a wavevector. Each electron will have a
spin component |σ〉 = |↑〉 or |↓〉. For electrons close to the Fermi energy, their energy is
linear in the wavenumber difference with respect to the Fermi momentum,
εk = εF + vFh̄(k − kF). Here vF is the Fermi velocity, v = ∂ω/∂k, and kF is the Fermi
wavenumber.

A bound state means a state with negative energy with respect to the filled Fermi sea. It
will be expected to have zero momentum and total spin zero. (Zero momentum seems
intuitive. Add momentum and you are likely to add kinetic energy to the system. Triplet
spin pairing is also possible but, for the model interaction we will look at, does not give the
lowest energy.) Total spin zero means the two electrons are in a spin-singlet state. This
suggests looking for a two-particle state

ψ(r1, r2) =
∑

|k|>kF

αkψk(r1)ψ−k(r2)

(
| ↑1〉| ↓2〉 − | ↓1〉| ↑2〉√

2

)

=
1

V

∑
|k|>kF

αke
ik·(r1−r2)|0〉S ≡

 ∑
|k|>kF

αkψ
(2)
k

 |0〉S. (3.3)

We have denoted the spin singlet combination of the two spins as |0〉S (the idea being
S = S1 + S2 = 0). We have also written the product of the two one-particle states,
ψ

(2)
k = ψk(r1)ψ−k(r2), as a convenient shorthand. The total wavefunction must be

antisymmetric under interchange of the two particles. The spin singlet wavefunction is
antisymmetric under interchanges of the particles, so that the spatial wavefunction, ψ(2)

k ,
must be symmetric in the spatial variables. This means αk = α−k. (See the discussion
around 2.8 and 2.11.) The αk are coefficients (numbers not operators) and are what we
need to find once we have specified the model Hamiltonian.

The model Hamiltonian, with a two-body interaction interaction U = U(r1 − r2), is

H = H0 + U = H0 +
∑
q

Uqe
iq·(r1−r2), (3.4)



CHAPTER 3. INTERACTING ELECTRONS—SUPERCONDUCTIVITY 23

where we have introduced a Fourier decomposition of the interaction potential. H0 is the
free electron part. A two-body state, ψ(2)

k′ , is an eigenstate of H0 with energy 2εk′ . This is
because the spatial part involves a product of one-particle states with the same |k′|. The
effect of U on our two-body wavefunction (we will write only the spatial part as the
interaction does not affect spin variables) is

Uψ
(2)
k′ =

∑
q

Uqe
iq·(r1−r2)

1

V
αk′eik

′·(r1−r2)

=
∑
q

Uqψ
(2)
k′+q =

∑
k′′

Uk′′−k′ψ
(2)
k′′ . (3.5)

This result says that, if we start with two electrons with wavevectors, k and −k, and hence
zero net momentum, the interaction can scatter the electrons into another state with zero
momentum. We denote the new wavevectors by k′′ and −k′′. The amplitude is given by the
strength of the Fourier component of the interaction with wavevector, q = k′′ − k′. The
argument also works for antiparticles or holes in this context. We could add two holes
(remove two electrons). If a pair of electrons bind so would the pair of holes.

Without worrying quite how it got there (its origin is outlined in Appendix C), we will
assume that the two-body interaction is an attractive interaction in an energy window close
to the Fermi energy. As this interaction is known to be related to phonon-exchange, we will
take the energy window to be set by h̄ωD, where ωD is taken as the highest frequency
phonon in the system, usually called the Debye frequency. We will put

Uk′−k′′ =

{
−U

V
if |ε′k − εF| < h̄ωD, |εk′′ − εF| < h̄ωD

0 otherwise.
(3.6)

Here U > 0. The factor of V (system volume) is associated with the Fourier series
representation in 3.5. The Fourier amplitude Uq = 1

V

∫
d3rU(r)e−iq·r (making Uq an

energy). This is an attractive interaction between two electrons that are in states within
h̄ωD of the Fermi energy.

We are looking for an eigenstate of the Hamiltonian 3.4 with two more electrons than the
filled Fermi sea, which has energy less than zero if the energies of the electrons are measured
with respect to the Fermi energy. If there is such a bound state, it will tell us that the filled
Fermi sea is not the ground state for our free electron gas—if two particles can bind then
two more from within the Fermi sea can also bind and the energy will go down and so on.

An eigenstate will be defined by the choice of the αk in 3.3 satisfying

E
∑

|k′|>kF

αk′ψ
(2)
k′ = H

∑
|k′|>kF

αk′ψ
(2)
k′

=
∑

|k′|>kF

2εk′ αk′ψ
(2)
k′ −

∑
|k′|>kF

∑
k′′

αk′
U

V
ψ

(2)
k′′ .

(3.7)

(3.8)

In the sum on k′′, we need εF < εk′′ < εF + h̄ωD.

The ψ(2)
k with different values of k are orthogonal. Multiplying by (ψ

(2)
k )∗ and integrating
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over both r1 and r2 gives

E αk = 2εkαk −
U

V

∑
k′′

αk′′ ≡ 2εkαk −
U

V
I, where I =

∑
k′′

αk′′ ,

hence αk = −U
V

I

E − 2εk
. (3.9)

A bound state would mean E = 2εF −∆ with ∆ > 0 (or equivalenlty E − 2εF < 0). For
weak attractive interactions, we can take the binding energy ∆ � h̄ωD. Summing∑

k αk = I, and introducing the density of states (DOS) per unit volume at the Fermi
energy, νF, leads to a condition determining E:

1 = −U
V

∑
k′′

1

E − 2εk′′
=
U

V

∫ εF+h̄ωD

εF
dε V νF

1

2ε− E

=
UνF

2
ln

[
2εF + h̄ωD − E

2εF − E

]
=
UνF

2
ln

[
h̄ωD

∆

]
. (3.10)

The last expression follows as we are assuming ∆ � h̄ωD. Note that the density of states
(V νF ) is extensive and proportional to volume while U is an energy times volume, see 3.6,
which makes UνF/2 a number. Exponentiating 3.10 gives

∆ = h̄ωDe
−2/UνF . (3.11)

The result 3.11 shows that, no matter how small the interaction is (UνF � 1), the energy
∆ > 0. A pair of electrons at the Fermi energy will always bind. The same calculation also
applies to holes at the Fermi energy. In the presence of an arbitrarily small attractive
interaction, the free Fermi gas is always unstable. Pairs of electrons and pairs of holes will
bind and condense to form a new state. To describe the new state is what the BCS theory
(named for Bardeen, Cooper and Schrieffer) attempts to do.

A comment on interactions in the free electron model. The Cooper instability (and others)
are a warning about treating interacting electrons perturbatively. Models based on the free
electron theory have been a hugely successful approach, but it is difficult to explain why a
perturbation theoretic approach works. A perturbation theory normally implies that we are
expanding about a non-interacting (U = 0) limit. We hope to find that an expansion
converges in powers of the parameter U/EF. The result 3.11 shows that this is impossible.
If the sign of U is negative (attractive interaction), however small in absolute strength, the
free electron gas is unstable.

3.3 Mean Field Theory

In problems involving interacting fields, which in general cannot be solved exactly, we often
approximate fields (these can be classical or quantum) by their average value. Sometimes,
one particular expectation value can change from zero in one phase to non-zero in another
phase, and acts as an order parameter for the second phase. The theory works explicitly with
the dependence of this expectation value on parameters of the theory and quantities like
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temperature and any applied fields. In quantum theory, operators are replaced by complex
number (often referred to as a c-number) expectation values.

In the case below the product of (quantised) operators is of the form

ĉ†k,↑ĉ
†
−k,↓ĉ−k′,↓ĉk′,↑. (3.12)

The expectation values 〈ĉ−k,↓ĉk,↑〉 = b∗k and 〈ĉ†k,↑ĉ
†
−k,↓〉 = bk will be assumed to be

non-zero, ie bk 6= 0. This is an Ansatz or working hypothesis. We will need to check
whether this non-zero expectation value is reproduced when we solve for the properties of
the system within this approximation. This is called self-consistency. We will find that below
a temperature, which we call Tc, this non-zero expectation value exists, and we will identify
Tc with the superconducting ordering temperature.

The operator product is written in terms of the deviation of an operator from its expectation
value

ĉ†k,↑ĉ
†
−k,↓ĉ−k′,↓ĉk′,↑ = ((ĉ†k,↑ĉ

†
−k,↓ − bk) + bk) ((ĉ−k′,↓ĉk′,↑ − b∗k′) + b∗k′)

= (ĉ†k,↑ĉ
†
−k,↓ − bk)(ĉ−k′,↓ĉk′,↑ − b∗k′)

+ (ĉ†k,↑ĉ
†
−k,↓ − bk)b

∗
k′ + (ĉ−k′,↓ĉk′,↑ − b∗k′)bk + bkb

∗
k′

≈ b∗k′ ĉ
†
k,↑ĉ

†
−k,↓ + bk ĉ−k′,↓ĉk′,↑ − bkb

∗
k′ . (3.13)

In the last line we have discarded the term involving the product of the deviations of the
operators from their expectation values (the first term on the previous line). The validity of
any mean field approximation like this depends on the effects of these terms being small
compared to those of the terms we keep. Unless absolute energies are required, we would
normally also drop the last term −b∗kbk′ , as this a number and does not affect the values of
the quantum fields. In the simplest case, the expectation value bk will not depend on k but
only on k (see below).

As you have probably spotted, there is something radical with this particular mean field. The
expectation value of an operator product that annihilates two particles 〈ĉ−k,↓ĉk,↑〉 is
non-zero. If the expectation value is taken with respect to a ground state wavefunction for a
system with fixed particle number, it cannot be non-zero. In practice, there are ways of
making the theory work at fixed particle number but they do not involve any particular new
physics. Working with systems with variable particle number makes the sums easier and is
fine provided we impose a constraint on the average total particle number as we do in
statistical mechanics when working in the Grand Canonical Ensemble. We introduce a
chemical potential, µ, which multiplies the total number of particles, N̂ , and we look for
eigenstates of Ĥ − µN̂ .

3.4 BCS theory

Main sources here are John Chalker and Subir Sachdev.

The BCS theory (named after its originators Bardeen, Cooper and Schrieffer) is one of the
great triumphs of QFT applied to many-particle systems. It is a theory in which the
attractive part of the interparticle interaction is treated using mean field theory.

https://www-thphys.physics.ox.ac.uk/people/JohnChalker/qtcm/lecture-notes.pdf
http://qpt.physics.harvard.edu/qpm/Lectures.html
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We will work with a weakly attractive interaction in the grand canonical ensemble. We
consider the Hamiltonian

Ĥ − µN̂ =
∑
k,σ

ξkĉ
†
k,σ ĉk,σ −

U

2V

′∑
k,k′,q

∑
σ,σ′

ĉ†k+q,σ ĉ
†
k′−q,σ′ ĉk′,σ′ ĉk,σ. (3.14)

The prime on the second sum denotes a restriction to the states within h̄ωD of the Fermi
energy. This is because the attractive interaction is due to phonon exchange and so acts
only for energies within h̄ωD of the Fermi energy. The quantity ξk = εk − µ, where µ is the
chemical potential. It subtracts the term,

∑
k,σ µ ĉ

†
k,σ ĉk = µN̂ , from the one-particle

energies. It is needed to fix the average total number of particles. The factor of 1/2 in front
of the interaction is necessary to avoid double-counting the pairwise interaction (as in 3.2).
The factor of V is associated with the Fourier transform of an interaction
Uq ∼ (1/V )

∫
d3rU(r)e−iq.r. We will see at the end that the important parameter is UνF

where νF is the density of states per unit volume.

We can’t solve for the eigenstates of the Hamiltonian in 3.14. Nobody can. Instead we will
use the insight of the Cooper instability to construct an approximate theory. We will assume
that singlet pairs of particles form with zero net momentum and only consider interactions
involving these pairs. We will look out for terms involving these pairs in the Hamiltonian:

Ĥ − µN̂ =
∑
k,σ

ξkĉ
†
k,σ ĉk,σ −

U

V

′∑
k,k′

ĉ†k,↑ĉ
†
−k,↓ĉ−k′,↓ĉk′,↑. (3.15)

We are assuming that all other terms do not alter the state we are looking for and can be
dropped. The rationale for this is roughly that the single-particle spectrum explains the
metallic state above the transition well and we are guessing that only the interaction
involving the pairs matters. The factor of 1/2 in front of the interaction term has been
cancelled by the sum over σ (we assume σ′ = −σ and summing over σ gives two copies of
the same result).

We will assume non-zero averages (see section on Mean Field Theory above):

bk = 〈ĉ†
k†,↑ĉ

†
−k,↓〉, b∗k′ = 〈ĉ−k′,↓ĉk′,↑〉, (3.16)

and look for a self-consistent non-zero solution for these averages. The brackets mean take
the expectation value in the ground state, which we do not know yet, but which we will
identify at the end. This is what we mean by a self-consistency condition. At non-zero
temperature the brackets indicate the expectation value with respect to the state of the
system in thermal equilibrium.

Introducing the quantity ∆, which we will later identify with the order parameter
∆ = U

V

∑′
k′ bk′ , and neglecting any constants, the mean field Hamiltonian is

Ĥ − µN̂ =
∑
k,σ

ξkĉ
†
k,σ ĉk,σ −

U

V

′∑
k,k′

(
b∗k′ ĉ

†
k,↑ĉ

†
−k,↓ + bk ĉ−k′,↓ĉk′,↑

)
=
∑
k,σ

ξkĉ
†
k,σ ĉk,σ −

′∑
k

(
∆∗ ĉ†k,↑ĉ

†
−k,↓ +∆ ĉ−k,↓ĉk,↑

)
. (3.17)
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We will assume ξk = ξk and write the Hamiltonian in a matrix form as follows

Ĥ − µN̂ =
∑
k

Ĥk where

Ĥk =
1

2

(
ĉ†k,↑, ĉ−k,↓, ĉ

†
−k,↓, ĉk,↑

)
ξk −∆∗ 0 0

−∆ −ξk 0 0

0 0 ξk ∆∗

0 0 ∆ −ξk




ĉk,↑

ĉ†−k,↓

ĉ−k,↓

ĉ†k,↑

+ ξk. (3.18)

The constant at the end comes from anticommuting the creation and annihilation operators.

If we can diagonalise the matrix, we should be home and dry. However, it will only be of use
if the transformed operators satisfy fermionic anticommutation relations. We will need this
to characterise the ground and excited states (otherwise we would have a diagonal quadratic
form with non-standard anticommutation relations and we would have to solve another
problem—namely what do they mean?). The matrix is block diagonal which allows us to
diagonalise each 2× 2 sub-matrix separately.

We want to write (
γ̂k,1

γ̂†k,2

)
= U

(
ĉk,↑

ĉ†−k,↓

)
≡

(
uk −vk
v∗k u∗k

)(
ĉk,↑

ĉ†−k,↓

)
(

ĉk,↑

ĉ†−k,↓

)
= U †

(
γ̂k,1

γ̂†k,2

)
≡

(
u∗k vk

−v∗k uk

)(
γ̂k,1

γ̂†k,2

)
. (3.19)

We should check that the new operators γ̂k,τ can be made to satisfy fermionic
anticommutation relations. This requires that

1 = {γ̂k,1, γ̂†k,1} = {(ukĉk,↑ − vkĉ
†
−k,↓), (u

∗
kĉ

†
k,↑ − v∗kĉ−k,↓)} = |uk|2 + |vk|2, (3.20)

which can be satisfied by choosing uk = cos θke
iφk/2, vk = sin θke

−iφk/2.

The contribution to Ĥk of the upper 2× 2 matrix can be written in terms of the γ̂ operators
as

1

2

(
γ̂†k,1, γ̂k,2

)( uk −vk
v∗k u∗k

)(
ξk −|∆|e−iφ

−|∆|eiφ −ξk

)(
u∗k vk

−v∗k uk

)(
γ̂k,1

γ̂†k,2

)
.

The transformed Hamiltonian matrix (ie the product of the three matrices) is diagonal if the
off-diagonal elements vanish. This happens if +2ξkukvk − |∆|e−iφu2k + |∆|eiφv2k = 0, which
is satisfied by choosing

sin 2θk =
|∆|√

ξ2k + |∆|2
, cos 2θk =

ξk√
ξ2k + |∆|2

, φk = φ. (3.21)

The angle θk is defined such that θk ∈ [0, π).

The eigenvalues are Ek = ±
√
ξ2k + |∆|2 (as they are for the lower 2× 2 matrix). The full

Hamiltonian becomes

Ĥk =
1

2

(
γ̂†k,1, γ̂k,2, γ̂

†
k,2, γ̂k,1

)
Ek 0 0 0

0 −Ek 0 0

0 0 Ek 0

0 0 0 −Ek




γ̂k,1

γ̂†k,2
γ̂k,2

γ̂†k,1

+ ξk. (3.22)
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Rewriting the result 3.22 in the form of 3.17 gives

Ĥ − µN̂ =
∑
k,τ

Ekγ̂
†
k,τ γ̂k,τ +

∑
k

(ξk − Ek). (3.23)

The extra constant term on the right hand side appears, as we have used the
anticommutation relation to write γ̂k,τ γ̂†k,τ = 1− γ̂†k,τ γ̂k,τ .

The parameter ∆ should be computed self-consistently from the mean-field Hamiltonian
3.23. (The Hamiltonian assumes a non-zero ∆. Self-consistency means that the value of ∆
determined from the treatment of the mean-field Hamiltonian matches that assumed to start
with.) If there is a self-consistent non-zero solution for ∆ the new state may be the answer.
We have

∆ =
U

V

′∑
k

bk =
U

V

′∑
k

〈ĉ†k,↑ĉ
†
−k,↓〉 =

U

V

′∑
k

ukv
∗
k

(
1− 〈γ̂†k,1γ̂k,1〉 − 〈γ̂†k,2γ̂k,2〉

)
, (3.24)

where we have used 3.19. The phase of u∗kvk gives the phase of ∆. In the zero temperature
case 〈γ̂†k,τ γ̂k,τ 〉 = 0. We also have u∗kvk = |∆|/(2

√
ξ2k + |∆|2) from 3.21. Writing the sum

over wavevectors k, by and integral over energy using the density of states νF gives

1 =
νFU

2

∫ h̄ωD

−h̄ωD

dξ
1√

ξ2 + |∆|2
= UνF sinh−1 h̄ωD

|∆|
. (3.25)

Here νF is the density of states per unit volume. In the limit of weak interactions UνF � 1,
this has the solution

|∆| = 2h̄ωDe
−1/UνF . (3.26)

The result 3.26 explained the isotope effect mentioned above. The transition temperature of
a material scaled with the isotopic mass as M−1/2. This is the dependence of prefactor ωD

(the phonon frequencies vary as M−1/2 as we saw in 1.18).

Equation 3.23 is a free fermion Hamiltonian with single particle energies Ek. (We used this
fact to compute 〈ĉ†k,↑ĉ

†
−k,↓〉, when we wrote these in terms of the expectation of the γ̂

operators in 3.24.) Once the mean field was introduced and products of four operators in
3.14 had been approximated by 3.17, we should have expected to be able to diagonalise the
Hamitonian like this—it was a quadratic form and these can be diagonalised. The only
complication arising out of the use of operators was that we had to preserve the
anticommutation relations.

3.5 Properties of the BCS state

The transformation, which we have used, is called a Bogoliubov transformation. It mixes
particle creation and annihilation operators. If we look at the the limit k � kF , we find
2θk → 0 and γ̂†k,1 → ĉ†k,↑. In the limit k � kF , we find 2θk → π and γ̂†k,1 → ĉ−k,↓. The
excitations are particle-like far above the Fermi energy and hole-like far below the Fermi
energy. For ξk = 0, θk = π/4 and the excitations are equal mixtures of a particle and a hole.
The term in the Hamiltonian,

(
∆∗ ĉ†k,↑ĉ

†
−k,↓ +∆ ĉ−k,↓ĉk,↑

)
, when acting on an electron in
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state k, ↑, describes a process in which a single electron is replaced by a hole (and a pair of
electrons is absorbed into the condensate). In the conjugate process, a hole is replaced by an
electron (a pair of electrons is released from the condensate). These processes replace a
particle by a hole and vice versa, so the true excitation of the MFT Hamiltonian becomes a
linear superposition of a particle and a hole. The excitations at ξk = 0 have energy |∆|,
which is often called the energy gap.

Ground State
The ground state is the one annihilated by all γ̂k,τ . We can find this ground state
wavefunction in the basis of the original electronic states. The space of states acted on by
the γ̂k,τ for given k is

|ψ〉 = p |0〉+ q ĉ†k,↑|0〉+ r ĉ†−k,↓|0〉+ s ĉ†k,↑ĉ
†
−k,↓|0〉 (3.27)

where p, q, r, s are amplitudes. The BCS ground state must be annihilated by both γ̂k,1 and
γ̂k,2. Substituting for the γ̂k,1 from 3.19, gives q = 0, p ∝ uk and s ∝ vk. Requiring that
γ̂k,2 also annihilates the state means r = 0. Taking the product over all k gives the BCS
ground state

|BCS〉 =
∏
k

(uk + vkĉ
†
k,↑ĉ

†
−k,↓)|0〉. (3.28)

This wavefunction emphasises the nature of the pairing explicitly. In the original work, this
wavefunction was introduced as a variational wavefunction and the total energy minimised
to find the coefficients uk and vk. This gives the same results as the approach due to
Bogoliubov, which we have outlined here and which appeared shortly after the BCS paper.

Density of States and Tunneling
The density of states, n(E), for the excitations with energy Ek can be measured
experimentally in tunneling experiments. Using ξ =

√
E2 − |∆|2, we find

n(E) =
dN

dE
=
dN

dξ

dξ

dE
= νF

E√
E2 − |∆|2

θ(E − |∆|), (3.29)

where the theta function means that there are no excitations with energies less than |∆|.
Now imagine an electrode separated from a superconducting sample by a barrier which
allows electrons to tunnel between the electrode and the sample. With no applied voltage
the chemical potentials of the sample and the electrode align and there is no flow. When a
voltage is applied there is a difference eV in the two chemical potentials. The net current, I,
and differential conductance, dI/dV , should vary at T = 0 as

I(V ) ∼
∫ eV

0

n(E) dE

dI

dV
∼ n(eV ) = νF

eV√
(eV )2 − |∆|2

θ(eV − |∆|). (3.30)

The formula for I(V ) assumes that the tunneling matrix element between electronic states
in the electrode is the same for all states within a few |∆| of the chemical potentials. The
density of states in the electrode is also assumed constant (equal to its value at the chemical
potential) and that the only variable is the density of states in the superconductor. One
would expect corrections to this formula to describe details of the system but the result 3.30
is remarkably good.
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Non-zero Temperature
Many properties of the superconducting state can be computed using the Bogoliubov
approach. To describe non-zero temperature we use the Fermi-Dirac distribution (note that√
ξ2 + |∆|2 is always positive), 〈γ̂†k,τ γ̂k,τ 〉 = 1/e(Ek−µ)/kT ) + 1), in 3.24. The corresponding

result to 3.25 is

1 =
UνF
2

∫ h̄ωD

−h̄ωD

dξ
tanh(

√
ξ2 + |∆|2/2kT )√
ξ2 + |∆|2

. (3.31)

The self-consistent solution can be found numerically but, in the limit UνF � 1, it is
possible to find analytically the maximum temperature Tc at which the superconducting
state can exist:

2∆0

kTc
= 2πe−γ = 3.52775398 . . . , (3.32)

where γ = 0.5772 . . . is Euler’s constant. This BCS prediction was quickly confirmed using
optical experiments to measure the zero-temperature gap, ∆0.

Supercurrents
How does the BCS theory describe the response to em fields? The answer to this is more
involved than one might expect. It requires inclusion of the coupling between the electrons
and the magnetic vector potential, as should seem normal if you have studied the
phenomenology of superconductivity and the London equations (these are mentioned in
Condensed Matter Physics II). However, a rough idea of how the BCS state might carry a
supercurrent runs as follows (this argument is usually attributed to Landau). We imagine
shifting the Fermi volume an amount K so that the system has a net momentum. (We
might imagine switching on an electric field to set the current up and then switching it off
leaving a non-zero supercurrent.) If we assume that the self-consistent equations of the
spectrum go through as before, the system will not be able to create an excitation in the
condensate unless ξK ≥ |∆|. Then a particle or hole can be scattered across the Fermi
surface with zero energy needed.

3.6 Questions

We should ask whether the theory is a good one. Actually we know it is, because it explains
and predicts accurately much of what can be measured. Instead we should ask why this
mean field theory (MFT) works so well. We should look at the typical contributions of the
terms neglected in the MFT and compare these with the effects of the terms we have kept
(see section 3.3). The “missing” contributions are of the type (angled brackets denote
expectation values computed in the mean-field state)

< (ĉ†k,↑ĉ
†
−k,↓ − bk)(ĉ−k′,↓ĉk′,↑ − b∗k′) >≡< δ(ĉ†k,↑ĉ

†
−k,↓)δ(ĉ−k′,↓ĉk′,↑) > . (3.33)

These terms characterise the effect of fluctuations about the mean field values bk, which is
the reason for the symbol δ. (Normally the treatment of this problem is covered in books on
second order phase transitions and critical phenomena. We will only summarise it here.)

The free energy owing to these fluctuations computed from the MFT, δFflucns, needs to be
compared with the computed free energy differences between the two phases δFeqm. These

https://warwick.ac.uk/px446
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can be estimated to scale as

δFflucns ∼ U
1

R2ξ(T )
and δFeqm ∼ Ut. (3.34)

Here t = |T − TC |/Tc, R is the range of the interaction in real space and ξ is the correlation
length for fluctuations where both R and ξ are in units of a microscopic length (usually the
lattice parameter). If the interaction in Fourier space is restricted to energies within
h̄ωD = h̄vF∆k of the Fermi energy, this corresponds to a range of interaction
R ∼ 1/∆k ∼ vF/ωD. At a second order transition, the correlation length for fluctuations
diverges as Rt−1/2. This is because the regions of the phase from the other side of the
transition are larger the closer the system is to the transition and become infinite at the
transition. The square root dependence is the mean field result.

The MFT should be good if, using t = (R/ξ2),

|δFflucns| � δFeqm ⇒ ξ � R4. (3.35)

The range of the interaction R is so large in superconductors that ξ has to become almost
macroscopically large for the condition not to hold. The BCS theory is essentially always
correct. If you want to know more on this, search for Ginzburg criterion. It is covered in
Appendix II in “Fundamentals of the the Theory of Metals” by Abrikosov. A good source for
the validity of MFT is Chapter 2 in“Scaling and Renormalization in Statistical Physics” by
John Cardy.

There are many aspects not covered here—in fact almost everything! In particular, there is
the origin of the attractive interaction. This is discussed in Appendix C. Even if there were a
possible attractive interaction due to the exchange of phonons, how can it be strong enough
to overcome the repulsive Coulomb interaction which is the strongest interaction in metals?
Here, it is important to understand that the Coulomb interaction is screened by the other
electrons and that the interaction induced by the exchange of phonons is retarded. Screening
means that the Coulomb potential due to one electron attracts a cloud of positive charge
(missing electrons) thereby reducing its effect on other electrons. Retarded means that the
interaction is effectively delayed in time. The positively charged ions are perturbed by an
electron. The phonon response occurs on a time-scale of tph ∼ 1/ωD. Another electron is
attracted to this distortion while the original electron has “moved on”. The two electrons
end up being bound together but they are never too close to be forced away by the strong
Coulomb repulsion.

https://www.cambridge.org/core/books/scaling-and-renormalization-in-statistical-physics/924C0B0D39123F681CF3353C42E5E836


Chapter 4

Interacting Spins

In this chapter, we will look at a system of spins on a lattice with nearest neighbour
interactions. We will see that long-range order of any type is not possible in 1D at non-zero
temperature. However, it is interesting to see why and how the field theoretic approach
helps to see this.

For more on this topic, see John Chalker.

We denote the spin operator in terms of its components Ŝ = (Ŝ1, Ŝ2, Ŝ3). The algebra of
these components is (assuming Einstein’s summation convention)

[Ŝi, Ŝj] = ih̄ εijkŜ
k, where εijk =


1 for even permutation

−1 for odd permutation
0 otherwise

(4.1)

This is neither that of fermions nor of bosons. However, in a case where the spin is aligned
with a given direction in the ground state, we can approximate these commutation relations
by bosonic ones. In the spirit of mean field theory (see 3.3), we replace the right hand side
by its expectation value in the ground state.

In the case of alignment of spins on neighbouring sites (ferromagnetic case), the resulting
Hamiltonian can be solved by a Fourier decomposition as it was for excitations of ions on a
lattice (phonons). In the antiferromagnetic case, where the exchange interaction favours
anti-alignment of spins on neighbouring sites, the approximate Hamiltonian is similar to the
BCS Hamiltonian. It can be solved the same way, by using a Bogoliubov transformation, but
there is one crucial difference. The transformation that diagonalises the Hamiltonian needs
to preserve bosonic commutation relations and not fermionic anti-commutation relations. In
both cases, ferromagnetic and antiferromagnetic, the excitations of the system are called
magnons.

The Heisenberg Hamiltonian, the microscopic origins of which are discussed in Appendix D,
is

Ĥ =
J

2

N∑
<r,r′>

Ŝr · Ŝr′ =
J

2

N∑
<r,r′>

(
Ŝ+
r Ŝ

−
r′ + Ŝ−

r Ŝ
+
r′

2
+ Ŝz

rŜ
z
r′

)
. (4.2)

Here the angular brackets indicate that only neighbouring sites should be summed over and
the factor of 1/2 is there because each term appears twice in the sum. After identifying a

32

https://www-thphys.physics.ox.ac.uk/people/JohnChalker/qtcm/lecture-notes.pdf


CHAPTER 4. INTERACTING SPINS 33

z-direction, the Hamiltonian can also be written in terms of the spin raising and lowering
operators. These raise and lower the projection of the angular momentum on the
z−direction:

Ŝ±
r =

(
Ŝx
r ± iŜy

r

)
, [Ŝ+

r , Ŝ
−
r ] = 2Ŝz

r. (4.3)

We are using the convention that the spin operators measure spin angular momentum in
units of h̄. We will take the spin quantum number to be S, ie S2

r = S(S + 1).

If the right hand side of the equation involving the commutator in 4.3 were a number, we
could scale the raising and lowering operators so that the commutator looked like that for
creation and annihilation operators for bosons 1.14. Our approximate treatment will replace
this operator on the rhs by its expectation value. The approximation does not always work.
Understanding why it sometimes works and sometimes does not work are interesting
questions.

Ferromagnetic Case
If the exchange integral J = −|J | < 0, the spins will be predominantly aligned at low
temperatures. The lowest energy state has all the spins aligned along one direction, which
we will call the z−direction. We will call this state |0〉F . We will assume that the number of
nearest neighbours of each site, z, is even and the same for all sites. This would be the case
for a simple cubic lattice in 3D or a square lattice in 2D.

We can see that the state with all spins aligned is an eigenstate by acting on the state with
the Hamiltonian. The operators of the type Ŝ+

r Ŝ
−
r′ simply annihilate the state. This is

because the raising operator (in this case acting on site r) annihilates the state as the spin
already has maximum projection Sz = S. The operator Ŝz

rŜ
z
r′ acting on the state gives the

value S2 (as these spins are aligned with the z−direction Sz = S). Summing over all nearest
neighbour pairs and multiplying by −|J |/2 gives an energy per site of E0 = −z|J |S2/2.

The band of single spin-flip states can also be found exactly for the ferromagnetic case. For
the state

|r〉 = Ŝ−
r |0〉F , (4.4)

we find
(Ĥ −NE0) |r〉 = −|J |S

2

∑
<r′>

|r′〉+ z|J |S |r〉. (4.5)

The operator (Ĥ −NE0) will have eigenvalues which are the excitation energies. The sum
over < r′ > is taken only over the z nearest neighbours of the site r. The factor of S in the
first term follows from the result Ŝ−|Sz〉 =

√
S(S + 1)− Sz(Sz − 1)|Sz − 1〉.

We will not go through the derivation in detail as the method is essentially the same as in
the approximate treatment of the antiferromagnetic case we look at below. We form a
Fourier decomposition of the states:

|r〉 = 1√
N

∑
q

eiq.r|q〉, and |q〉 = 1√
N

∑
r

e−iq.r|r〉, (4.6)

where N is the number of lattice points in the system and the wavevectors q are those
satisfying the usually assumed periodic boundary conditions eiq.R = 1. The sum over
wavevectors is restricted to those in the first Brillouin zone. Here R is a vector which maps
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equivalent points on opposite faces of the system. In crystals with a simple cubic symmetry,
z = 6 and R = (Nxa,Nya,Nza), where a is the unit cell length and N = NxNyNz.

If we act on the state |q〉 with the Hamiltonian we find that it is an eigenstate. In the case
of a cubic system

Ĥ|q〉 = +
z

2
|J |S|q〉 − |J |S (cos qxa+ cos qyb+ cos qzc) |q〉

= |J |S
(z
2
− cos qxa− cos qya− cos qza

)
|q〉 ≡ ε(q)|q〉. (4.7)

These excitations are called spin waves or magnons. They are magnetic analogs of the
lattice oscillation modes called phonons. One difference is that the dispersion of these
modes, limq→0 ε(q) → |J |S(q2x + q2y + q2z)a

2/2 = |J |Sq2a2/2. This is quadratic in q. For the
phonon case the sound waves had a linear dispersion, ωq = v|q| with v the speed of sound
see paragraph around A.5.

It is not possible to go much further with exact eigenstates. If we try looking for states with
two or more spin flips the calculation is complicated by the fact that there is an effective
short range interaction between spin flips. This arises because the right hand side of 4.1 is
an operator and not a number. The operators generating and annihilating the spin flips, the
spin raising and lower operators, are not bosonic. The one magnon calculation does not
work for the antiferromagnetic case either.

4.1 Holstein-Primakoff bosons

The approximation, which we will look at now, constructs a bosonic representation of the
creation and annihilation of spin waves. We assume that the spin at a given site is aligned in
the ground state with a given direction which we will call z. (This may not be the same
direction on each site.) We then replace the operators on the right hand sides of the
commutator in 4.3 with a number Ŝz

r → S and write [Ŝ+
r , Ŝ

−
r ] = 2S. After rescaling the

operators as follows

âr =
1√
2S
Ŝ+
r and â†r =

1√
2S
Ŝ−
r , we have

Ŝz
r = S − â†râr and [âr, â

†
r] = 1. (4.8)

The operators âr and â†r describe bosons. Eq. 4.8 indicates that the spin lowering operator
creates a bosonic excitation. The boson is spin zero as there is no additional spin degree of
freedom associated with the spin flip. However, the total spin of the system has been
changed by 1 as the operator âr ∼ Ŝ+

r . This turns out to be all we need to find an
approximate excitation spectrum.

Before proceeding there are few words of warning. We have assumed that the spin at a given
site is aligned along some direction in the ground state. This is a classical idea of a spin.
Spins can be in linear combinations with spins at other sites for which this is not the case.
The example of the two-site spin 1/2 system, mentioned in Appendix D, shows this. The
ground state of this system is the spin singlet introduced in D.2:

|s12〉 =
1√
2
(| ↑1↓2〉 − | ↓1↑2〉) .
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Here < Sz
i >= 0 for both spins. There is no particular direction along which the spin is

aligned and the use of the approximation 4.8 could not be made to work.

We should also worry that, for bosons, there is nothing to stop the application of the particle
creation operator arbitrarily many times. We know that, if the total spin angular momentum
on a site is S, and the spin is initially aligned with a direction (let’s say the z-direction), we
can only apply the spin lowering operator 2S times as there are only (2S + 1) different
states for a spin with Ŝ.Ŝ = S(S + 1). This particular problem can be solved by introducing
a non-linear version of 4.8:

Ŝ+
r = (2S)1/2

(
1− â†râr

2S

)1/2

âr and Ŝ−
r = (2S)1/2

(
1− â†râr

2S

)1/2

â†r. (4.9)

We see that the mapping in 4.8 is obtained if we expand the factors,
(
1− â†râr/2S

)1/2, in
powers of the operator, â†râr, and keep only the constant term. The transformation in 4.9
was proposed by Holstein and Primakoff.

Antiferromagnetic Case
When the exchange integral J = |J |, the lowest energy states will have spins on
neighbouring sites anti-aligned. We will consider only a bipartite lattice. This is one which
can be split into two sublattices, A and B, and all nearest neighbours of any site are on the
opposite sublattice. A body centred cubic lattice would be an example.

For the bipartite lattice, the classical antiferromagnetic ground state has all spins as vectors
pointing in one direction on sub-lattice A and pointing in the opposite direction on sublattice
B. In this state all pairs of spins on nearest neighbour sites are anti-aligned. We will denote
this state by |0〉AF . It is also often called the Néel state.

To use the mapping as given in 4.8, we can rotate the axes by 180◦ about the y−axis on
every site on the B lattice1:

Sz → −Sz, Sx → −Sx and Sy → Sy

S+ → −S− S− → −S+ (4.10)

The magnetic unit cell is now twice as large and contains one site on the A sublattice and
one on the B sublattice. As we are treating the sites on the A and B sublattices differently,
we will denote the boson operators on the respective sublattices by âr and b̂r. Every link
between neighbouring sites involves a spin on the A and a spin on the B sublattice.

We will go through the 1D case. It brings out the structure of the calculation nicely. (A 3D
case is described in the box below.) The bosonic operators give rise to a change in the
projection from Sz = ±1 on the A (Sz = +1) or (Sz = −1) on the B sub-lattice (we will
take the even/odd numbered sites to be on the A/B sublattices). The Hamiltonian for this

1We need to rotate the axes in order to preserve the commutation relations. Flipping the direction of z
would not do this.
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1D case is

Ĥ =
J

2

N∑
<i,j>

Ŝi · Ŝj =
J

2

N∑
<i,j>

(
Ŝ+
i Ŝ

−
j + Ŝ−

i Ŝ
+
j

2
+ Ŝz

i Ŝ
z
j

)

= −J
2

N∑
<i,j>

S2 +
JS

2

N∑
<i,j>

(
â†i âi + b̂†j b̂j + âib̂j + b̂†j â

†
i

)
(
Ĥ −NE0

)
=
JS

2

N∑
<i,j>

(
â†i âi + b̂†j b̂j + âib̂j + b̂†j â

†
i

)
. (4.11)

Here the sum over j is over the sites j = i± 1. The energy per site in the presumed ground
state E0 = −JS2. Now consider the Fourier representations

âl =
1√
N/2

N/2∑
q

âqe
iql and b̂l′ =

1√
N/2

N/2∑
q

b̂qe
iql′ . (4.12)

Inserting these representations into 4.11 gives(
Ĥ −NE0

)
= JS

∑
q

(
â†qâq + b̂†−q b̂−q + γ(q)

(
âq b̂−q + b̂†−qâ

†
q

))
=
JS

2

∑
q

Ĥq

Ĥq =
(
â†q, b̂−q, b̂

†
−q, âq

)
1 γ(q) 0 0

γ(q) 1 0 0

0 0 1 γ(q)

0 0 γ(q) 1




âq

b̂†−q

b̂−q

â†q

− 1 (4.13)

Here γ(q) = cos qa and a is the nearest neighbour distance. The constant comes from
commuting operators.

The form of 4.13 is the bosonic equivalent of 3.18. We might expect to be able to
diagonalise the Hamiltonian with a Bogoliubov transformation, which will mix creation and
annihilation operators (we did this in the case of the BCS Hamiltonian). In this case, any
such transformation should conserve the bosonic commutation relations. We can try (acting
on one of the 2× 2 sub-matrices for simplicity)(

α̂q

β̂†
q

)
= U

(
âq

b̂†−q

)
≡

(
uq vq

vq uq

)(
âq

b̂†−q

)
(

âq

b̂†−q

)
= U †

(
α̂q

β̂†
q

)
≡

(
uq vq

vq uq

)(
α̂q

β̂†
q

)
. (4.14)

We have assumed here that the transformation matrix is real (this is fine for bosons not
carrying any charge). The commutation relations need

1 = [α̂q, α̂
†
q] = u2q − v2q

which can be satisfied if we set uq = cosh θq and vq = sinh θq.
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With transformation 4.14 we find

Ĥq =
(
α̂†
q, β̂q

)( uq vq

vq uq

)(
1 γ(q)

γ(q) 1

)(
uq vq

vq uq

)(
α̂q

β̂†
q

)
,

the matrix is diagonalised if (u2q + v2q )γ(q) + 2uv = γq cosh 2θq + sinh 2θq = 0. This is
satisfied if we choose

tanh 2θq = −γ(q), cosh 2θq =
1√

1− γ(q)2
sinh 2θq =

−γ(q)√
1− γ(q)2

. (4.15)

This gives

Ĥq =
(
α̂†
q, β̂q

)( u2q + v2q + 2uqvqγ(q) 0

0 u2q + v2q + 2uqvqγ(q)

)(
α̂q

β̂†
q

)

=
(
α̂†
q, β̂q

)( ε(q) 0

0 ε(q)

)(
α̂q

β̂†
q

)
, where ε(q) =

√
1− γ(q)2. (4.16)

The quantities JSε(q) are the energies of free bosonic excitations. These are spin wave
excitations with dispersion given by ε(q). In the limit q → 0, the spectrum is linear in q with
energies varying as JSqa. This is in contrast with the ferromagnetic case where the
dispersion for low energy excitations varied quadratically with q.

The result 4.16 extends to bipartite lattices in arbitrary dimensions. The box below treats
the case for the BCC lattice in 3D. The scale JS changes to JSz/2 where z is the number
of nearest neighbours of each site there are on the lattice, and γ(q) becomes γ(q) but still
with −1 ≤ γ(q) ≤ 1. The form of the dispersion term, γ(q), will vary according to the
particular bipartite lattice involved.

Higher Dimensions—BCC case
The Hamiltonian written in terms of the Holstein-Primakoff bosons becomes in higher
dimensions

Ĥ =
J

2

N∑
<r,r′>

Ŝr · Ŝr′ =
J

2

N∑
<r,r′>

(
Ŝ+
r Ŝ

−
r′ + Ŝ−

r Ŝ
+
r′

2
+ Ŝz

rŜ
z
r′

)

= −J
2

N∑
<r,r′>

S2 +
JS

2

N∑
<r,r′>

(
â†râr + b̂†r′ b̂r′ + âr b̂r′ + b̂†r′ â

†
r′

)
(
Ĥ −NE0

)
=
JS

2

N∑
<r,r′>

(
â†râr + b̂†r′ b̂r′ + âr b̂r′ + b̂†r′ â

†
r

)
. (4.17)

The energy per site in the presumed ground state E0 = −JS2z/2 (as it was in the
ferromagnetic case). The term on the right hand side should describe the excitations.

We have assumed that the ground state has translational symmetry albeit with a unit cell
which is twice as large (every other site on the bipartite lattice is equivalent). We should
therefore expect that a Fourier decomposition should simplify things. The two Fourier



CHAPTER 4. INTERACTING SPINS 38

expansions are

âr =
1√
N ′

N ′∑
q

âqe
iq·r and b̂r′ =

1√
N ′

N ′∑
q

b̂qe
iq·r′

. (4.18)

The allowed values of q are those satisfying eiq·R
′
= 1. Here R′ is the vector mapping

equivalent points on opposite faces as before. There are N ’ independent wavevectors
satisfying this condition. As the smallest magnetic unit cell is larger than the smallest
crystallographic one N ′ 6= N . In crystals with BCC symmetry R′ = (aN ′

x, aN
′
y, aN

′
z)

and N ′ = N ′
x, N

′
y, N

′
z and N ′ = N ′

xN
′
yN

′
z. Here a is the length of the unit cell. The BCC

unit cell is usually taken am the unit cell used to describe the crystal structure. It has
two ions in the unit cell, one at (0, 0, 0) and one at (a/2, a/2, a/2). Even though these two
ions are equivalent in the crystal, this unit cell is usually preferred to the smaller unit cell
primitive unit cell. However the BCC unit cell is the primitive unit cell of the magnetic
structure.

If we insert the representations in 4.18 into 4.17 we find(
Ĥ −NE0

)
= JS

z

2

∑
q

(
â†qâq + b̂†q b̂q + γ(q)

(
âq b̂−q + b̂†−qâ

†
q

))
, where

γ(q) =
1

z

∑
x

cos q · x. (4.19)

The sum over nearest neighbour links, x. In the BCC lattice there are 8 nearest neighbour
bonds, (±a/2,±a/2,±a/2). This means Notice that −1 ≤ γ(q) ≤ 1, with

(q) =
2

z

∑
α=±1

∑
β=±1

(
cos

(
(qx + αqy + βqz)a

2

))
lim q→0
≈ 1− 1

z
q2a2. (4.20)

This result of a quadratic dependence on q is common for antiferromagnetically ordered
states on a bipartite lattice.

Predictions of the HP treatment
We can ask a little more about what the Holstein-Primakoff (HP) treatment predicts. We
will see that it implies that the ground state is not antiferromagnetically ordered (even at
zero temperature) in 1D but can be in higher dimensions. We will also see that there can
never be true long range order at non-zero temperature in any 1D system.

First, let’s look at the ground-state of the AF problem predicted by HP. It cannot be the
classical Néel state as this is not annihilated by α̂q, which is a linear superposition of
creation and annihilation operators. If this acted on the Néel state, the state with all spins
aligned with the alternating directions we have called z, the state will not be annihilated.
We have that

α̂q|gs〉 = 0 ∀ q, while α̂q|0〉 =
(
uqâq + vq b̂

†
q

)
|0〉 = vq b̂

†
q|0〉 6= 0. (4.21)
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While it is possible to construct the ground state explicitly, we can study one interesting
aspect of the new ground state quite easily as follows. We can estimate the reduction in the
expected value of the spin on a given site. We would call this the result of quantum
fluctuations. We can calculate the average reduction of the spin from its maximum value
Sz = S on the A sites (the calculation on the B sites is similar)

< ∆Sz > = − 2

N

∑
q

< gs|â†qâq|gs >

= − 2

N

∑
q

< gs|u2qα̂†
qα̂q + uqvqα̂qβ̂q + uqvqα̂

†
qβ̂

†
q + v2q β̂qβ̂

†
q |gs >

= − 2

N

∑
q

v2q =
1

N

∑
q

1√
1− γ(q)2

− 1. (4.22)

In the limit γ → 0, 1− γ(q)2 = (qa)2, which means the denominator vanishes as 1/q. This
also applies in higher dimensions (the prefactors may vary but the denominator always varies
as 1/q for bipartite lattices in arbitrary dimension).

If the denominator vanishes as q → 0, the sum may not be bounded. If so, the ordering
must have been destroyed. Long-range ordering is only possible in dimensions less than 2. If
the system is large, we can replace the sum by an integral over q. This gives in a system
with dimension d, which has a density of states in q varying as qd−1,

< ∆Sz >= − 1

N

∑
q

1√
1− γ(q)2

− 1 ∼ −
∫

BZ
dq qd−1 1

q
. (4.23)

Here the integral over q is restricted to the values of q inside the first Brillouin Zone (BZ).
For d = 1, the integral is unbounded. This implies that the spin cannot be assumed to align
with any particular direction on any site. In two or higher dimensions it can be, and ordered
antiferromagnets are found.

4.2 Dimensionality

The dimensionality of a system is important in determining whether there is the possibility of
long-range order. In fact, one can show that long-range order at non-zero temperature is
impossible in any 1D system with short-range interactions. We do not need to know the
explicit form of the interaction.

A argument, attributed usually to Landau, goes as follows. Suppose long-range order exists
in some system, for example the ordering of double bonds in a long molecule. Now imagine
a defect in the order in a system of length N . If we represent the order using spin variables,
the order might change from up to down:

↑↑↑↑ . . . ↑↓↓↓ . . . ↓↓

The middle of the line shows the domain wall as the system switches alignment direction.

Even if the system can relax and mix in other spin states there would always be a finite
energy associated with this defect (we have assumed that the interaction is short-range,
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which is equivalent to having a finite energy for the domain wall). We will take this energy
to be ∆E. Where this defect is in the chain, it does not affect the total energy. It can be at
any of the N sites in the chain (we would normally assume that the system has periodic
boundary conditions to ensure that all sites are equivalent). The entropy of the system
increases by kB lnN by nucleating such a defect. The change in free energy, when we add
this defect,

∆F = ∆E − T∆S = ∆E − kBT lnN.

In the thermodynamic limit N → ∞, the free energy will always be lower if we introduced a
defect breaking the long-range order. We can think of a length scale over which the order
can persist which is where ∆F ≈ 0:

l ≈ a e∆E/kbT . (4.24)

The length scale in 4.24 helps understand why quasi-1D magnetic systems (these are
systems which have much stronger interactions along chains inside a system than between
chains) can have transitions into ordered states. The order along the chain develops over a
distance, l, giving rise to blocks of aligned spins. These blocks interact with corresponding
blocks in other chains. The interactions between the chains are effectively magnified by the
factor l/a, and the system becomes 2- or 3-dimensional.

Mermin-Wagner Theorem
There is a theorem, due to Mermin and Wagner, which states that a continuous symmetry
cannot be broken at non-zero temperature in systems in 2 or fewer dimensions. An example
of this is the ferromagnetic system introduced above. The continuous symmetry is the
choice of the direction z. The total moment of the ferromagnet could point in any direction.
Yet we have chosen a particular direction and called it z. The change in the average value of
Sz as a function of temperature can be computed if we assume that the spin waves are
independent. (Actually they are not, although this would not affect the MW result.)

If the spin waves were free bosons, the occupation of the states at non-zero temperature T
would be given by the Bose-Einstein distribution. The low energy spectrum we established
was ε(q) ≈ |J |Sq2a2/2. Considering only low temperatures, this is only significant for
energies ε(q) < kBT , this means (here β = 1/kBT and take a = 1):

< ∆Sz >= − 1

N

∑
q

1

eβε(q) − 1
∼ −

∫ √
|J |S/kBT

0

dq
qd−1

βq2
. (4.25)

This integral is divergent for d ≤ 2 (which is why we have not worried too much about
where a should appear and factors of 2). The long-range magnetically ordered ferromagnetic
state is unstable at any non-zero temperature (∆Sz → −∞) as stated by the MW theorem.

For further reading, see John Chalker

https://www-thphys.physics.ox.ac.uk/people/JohnChalker/qtcm/lecture-notes.pdf


Chapter 5

Density Matrices

There are cases, other than that of particle creation and annihilation as a result of
interactions, where systems cannot be described by a wavefunction. Every system is in
contact with the rest of the Universe—even isolated atoms are an idealisation. They can
exchange energy and information, and sometimes also particles, with outside systems. This
is after all what happens in most experiments. We probe a system by perturbing it. We send
in photons from outside to sense the states of individual ions or regions of the system or we
apply electric and magnetic fields. If we didn’t do this, we wouldn’t know anything about
them!

There are many good sources for extensive treatments on this topic. I have been using Aram
Harrow and Peter Young.

An example of another system, where we do not consider the whole system, is one in contact
with a heat bath. The degrees of freedom of the heat bath are not treated explicitly but their
effect determines properties of the quantum system of interest. We were implicitly working
with this idea when we gave an expression for the heat capacity of a superconductor. We
assumed that the average occupation of each eigenstate for the free fermion excitations of
the mean-field theory was given by the Fermi-Dirac distribution, see 3.31. We said that (the
quantity we looked at was the total energy but here we will take it to be any observable Ô)

< Ô >=
1

Z

∑
i

e−βEi〈i|Ô|i〉, where Z =
∑
i

e−βEi , (5.1)

and β = 1/kT . The states |i〉 are the normalised orthonormal eigenstates of the system of
interest. We are assuming that we know these states and that they are all occupied
according to the Boltzmann distribution.

The expression 5.1 is the right answer. We can write the result 5.1 by taking the Boltzmann
factor inside and writing

< Ô > =
1

Z

∑
i

〈i|e−βĤÔ|i〉 ≡ Tr
1

Z
e−βĤÔ. (5.2)

Here Tr denotes the trace. In a finite-dimensional space this means summing the diagonal
matrix elements. We will assume that this idea generalises to an infinite-dimensional Hilbert
space (it does). The advantage of writing things this way is that the trace of a matrix is
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https://ocw.mit.edu/courses/8-06-quantum-physics-iii-spring-2016/fc8347d83390a876ee665fbbfd9b2d7f_MIT8_06S16_chap3.pdf
https://ocw.mit.edu/courses/8-06-quantum-physics-iii-spring-2016/fc8347d83390a876ee665fbbfd9b2d7f_MIT8_06S16_chap3.pdf
https://young.physics.ucsc.edu/150/density-matrix.pdf
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invariant under changes of orthonormal basis. If the states |i〉 are a complete orthonormal
set of states, the value of the trace is the same. The expression 5.2 is therefore correct
independent of whether the states |i〉 are the eigenstates of Ĥ.

Writing the expectation value using 5.2 is at the expense of introducing a new operator
which we call the density operator or density matrix. In 5.2 we have defined the density
operator for thermal equilibrium

ρ̂eq =
1

Z
e−βĤ with Z = Tr e−βĤ . (5.3)

What von Neumann and, independently, Landau showed in the 1920’s, is that quantum
theory can be reformulated in terms of a density operator.

Assume for the moment a complete orthonormal basis of states |i〉 (the non-orthogonal case
brings up some interesting aspects). In a complete orthonormal basis the “resolution of the
identity” is

1 =
∑
j

|j〉〈j|. (5.4)

This operator has the effect of multiplying by 1. Acting with this operator on a state with
expansion, |ψ〉 =

∑
i ai|i〉, we obtain

∑
j |j〉〈j|ψ〉 =

∑
ji |j〉ai δji =

∑
j |j〉 aj = |ψ〉, i.e. we

recover the original state |ψ〉. The thermal density matrix in this basis can be written
(assuming the summation convention)

ρ̂eq = |j〉〈j|e
−βĤ

Z
|i〉〈i| ≡ |j〉

(
ρ̂eq
)
ji
〈i|. (5.5)

(If the states |i〉 are the eigenstates of Ĥ, ρji = e−βEiδij/Z, and the density matrix is
diagonal.)

Generally, we would expect to write

ρ̂ = |j〉ρji〈i| and < Ô >= Tr ρ̂ Ô (5.6)

for an arbitrary observable Ô. Computing a single matrix element in the case of a
wavefunction, namely the expectation value of an operator in a particular quantum state,
has become a trace over the basis of the space. This is more general as there are cases
where the system cannot be described by a single quantum state. We have looked at the
case of thermal equilibrium but the approach applies in general.

We haven’t made anything easier. The problem has been shifted from computing a
wavefunction, which is a vector in a Hilbert space, to computing the density matrix.
However, the density matrix allows us to consider problems not described by a wavefunction.
Examples include a system in contact with a heat bath or systems that are in contact with
other systems more generally (not necessarily a heat bath). More recently, there has been an
increase in interest in open systems, for which the coupling to the outside universe should be
considered explicitly. In the field of quantum information, qubits of interest can be
subsystems of a larger system.
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5.1 Properties of the Density Matrix

First, a word about names. The density matrix is not a density and not a matrix either but
it’s the name we all use. It should not be confused with charge and number density in
systems of particles. It is an operator, which has matrix elements once a basis has been
chosen.

We will start with a case that should be familiar from studying wavefunctions. If a system
can be described by a wavefunction |ψ〉, the density matrix becomes

ρ̂ = |ψ〉〈ψ| and

< Ô > = Tr ρ̂ Ô =
∑
i

〈i|ψ〉〈ψ|Ô|i〉 = 〈ψ|Ô

(∑
i

|i〉〈i|

)
|ψ〉 = 〈ψ|Ô|ψ〉, (5.7)

where we have used the result 5.4. The density matrix gives the result we would expect for
the expectation value of some operator, namely 〈ψ|Ô|ψ〉.

For a system described by a wavefunction, the density matrix (or operator) is a projection
operator:

ρ̂2 = |ψ〉〈ψ|ψ〉〈ψ| = |ψ〉〈ψ| = ρ̂. (5.8)
Acting on an arbitrary state function, the density operator suppresses all components of the
function that are orthogonal to the state |ψ〉.

Diagonal Form and Probabilities
If we insert the identity operator for Ô in 5.6, we see that

Tr ρ̂ = 1. (5.9)

This and the density matrix for thermal equilibrium suggest that, in some basis, all density
matrices can be written

ρ̂ =
∑
i

pi|i〉〈i|, pi ≥ 0 and
∑
i

pi = 1. (5.10)

We will take this as the required property of a density matrix. This implies that the operator
must be Hermitian. (If in one basis the matrix is diagonal and the only non-zero matrix
elements are probabilities, the matrix will be Hermitian after any unitary transformation.) If
we diagonalise a density matrix the diagonal elements pi give the probability that the system
is in the state |i〉. In a non-orthogonal basis, we should be careful about what this means we
can say about the states the system occupies (see below).

In the case of a wavefunction considered in 5.7 ρ̂ is already diagonal. We take one of the
basis states, |n〉 = |ψ〉. The diagonal matrix elements (probabilities of occupation) are 1 for
i = n and zero for all i 6= n.

In the case of the equilibrium density matrix ρ̂eq is again diagonal if we choose the basis
states to be the eigenstates of Ĥ:

ρ̂ = ρ̂eq =
∑
i

|i〉e
−βEi

Z
〈i|. (5.11)
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The diagonal matrix elements equal the probabilities in thermal equilibrium.

Equation of Motion for the Density Operator
The equation of motion for the density operator in the Schrodinger picture (see section 1.2)
follows from the equation of motion for vectors |ψi〉. Write the density matrix in its diagonal
form (we will assume that Ĥ is not time-dependent), then

∂ρ̂

∂t
=

(
∂

∂t

)
pi|i〉〈i| = pi

1

ih̄

(
ih̄
∂|i〉
∂t

)
〈i| − pi|i〉

(
−ih̄∂〈i|

∂t

)
1

ih̄

= pi
1

ih̄
Ĥ|i〉〈i| − pi|i〉

(
ih̄
∂|i〉
∂t

)†
1

ih̄

=
1

ih̄

(
Ĥpi|i〉〈i| − pi|i〉〈i|Ĥ

)
=

1

ih̄
[Ĥ, ρ̂].

We have the result

ih̄
∂ρ̂

∂t
= [Ĥ, ρ̂]. (5.12)

This is called the von Neumann equation.

Added for Interest
The von Neumann equation should not be confused with the one for the time-dependence
of operators in the Heisenberg picture. We have not derived the Heisenberg operator
equation but you may have met it or you can look it up in textbooks:

ih̄
∂Ô

∂t
= [Ô, Ĥ]. (5.13)

For a time-independent Hamiltonian, in the Heisenberg picture the density operator is
actually time-independent. The case of the single-wavefunction should make this clear:

ρ̂S = |ψ〉〈ψ| = e−iĤt|ψ(0)〉〈ψ(0)|e+iĤt (5.14)

If we use the relation to move this operator into the Heisenberg representation Equa-
tion 1.29, we obtain

ρ̂H = Û †(t)ρ̂SÛ(t) = |ψ(0)〉〈ψ(0)|, (5.15)

as Û(t) = e−iĤt.

Pure and Mixed States
We distinguish between pure and mixed states. After diagonalising ρ̂ in an orthonormal
basis, the diagonal matrix elements can be considered as probabilities pi. Hence
Tr ρ̂2 =

∑
i p

2
i ≤

∑
i pi = 1. Equality occurs when pi = 1 for one of the states and zero for

all others. A state occurring with probability 1 is called a pure state. This was the case
considered in 5.7. All states for which Tr ρ̂2 < 1 are called mixed states. An example of a
system in a mixed state is one described by ρ̂eq.

One mixed state that illustrates the need to be careful how we interpret the density matrix in
terms of probabilities is the following. Suppose that a two-state spin system with basis |↑〉
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and |↓〉 is in state |↑〉 with probability 2/3 and in state |↓〉 with probability 1/3. The density
operator and density matrix are

ρ̂ =
2

3
|↑〉〈↑ |+ 1

3
|↓〉〈↓ |, ρij =

(
2
3

0

0 1
3

)
. (5.16)

Now consider the same system occupying

|ψ1〉 =
√

2

3
|↑〉+

√
1

3
|↓〉, with probability p1 =

1

2
,

|ψ2〉 =
√

2

3
|↑〉 −

√
1

3
|↓〉, with probability p2 =

1

2
. (5.17)

The density operator is

ρ̂ =
1

2
(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|) giving

ρij =
1

2

(
2
3

√
2
3√

2
3

1
3

)
+

1

2

(
2
3

−
√
2
3

−
√
2
3

1
3

)
=

(
2
3

0

0 1
3

)
. (5.18)

The system has the same density matrix for the two cases. The probabilities for the
occupation of states are not uniquely determined by the density matrix. This should not be
surprising. When a system is in a pure state |ψ〉, the system is completely defined and
nothing is not known (that can be known) about the system. Once it is in a mixed state,
the density matrix defines all that can be known and gives correctly the expectation values
for measurements but there is not enough information to reconstruct a wavefunction for the
system.

5.2 Sub-systems and Entanglement

Sometimes we may be interested in only part of a system and want to treat the rest of the
system as its surroundings, in order to understand more about the full system. We might be
able to compute the properties of a sub-system with its small number of degrees of freedom
and treat its interactions with the rest of the field within some mean field theory. We would
then insist that the mean field density matrix computed from the system matched its
equivalent assumed for the whole system. Another example might be a case where we can
measure the properties of a sub-part of the system directly. We should be able to define a
density matrix only for the states that are in scope for the measurement. This indeed turns
out to be the case and is what we consider here. We will look at a two-site system with the
states of one of the sites being the sub-system.

A simple two-site system involving a S = 1/2 spin on each site has four linearly independent
states. One choice of orthonormal basis is

|σ τ〉 = |↑↑〉, |↑↓〉, |↓↑〉, or |↓↓〉. (5.19)

Technically |σ τ〉 = |σ〉1 ⊗ |τ〉2 where ⊗ denotes what is called a tensor product. We have
added the subscripts to emphasise that we are using σ to denote the spin variable on site 1
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and τ to denote the spin variable on site 2. The idea of the tensor product (there is also the
idea of the direct sum) is to extend the idea of multiplication (and addition) from numbers to
vector spaces and to structures in abstract algebra in general. Mathematically the thinking
behind these ideas emphasises the abstract nature of the relations and their universality. See
here if you are interested in this, but be warned this is mathematics explained by a
mathematician (at the board of course). In physics, we tend to be less interested in
abstraction and more interested in particular systems and computing their properties.
Normally we would start by choosing a basis for our sums that makes the calculations as
easy as possible. This is explained here by a physicist (writing on a computer).

We will imagine combining the two simplest systems possible each of which can be in either
of their two states. Both system 1 and system 2 have dimension 2 (states up and down) and
the tensor product space has dimension 2× 2 = 4 (there are four combinations of the states
on site 1 and those on site 2). We take the states, |σ τ〉 = |σ〉1 ⊗ |τ〉2, as the basis states
for our spin system. This notation means spin 1 is in state |σ〉1 while spin 2 is in state |τ〉2.
This is the only case we will look at. Spin systems are relatively simple and the tensor
product nature of the states does not need much attention as there is no issue with
permutation symmetries, because the individual spins are on different identifiable sites. To
start with we will write the state |σ〉1 ⊗ |τ〉2 = |σ〉1|τ〉2.

If we were to measure an observable on lattice site 1, Ô1, its expected value would be

< Ô1 > = Tr ρ̂ Ô1 =
∑
σ

∑
τ

2〈τ |1〈σ|ρ̂ Ô1|σ〉1|τ〉2

=
∑
σ

1〈σ|

(∑
τ

2〈τ |ρ̂|τ〉2

)
Ô1|σ〉1 ≡

∑
σ

1〈σ|ρ̂1Ô1|σ〉1

= Tr ρ̂1Ô1. (5.20)

We have used the fact that the operator, Ô1, does not act on the spin on site 2.

The quantity in parentheses in the middle line of 5.20(∑
τ

2〈τ |ρ̂|τ〉2

)
= Tr′ ρ̂ ≡ ρ̂1 (5.21)

is the partial trace (denoted by the prime) of the full density matrix over the degrees of
freedom on site 2. It leaves the density matrix for the remaining sub-system, namely the spin
on site 1.

In the case of a spin sub-system the algebra is simple, but the idea can be applied to
quantum systems in general. If we are concerned with degrees of freedom in a sub-system
(i.e. we are only going to measure quantities determined by the degrees of freedom in the
sub-system), we imagine tracing over all other degrees of freedom to find the density matrix
for the sub-system of interest. This is how von Neumann and Landau solved the conceptual
problem of how to think about the properties of a system which is part of a larger system.

From now on, we will simplify the notation and write

|σ〉1|τ〉2 = |σ1〉|τ2〉 or often just |σ τ〉.

https://www.youtube.com/watch?v=KnSZBjnd_74
https://www.youtube.com/watch?v=kz3206S2B6Q
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Hopefully it will always be clear which sites the respective spin variables relate to.

Entanglement
When looking at a sub-system, one can ask how “entangled” with the rest of the larger
system it is. The idea of entanglement also goes back to the early days of quantum theory.
The example of the two-spin system is enough to illustrate the concept. We will look at two
cases for which the density matrix for the full system is that of a pure state. The first is

|ψ〉 = |↑1〉|↓2〉 for which ρ̂ = |↑1〉|↓2〉〈↓2 |〈↑1 |

ρ̂1 =
∑
σ2

〈σ2| |↑1〉|↓2〉〈↓2 |〈↑1 | |σ2〉 = |↑1〉〈↑1 |. (5.22)

(The inner products are between bras and kets on the same site, for example
〈σ2| ↓2〉 = δσ2↓2 .)

The other pure state of the full system we will look at is |ψ〉 where:

|ψ〉 = 1√
2
(|↑1〉|↓2〉 − |↓1〉|↑2〉) for which

ρ̂ = |ψ〉〈ψ| = 1

2
(|↑1〉|↓2〉〈↓2 |〈↑1 | − |↓1〉|↑2〉〈↓2 |〈↑1 |

−|↑1〉|↓2〉〈↑2 |〈↓1 |+ |↓1〉|↑2〉〈↑2 |〈↓1 |) ,

ρ̂1 = Tr′ ρ̂ =
1

2
|↑1〉〈↑1 |+

1

2
|↓1〉〈↓1 |. (5.23)

The two cases are different. The density matrix for site 1 in 5.22 is that of a pure state, as
ρ̂1 has one eigenvalue equal to 1 (the other is zero). The case 5.23 is that of a mixed state.
In the first case the full system is in what is called a product state of the spins on the two
sites. The state of the spin on site 1 is independent or unentangled with that on site 2.

All states of the full system that are not product states are said to be entangled states. This
means that the density matrix for the sub-system is that of a mixed state. If the subsystem
has N states, the state is said to be maximally entangled (with the part of the system that
has been traced over) if pi = 1/N . In the example, the spin on site 1 has N = 2 and is
maximally entangled with the spin on site 2. A simple test for whether a sub-system is
entangled with the rest of the system is to check whether the square of the density matrix
for the sub-system, ρ̂2, has trace less than one. If it does, there is entanglement.

Here is another state for our two site spin system:

|ψ〉 = 1

2
(|↓↓〉+ |↓↑〉 − |↑↓〉 − |↓↓〉) , (5.24)

which can be seen by eye to be a product state:

|ψ〉 = 1√
2
(|↓1〉 − |↑1〉)

1√
2
(|↓2〉+ |↑2〉) . (5.25)

If we trace out site 2 we obtain

ρ̂1 =
1√
2
(|↓1〉 − | ↑1〉) (〈↓1 | − 〈↑1 |)

1√
2

or as a matrix

(ρ1)ij =

(
1/2 −1/2
−1/2 1/2

)
. (5.26)
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Here the basis of the states is |1〉 = | ↑〉 and |2〉 = | ↓〉. The density matrix has eigenvalues
1 and 0 and describes a pure state. As expected (given that the starting state was a product
state), there is no entanglement between the two sites.

5.3 Conclusion

The density matrix approach is used widely to handle systems in contact with the outside
world. This includes the field of quantum information, where the outside world is essential
(we live in it and want to access answers generated or stored by our quantum machines) and
a pest—all connection with the outside world leads to loss of information. Loss of
information is via the decoherence (loss of phase information) as degrees of freedom in the
outside world interact with those we want to use. We do not have control of these outside
degrees of freedom and have to treat their effect statistically. For more on quantum
computation there is the module PX447 Quantum Computation and Simulation.

Another area of interest is that of open systems, where we are interested in describing
explicitly how the dynamics of our sub-system are affected by different types of environment.

The density matrix method can also incorporate uncertainty we have as observers. An
example of this might be as follows. Suppose someone has made a measurement on a
system described by a wavefunction. According to quantum theory, after the measurement
the system should be left in a state which is an eigenfunction of the operator corresponding
to the observable. Now suppose we don’t know what the result of the measurement was,
even though we know a measurement has taken place. What is the expectation of any
measurement we might make on the system? The density matrix reverts to the states
allowed by the measurement with respective probabilities computed from the original
wavefunction.

https://courses.warwick.ac.uk/modules/2023/PX447-15


Appendix A

Continuum Limit of Lattice Oscillations

The phonon calculation looked at in Chapter 1 is a good microscopic theory of excitations of
the lattice. It might seem counter-intuitive to look at a long wavelength version of the
theory and then quantise it, but that is what we are going to do. It will illustrate the
difference between working on a lattice with a finite number (N) degrees of freedom and
working with a field defined at every point. Even on a finite interval of length L, there will
be infinitely many degrees of freedom. (Roughly speaking a finite number of degrees of
freedom is usually described as mechanics, while infinitely many degrees of freedom are
described by a field theory. The phonon model in the main text is quantum mechanical,
which we solved using a set of operators. The continuum model described here is a field
theory—there are infinitely many degrees of freedom.)

In the continuum model corresponding to the model described by the Hamiltonian 1.16, we
will use the coordinate x to denote where we are in the system and φ(x) to describe the
displacement from equilibrium of the matter at point x. The mapping from the model of the
ions to the continuum model is la→ x and xl → φ(x). In writing the elastic energy, we
approximate (xl − xl+1) ≈ −a∂φ(x)/∂x, while the elastic energy term

V =
k

2

N−1∑
l=0

(xl − xl+1)
2 ≈ k

2

N−1∑
l=0

a2
(
∂φ

∂x

∣∣∣∣
la

)2

→ ka2

2

∫ Na

x=0

d
(x
a

) (∂φ
∂x

)2

=
B

2

∫ L

0

dx

(
∂φ

∂x

)2

, (A.1)

where L = Na. The vertical bar, |la, is there to indicate that we evaluate φ at x = la.
B = ka should be thought as an elastic modulus. The single right-pointing arrow denotes
where we switch to the continuum model. The kinetic energy is 1.16

N−1∑
l=0

p2l
2m

=
N−1∑
l=0

m
ẋ2l
2

=
N−1∑
l=0

ρa
φ̇2(la)

2
→ ρa

∫ L

0

d
(x
a

) φ̇2(x)

2
= ρ

∫ L

0

dx
φ̇2(x)

2
. (A.2)

The density per unit length ρ = m/a.

We put the kinetic energy and potential energy together to form the Lagrangian T − V . As
the dependent variable, φ(x, t), depends on two independent variables x and t, we write the

49
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action in terms of the Lagrangian density L

S =

∫ L

0

dt dxL

L =
1

2

(
ρφ̇2 −B

(
∂φ

∂x

)2
)
.

(A.3)

(A.4)

Here ρ is a mass per unit length. The action is the integral over time of the Lagrangian. In
a field theory it is the integral over time and space of the Lagrangian density L. We would
normally specify the time interval and values for φ as a function of position at these times.

Extremising the action determines the classical equation of motion with the solution taking
the field from its initial profile at t0 to its final profile at tf . The Euler-Lagrange equation for
the action in A.4 is (φx = ∂φ/∂x, etc)

0 =
∂L
∂φ

− ∂x

(
∂L
∂φx

)
− ∂t

(
L
∂φt

)
= B

∂2φ

∂x2
− ρ

∂2φ

∂t2

⇒ ∂2φ

∂t2
=

1

v2
∂2φ

∂x2
, v2 =

B

ρ
. (A.5)

Eq A.5 is the usual wave equation describing sound waves, which propagate at speed
v =

√
B/ρ (dispersion relation ωq = v|q|).

The action functional is the standard starting point for quantising field theories. You might
ask why do we need to do this, given that we could deduce the momentum field by working
from the pl directly and defining a momentum density. The answer is that it is not always
the case that the momentum density is given by ρφ̇ (as it is here). Instead we need to
deduce the conjugate momentum field in the usual way from the Lagrangian. Another
reason is that, within the Lagrangian approach, time and position appear in almost the same
way. This helps to make symmetries involving time and space explicit (Lorentz invariance).

Added for Interest A reason for working with the action S (and not Hamiltonians) is
that a formulation of quantum theory, due to Feynman and others, quantises a system by
computing the action over all classical paths and summing the factors eiS/h̄, to give the
quantum amplitude for the system to propagate from the initial to final states specified
in the limits of the integrals in A.4. This is the path integral formulation of quantum
theory.

The path integral approach is often used to formulate theories. First, it has the advantage
that Lorentz invariance can be included naturally. The Hamiltonian, as the generator of
time-translations, appears to treat time differently from space. Another reason is that
many quantum field theories contain infinities associated with interactions (and imposing
Lorentz invariance) and establishing a Hamiltonian is not possible. However, at the level
of the quantum amplitudes used in the path integral formulation, it is sometimes possible
to arrive at an effective action that is free of divergences. This is called renormalisation.
The conceptual idea is that high energy excitations can be “integrated out” so that
they are no longer explicitly present. Their effect is included in amended interactions for
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the remaining degrees of freedom. The resulting effective field theory may be free of
divergences and allow the computation of quantum amplitudes for observable quantities.

The momentum density for the field φ and resulting Hamiltonian density are given by

π =
∂L
∂φ̇

= ρ, H = πφ̇− L =
π2

2ρ
+B

(
∂φ

∂x

)2

. (A.6)

The Hamiltonian is then

H =

∫ L

0

dx

(
π2

2ρ
+B

(
∂φ

∂x

)2
)
. (A.7)

If we put periodic boundary conditions onto the system, φ(0, t) = φ(L, t) and
π(0, t) = π(L, t), it is again natural to use a Fourier decomposition:

φ(x, t) =
1√
L

∞∑
n=0

φqn(t)e
iqnx + φ−qn(t)e

−iqnx,

π(x, t) =
1√
L

∞∑
n=0

πqn(t)e
iqnx + π−qn(t)e

−iqnx. (A.8)

Here qn = 2πn/L. Inserting these expansions into A.7 gives the Hamiltonian as a Fourier
series:

H =
∞∑
n=0

1

2ρ
πqnπ−qn +Bq2φqnφ−qn =

∞∑
n=0

h̄ωq

2

(
πqnπ−qn

h̄ρωqn

+
ρωqn φqnφ−qn

h̄

)
, (A.9)

where ωqn = v|qn| (see after A.5). From now on we will drop the subscript n on q and
remember that, for our periodic boundary conditions, q = 2πn/L.

Introducing scaled fields π′
q = πq/

√
h̄ρωq and φ′

q =
√
ρωq/h̄ φq, Eq A.9 is in the form of

1.18, but with an infinite sum over wavevectors q = 2πn/L. Noting that, as we know that
the field is real-valued, φ−qn(t) = φ∗

qn(t) and π−qn(t) = π∗
qn(t). This leads to the quantised

Hamiltonian for the field theory, (using 1.22 and making the substitutions: n→ q,
xl → φ(x, t), φ(x, t) → φ̂(x, t)):

φ̂(x, t) =
∑
q

√
h̄

2ρωq

â(q)ei(qx−ωqt) +

√
h̄

2ρωq

â†(q)e−i(qx−ωqt)

π̂(x, t) =
∑
q

(−i)

√
h̄

2ρωq

â(q)ei(qx−ωqt) + (−i)

√
h̄

2ρωq

â†(q)e−i(qx−ωqt). (A.10)

We have included the time-dependence with the creation and annihilation operators, see
Section 1.2. (We know that the creation and annihilation operators have the
time-dependence ∼ e±iωat - see question sheet.) Introducing the commutators for the
creation and annihilation operators (the â and â†) is equivalent to canonical quantisation
which assumes the equal time commutator [φ̂(x, t), π̂(y, t)] = δ(x− y).

The commutation relations are
[âq, â

†
q] = δq,q′ . (A.11)
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The Hamiltonian is again in the form of 1.15:

Ĥ =
∑
q

h̄ωq

(
â†qâq +

1

2

)
, (A.12)

as expected.

The field theory gives the same answer as the microscopic theory in the regime (long
wavelengths or small wavenumber) it was set up to describe. The allowed wavevectors are
the same in the microscopic theory and field theory, provided that |n| < L/2a (there is no
upper limit to |n| in the field theory, while there is in the microscopic theory). The frequency
of oscillations in the field theory is ωq = v|q|, where v =

√
B/ρ. Using the definition of B,

this means v =
√
ka/(m/a) = a

√
k/m. (B, ρ and ωq are defined in A.1, A.2 and A.7.)

The frequency of the oscillations in the microscopic theory is ωn = 2
√
k/m| sin qna/2|. In

the limit of long wavelengths, qa→ 0, ωn ≈ aqn
√
k/m→ vq which coincides with the

result from the field theory.

Why introduce a field theory, if we have a complete microscopic theory? Well, it’s a useful
model and, if we are only interested in long wavelengths, helps understand phenomena.
Classically, of course, we almost always work in the long-wavelength limit (we do not ‘see’
individual ions). This is the field of elasticity and of great importance both in mathematics
and engineering as well as physics. The long wavelength limit is completely defined by a
system’s elastic constants (B here). In 3D systems, the elastic constants are tensors and
characterise the relation between the stress and strain which are both second rank tensors.

At the quantum level, there are other considerations. Again, if we are interested only in long
wavelengths, it can help to work with models characterised by a small number of parameters
(in this case B) which we fit to experiment. It is also often easier to work with effective
theories of the continuum which can have continuous symmetries. The models can be more
general in the sense that they can be used to describe other systems than the simple
microscopic system we have derived it for.



Appendix B

Relativistic Quantum Fields—Bosons

The creation and annihilation operators generalise to the quantisation of classical fields
involving bosons. In fact, we can guess what the corresponding Hamiltonians will be for a
few systems and identify where the problems may be. Let’s have a go.

The sources I have used have been mainly Eduardo Fradkin and David Tong.

B.1 Klein-Gordon field

Once the dust settled in the development of quantum theory, it became clear that the KG
field described bosons not electrons or other fermions. We will look only at the real-valued
scalar field. The second quantised form for the Klein-Gordon equation in 3D (infinite
domain) might be expected to be

Ĥ =
1

2

∑
p

h̄ωp

(
â†pâp + âpâ

†
p

)
, (B.1)

where
h̄ωp =

√
p2c2 +m2

0c
4 and [âp, â

†
p′ ] = δp,p′ . (B.2)

We should convert the sum over momenta to an integral over momenta. This would give

Ĥ =
1

2

∫
d3p

(2π)3
h̄ωp

(
â†pâp + âpâ

†
p

)
=

∫
d3p

(2π)3
h̄ωp

(
â†pâp +

1

2
(2π)3δ(3)(0)

)
. (B.3)

Here we have assumed the commutator is

[âp, â
†
p′ ] = (2π)3δ(3)(p− p′). (B.4)

The operator, â†pâp, is now a “density in momentum” operator (integrating over momentum
gives a number).

Eqs B.3 and B.4 would be a natural generalisation of B.1 and B.2 to the case of continuous
momenta—the sum over p becomes an integral, the Kronecker delta becomes a delta
function. The relation of the fields, φ̂(x, t) and π̂(x, t), to the creation and annihilation
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http://eduardo.physics.illinois.edu/phys582/physics582.html
http://www.damtp.cam.ac.uk/user/tong/qft.html
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operators, with this normalisation for the commutation relations, is (using natural units,
h̄ = 1, c = 1)

φ̂(x, t) =

∫
d3p

(2π)3
1√
2ωp

(
âpe

i(p·x−ωpt) + â†pe
−i(p·x−ωpt)

)
and

π̂(x, t) =

∫
d3p

(2π)3
(−i)

√
ωp

2

(
âpe

i(p·x−ωpt) − â†pe
−i(p·x−ωpt)

)
. (B.5)

The ground-state of the system satisfies

âp|0〉 = 0 ∀p. (B.6)

The factors of √ωp in B.5 are factors needed to match the dimensions correctly (√ωpφ̂(x, t)
and π̂(x, t)/√ωp have the same dimensions as they should). Similar factors appeared in the
scaling from φ̂→ φ̂′ in A.10. The operators in B.5 are time-dependent and we are using the
Heisenberg representation.

This formulation is used (see eqn 2.84 here for example). However, it is not the most
commonly used definition of the KG QFT. As we discuss below, most authors prefer to
normalise the creation and annihilation operators differently, so that â†pâp is not a density
operator. This is to keep the theory explicitly Lorentz invariant. We will look at this after
discussing briefly where photons are hiding in Maxwell’s equations.

Added for Interest The real-valued KG field describes a wave system with a mass gap
equal to m0c

2. It could be used to model the propagation of a neutral spin zero boson,
like the Higgs boson or the neutral pion. The complex-valued KG field, φ(x, t) 6= φ∗(x, t),
when quantised, leads to a doublet of fields. There are two creation and two annihilation
operators. One describes negatively charged particles and the other their antiparticles
which are positively charged. The model could be used to model the propagation of the
charged pions.

B.2 Electromagnetic field

Photons as particles need to be built into electromagnetism. The Lagrangian density for EM
fields is (in the absence of sources, which means no charge or current densities)

L = −1

4
FµνF

µν , where Fµν = ∂µAν − ∂νAµ, (B.7)

and Aµ = (φ,−A) is the (covariant) four potential. The corresponding Euler-Lagrange
equations are Maxwell’s equations. We have taken c = 1. This suggests that A might
become the quantum field (corresponding to φ in the other QFTs above).

The field A has four components. Naively, we might expect four different particles. On the
other hand, we know from experiment (and from what we are told by our teachers) that
photons are spin-1 particles and that there are only two polarisations. What is going on?
First, there is no term in B.7 depending on ∂0A0 and hence no momentum corresponding to
A0. We say A0 is not a dynamical variable. This means that it is fixed by A.

https://www.damtp.cam.ac.uk/user/tong/qft/two.pdf
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Background The quantity Fµν is a tensor, whose components are the electric and mag-
netic fields:

F µν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (B.8)

The conjugate momentum to Ai is ∂L/∂Ȧi = Ei. The momentum field will be E.

We are now down to three independent components. Then we remember that the three
components of A are not wholly independent. Any gauge transformation, A → A+∇χ
where χ is an arbitrary function with well-defined gradient, leaves the physics unchanged.
Variations in A which are gauge transformation cannot describe excitations as they describe
an unaltered physical state. After imposing gauge invariance (identifying all configurations
that differ only by a change of gauge as equivalent) we can expect a reduction in the
number of degrees of freedom. It turns out that we end up with just two independent
polarisations. This still leaves us with what to do about the function χ. The usual approach
is to choose a particular gauge. Here, we will adopt the Coulomb gauge condition:

∇ ·A = 0. (B.9)

We can guess the Hamiltonian for photons: (h̄ = 1, c = 1,⇒ h̄ωp = |p| ≡ p0)

Ĥ =

∫
d3p

(2π)3

2∑
s=1

p0

(
âs †p â

s
p +

1

2
(2π)3δ(3)(0)

)
, (B.10)

with
[âsp, â

s′†
p′ ] = (2π)3δs,s

′
δ(p− p′), [âsp, â

s′

p′ ] = [âs †p , â
s′†
p′ ] = 0,

âsp|0〉 = 0, ∀p.
(B.11)
(B.12)

We say that the operators, âs †p and âsp, create and annihilate photons with polarisation s.
The vacuum (ground state) |0〉 is annihilated by all âsp. Again the “guess” B.10 is correct.
The two polarisations, s = 1, 2, can be related to the projection of the spin of the photon,
which is parallel or antiparallel to p.

Added for Interest If the photons have spin one why are there not three polarisations?
The idea, that angular momentum has (2s + 1) different projections if the spin angular
momentum quantum number is s, is associated with rotational invariance. Normally there
is rotational invariance when looked at in the rest frame of a particle, which is how spin is
defined. Photons have no rest frame. There is not complete rotational invariance, as the
direction of travel of the photon is a special direction. If gauge-invariance is lost (Higgs
mechanism), then the photon can have a mass and the third polarisation is recovered as
an excitation with non-zero mass.

We also need to know how to construct the fields corresponding to A and momentum π.
The conjugate momentum field to A is actually the electric field. We will state the results
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for completeness sake: (p0 = |p|, c = 1)

Â(x, t) =

∫
d3p

(2π)3
1√
2p0

2∑
s=1

εsp
(
âspe

i(p·x−p0t) + âs †p e−i(p·x−p0t)
)

and

Ê(x, t) =

∫
d3p

(2π)3
(−i)

√
p0
2

2∑
s=1

εsp
(
âspe

i(p·x−p0t) − âs †p e−i(p·x−p0t)
)
. (B.13)

The vectors εsp are normalised and orthogonal polarisation vectors. In the Coulomb gauge
(∇.A = 0) it is clear that these polarisation vectors are perpendicular to p as they should
be—EM waves are transverse waves.

The operators in B.13 are time-dependent. They have been written in the Heisenberg
representation.

The exact form of these equations will not be important for us here, but we should mention
the question of Lorentz invariance. Both the KG and the EM fields must describe the
physics correctly in all inertial frames. That does not mean that the form of all equations
should be explicitly Lorentz invariant—have the same form before and after a Lorentz
transformation—but the results should not depend on the choice of reference frame.

B.3 Lorentz and gauge invariance

It is usually better to work with Lorentz invariant forms. It reduces the risk of coming up
with some apparent result which is just an artefact of working in one reference frame or
another. Something similar applies in the case of gauge-invariance: the results for physical
predictions should not depend on the choice of gauge.

Here we have used a form for the integrals in for example B.3 and B.10 in which the
measure is not Lorentz invariant. An alternative is to write the integrals over the four
momentum using a delta-function to impose the correct dispersion:∫

d4p
1

(2π)4
δ(4)(p20 − ω2

p) · · · =
∫
d3p

1

(2π)3
1

2ωp

· · · . (B.14)

Remember ω2
p = |p|2 +m2

0 with m0 = 0 for the EM case. The factor 2ωp is there as the
derivative of the argument of the delta-function for p0. This measure is Lorentz invariant.
The argument of the 4D delta-function is the Lorentz invariant, p20 − p2c2 −m2

0c
4 (written in

natural units with c = 1), while the Jacobian of a Lorentz transformation is always 1.

If the operator âp is scaled, âp →
√

2ωp âp, with respect to the one introduced in B.3, the
fields φ̂ in in B.5 are given by

φ̂(x, t) =

∫
d3p

(2π)3
1

2ωp

(
ape

i(p·x−ωpt) + a†pe
−i(p·x−ωpt)

)
π̂(x, t) =

∫
d3p

(2π)3
(−i) 1

2ωp

ωp

(
ape

i(p·x−ωpt) − a†pe
−i(p·x−ωpt)

)
. (B.15)
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These expressions include the Lorentz invariant measure. The commutator involving the
scaled operators becomes

[âsp, â
s′†
p′ ] = (2π)32ωpδ

s,s′δ(p− p′). (B.16)

With the same scaling of the photon creation and annhilation operators âsp →
√
2p0 â

s
p, we

obtain the more usual representation of the quantised EM field operators:

Â(x, t) =

∫
d3p

(2π)3
1

2p0

2∑
s=1

εsp
(
âspe

i(p·x−p0t) + âs †p e−i(p·x−p0t)
)

and

Ê(x, t) =

∫
d3p

(2π)3
(−i) 1

2p0
p0

2∑
s=1

εsp
(
âspe

i(p·x−p0t) − âs †p e−i(p·x−p0t)
)
. (B.17)

With this normalisation, the commutation relation B.11 and the Hamiltonian become

[âsp, â
s′†
p′ ] = (2π)32p0 δ

s,s′δ(p− p′)

Ĥ =

∫
d3p

(2π)3
1

2p0

2∑
s=1

p0

(
âs †p â

s
p +

1

2
(2π)3δ(3)(0)

)
. (B.18)

Note the extra factor of 2p0 in the commutator, and 1/2p0 in the Hamiltonian, with respect
to B.11 and B.10. This reflects the different normalisation of the creation and annihilation
operators when working with the explicitly Lorentz invariant measure of B.14. In most
textbooks, these factors of 1/2ωp or 1/2p0 are commonly found in the measure for
formulations of relativistic QFTs. This is why they are presented here in yellow. But be
careful to check the normalisation of the creation and annihilation operators before using
any formulae.

Lorentz invariance also affects the gauge choice. In setting up B.10 we used the Coulomb
gauge. This is of course not Lorentz invariant as a Lorentz transformation mixes time and
space and the condition ∇ ·A = 0 will contain time derivatives in other inertial frames. The
theory can be set up (and often is) in the Lorenz gauge, ∂µAµ = 0, which is manifestly
gauge-invariant. In the Lorenz gauge, finding the two independent polarisations is more
complicated than in the Coulomb gauge, while the propagator for photons is easier in the
Lorentz gauge. In practice, it is more common to work in the Lorenz gauge.



Appendix C

Attractive Interaction from Phonon
Exchange

The effective interaction between electrons at the Fermi surface in a superconductor, see
3.14, was taken to be attractive. Where does this come from? Well, it was known that the
transition temperature below which a material was superconducting, Tc ∝M−1/2. Here M
was the mass of the ions in the material. This mass could only appear if the frequency of
oscillations of the ions (so-called phonons) was involved. (In 1.18 we found that ωn ∝ m−1/2

for a 1D chain of ions.) This dependence on the mass is generic for all lattice oscillations.

The following argument is based on the one in “Fundamentals of the the Theory of Metals”
by Abrikosov.

Now consider the two processes shown schematically

q

h̄ω(q)

k

k − q k′ + q

k′

particle 1 emits q phonon

−q

h̄ω(q)

k

k − q k′ + q

k′

particle 2 emits −q phonon.

In both cases, electron 1 is scattered to k− q while electron 2 is scattered to k′ + q. Energy
conservation gives ε(k) + ε(k′) = ε(k− q) + ε(k′ + q). According to second order
perturbation theory, the amplitude for the scattering processes are

1 :
|Uq|2

ε(k)− ε(k− q)− h̄ω(q)
and 2 :

|Uq|2

ε(k′)− ε(k′ + q)− h̄ω(q)
.

We are assuming that ω(q) and Uq are the same for q and −q.

The overall scattering amplitude (in second order) is the sum of these two terms. Note that
because of energy conservation ε(k)− ε(k − q) = −ε(k′) + ε(k′ + q). This gives the
scattering amplitude

− 2|Uq|2h̄ω(q)
[h̄ω(q)]2 − [ε(k)− ε(k− q)]2

. (C.1)
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Superconductivity involves the interaction between particles close to the Fermi energy, in
states k and −k. The energy difference, [ε(k)− ε(k− q)] should be small compared to
h̄ω(q) as the transition temperatures are generally much smaller than typical phonon
frequencies. The amplitude is ∼ −|Uq|2/h̄ωq in such cases. This is independent of k and is
the same scattering amplitude one would obtain for an interaction −Uδ(r − r′) with V > 0,
but remember the interaction is restricted to states close to the Fermi surface. Note that
the matrix element Uq is between normalised wavefunctions of the type, ψk = eik·r√

V
. The two

factors of 1√
V

are the origin of the factor 1/V in 3.6.

This interaction involves the exchange of phonons. As the density of states of the phonons is
highest for large q, and, as we are principally interested in phonon scattering across the
Fermi surface, we should take the typical phonon energy to be that of large q phonons which
is roughly the Debye frequency, h̄ωD.

Finally, as mentioned in the main text, we think of the interaction as retarded. It acts on a
time-scale ∆t ∼ ω−1

D , which is long on the scale of electronic interactions h̄/εF.



Appendix D

Spin Interactions

You will sometimes see Hamiltonians involving spin operators. This is particularly the case in
problems related to magnetism. The simplest of these is the nearest neighbour Heisenberg
exchange interaction for spins on a lattice

Ĥ =
J

2

N∑
<i,j>

Ŝi · Ŝj. (D.1)

Normally we will assume periodic boundary conditions ŜN+1 ≡ Ŝ1. The quantity J is called
the exchange parameter. It gives the interaction between two spins (the factor of 1/2 is
there to avoid double-counting in the sum). The brackets < . . . > (not to be confused with
〈. . .〉 used to indicate expectation values) indicate that only sites, which are nearest
neighbours on the lattice, are to be summed over. Models can also have unrestricted sums
over lattice sites with the exchange integral, Jij, dependent on position coordinates i and j.
In interacting problems, the spin operators are usually defined in units of h̄, so that the
exchange parameter is an energy. Positive values of J in D.1 lead to anti-alignment of spins
(antiferromagnetism) on neighbouring sites, 〈Ŝi · Ŝj〉 < 0, in the ground and low energy
states. The case J > 0 leads to alignment of spins (ferromagnetism).

The eigenstates of two s = 1/2 spins interacting via an exchange interaction are the singlet,
with total spin zero, |s〉, and the three states with total spin one:

|s12〉 =
1√
2
(| ↑1↓2〉 − | ↓1↑2〉)

|t12〉 =
1√
2
(| ↑1↓2〉+ | ↓1↑2〉) , |t12〉1 = | ↑1↑2〉, |t12〉−1 = | ↓1↓2〉. (D.2)

The subscript ±1 on |t12〉 denotes that the projection on the z-direction of the total spin.
The three triplet states are degenerate with energy J/4, while the singlet state has energy
−3J/4.

The idea behind D.1 is that the spin on site i interacts with the spin on site j. These need
not be single electron states nor spin-1/2 states. They could be multiple electron states with
well-defined spin. An example might be a Gd3+ ion in some crystal or ligand complex. Its
outer shell has 7 4f electrons. Hund’s rules imply that it should have total spin 7/2 (the
maximum possible) and total angular momentum zero. (If the spins are all aligned, the spin
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wavefunction is symmetric, while the occupation of the 2l + 1 = 7 orbitals must be in an
antisymmetric combination.) In fact, this large value of the total spin of (S = 7/2) with zero
angular momentum (L = 0) makes Gd well-suited for use as an MRI image contrast agent.
The large magnetic moment is preserved even when the ion is bonded to an organic ligand.

The interaction in D.1 usually has its origin in the Coulomb interaction. There are direct
magnetic interactions but these are almost always smaller than indirect interactions arising
out of the Coulomb effect. Generally, direct magnetic effects tend to be much smaller than
electric ones when particles are moving at speeds v � c.

A model showing how an exchange interaction might come about considers a lattice with
one available orbital per site. This orbital can be occupied by a spin up or spin down
electron. There are then four states to consider at site i

|0〉, |↑i〉 = ĉ†i↑|0〉, |↓i〉 = ĉ†i↓|0〉, |↑i↓i〉 = ĉ†i↑ĉ
†
i↓|0〉. (D.3)

These states can be coupled to states on a neighbouring site, i± 1. We expect the
Hamiltonian excluding any interaction effect Ĥ0 to have matrix elements

ε0 = 〈↑i |Ĥ0|↑i〉 = 〈↓i |Ĥ0|↓i〉, t = 〈↑i |Ĥ0|↑i+1〉 = 〈↑i |Ĥ0|↑i−1〉. (D.4)

The matrix element t is usually called the hopping and describes the kinetic energy of
electrons in the lattice. It can be taken to be real as here (unless there is a magnetic field
applied). In second quantised notation, the non-interacting Hamiltonian is (assuming a 1D
system for simplicity)

Ĥ0 = constant +
∑
i,σ

t ĉ†iσ ĉi+1,σ + h.c. (D.5)

Here the constant is Nε0 but it is not important and is usually dropped. The letters “h.c.”
stand for hermitian conjugate (here the hermitian conjugate term is t ĉ†i+1ĉi).

The Coulomb interaction will give rise to matrix elements between various states in the
basis. In this model, there is only one orbital per site. The largest of the interaction matrix
elements is expected to be the interaction between two electrons in the same orbital (the
fourth state in the list D.3). We will take the energy of the doubly occupied state, |↑i↓i〉, to
be 2ε0 + U . If we ignore all other interaction terms we arrive at a model Hamiltonian

Ĥ =
∑
i,σ

t
(
ĉ†iσ ĉi+1,σ + h.c.

)
+

N∑
i

Un̂i↑n̂i↓, (D.6)

where the product of the two number operators n̂↑n̂↓ is only non-zero when there are two
electrons in the orbital.

Eq D.6 is the Hubbard Hamiltonian. It has not been solved analytically for arbitrary N
except in the 1D case. Together with generalisations to include more than one orbital per
site and additional interactions, it has become a standard model for discussing interaction
effects in materials. The effects of the interactions will be more important when the orbitals
are spatially compact leading to smaller values of t and larger values of U . This is the case
in many transition metals and lanthanides. The 3d and 4f orbitals are the outer shell states
but much of their high energy (large ε0, see D.4) is associated with angular momentum
(l = 2, 3) not with the orbitals being far from the ionic nuclei.
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In the case where there is one electron per site and the interaction energy U � t, one can
expect all the sites to be occupied by 1 electron and no sites to be doubly occupied.
Characterising the state of such a system reduces to specifying the spin degrees of freedom.
Provided U <∞, the possibility of doubly occupied sites has an effect on the orientation of
the spins. Imagine adjacent sites (again think of 1D for simplicity) i and i+ 1, and consider
the cases where the two spins are aligned and where they are anti-aligned. The effect of the
hopping term is different in the two cases:∑

σ

ĉ†i,σ ĉi+1,σ| ↑i↑i+1〉 = 0, while
∑
σ

ĉ†i,σ ĉi+1,σ| ↑i↓i+1〉 = | ↑i↓i〉. (D.7)

In the non-aligned case the down spin electron hops from site i+ 1 to site i.

We can find an effective spin Hamiltonian using second order perturbation theory. It is
easiest to work with the singlet and triplet combinations, see D.2, and act on these with the
Hamiltonian. You can check the singlet or triplet nature by action on the states with the
spin raising operator, Ŝ+ = Ŝ+

i + Ŝ+
i+1. This annihilates the singlet state, |s12〉, and creates

the Sz = 1 state when acting on the triplet state, |t12〉. These states are given in D.2 .

Acting with the hopping terms connecting sites i and i+ 1 on the two states |s〉 and |t〉
gives:(

t
∑
σ

ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ

)
|ti,i+1〉 = 0(

t
∑
σ

ĉ†i,σ ĉi+1,σ + ĉ†i+1,σ ĉi,σ

)
|si,i+1〉 = t

√
2 (| ↑i↓i〉+ | ↑i+1↓i+1〉) ≡ 2t |di,i+1〉 (D.8)

(The state |di,i+1〉 denotes the normalised linear combination of the doubly occupied sites i
and i+ 1.) When operating with the fermionic creation and annihilation operators it is
important to keep track of all anticommutations. The hopping term will take the state,
|↓i↑i+1〉 to | ↓i+1↑i+1〉 = −|↑i+1↓i+1〉. This is why the triplet state is annihilated by the
hopping. We should have expected this as the Hamiltonian is invariant under rotations in
the spin space, and the effect on the Sz = 0 state in the triplet subspace must be the same
as on the Sz = ±1 states.

The energy of the state on the right hand side of D.8 is 2ε0 + U , which is U larger than the
initial state with two singly occupied sites. We can use second order perturbation theory to
compute the energies of the two states, |si,i+1〉 and |ti,i+1〉. We are treating the interaction
energy as the unperturbed part of the Hamiltonian and the hopping as the perturbation.
This gives the energies

E(2)
s = −|〈s|Ĥ0|d〉|2

Ed − Es

= −4
t2

U
, E

(2)
t = 0. (D.9)

At the level of second order perturbation theory, the energy of the three states in the triplet
subspace is 4t2/U higher than that of the singlet state. Ignoring a constant term, this is
equivalent to assuming that, in the subspace of singly-occupied states, the Hamiltonian for
the system can be taken to be the exchange interaction given in D.1 with J = 4t2/U .
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