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Abstract—
Two unimorph flexural transducer designs are proposed and

tested with regard to mode shapes and frequencies. The transduc-
ers consist of a passive metal cap structure, and a thin piezoelec-
tric disc rigidly bonded to the inside. Extensive finite element
modelling, and experimental 2D, time-resolved displacement
measurements were done to characterise the transducers flexural
properties, and to compare them to the analytical solutions of thin
vibrating plates. Emphasis was put on characterising the passive
layer of the unimorph structure, before bonding the piezoelectric
element, to understand how the active element affects the
behaviour of the flexing plate. A high power Nd:YAG laser was
used to actuate the metal plate (non-contact), and the frequency
content of the resulting displacement signal was analysed to
identify the flexural modes. The non-axisymmetric modes, which
are conventionally disregarded because of their unfavourable
acoustic properties, were also taken into account. There was
excellent agreement between the experimental results and the FE
simulation data. There was good agreement with the analytical
edge clamped plate model, but with some notable deviations,
which have not previously been identified or commented upon.
Specifically, the second axisymmetric mode is split into three
separate modes, which is not explained by the traditional theory
of plates. The analysis is similar to that of contemporary pMUT
research, but with the proposed macroscopic dimensions and
passive metal layer making the transducer industrially robust,
cheap and easy to manufacture, and more suitable for a different
range of applications where these aspects are of importance.

I. INTRODUCTION

The field of air-coupled ultrasonics has received an in-
creased interest over the years, as it has expanded into new
areas of application, including wireless communication [1],
contactless material characterisation [2], gas flow metering
[3], [4] and robotics [5]. Each application has its own set of
requirements, which has pushed the development of transducer
technology. The perpetual problem of air-coupled transduction
is the large acoustic impedance mismatch, between the trans-
ducer element (typically PZT) and the propagation medium,
causing an inefficient power output and narrow operating
bandwidth.

The classical solution is to gradually decrease the
impedance along the path of propagation, by introducing one
or more matching layers [6], often with a combined thickness
of a quarter wavelength. In order to match the transducer
impedance to air, low density, often porous, materials are
needed [7]. This as well as the introduction of multiple bound-
aries that can cause failure by debonding, makes the transducer

less robust and unsuitable for some industrial applications. For
example, ultrasonic transducers used for flow measurements,
often incorporate a metal cap that shields the piezoelectric and
matching layer elements, but which inevitably causes signal
loss and consequently the requirement of higher excitation
voltages in these applications.

More recently piezocomposites [8], [9] and ferroelectrets
[10] have successfully been used instead of traditional piezoce-
ramics, because of their lower acoustic impedances. Piezocom-
posites will in general still require a matching layer to achieve
acceptable efficiency, and ferroelectrets have high attenuation
and are in themselves not very robust.

Electrostatic transducers, such as capacitative microma-
chined ultrasonic transducers (CMUTs) [11], [12], have been
demonstrated to have excellent coupling to air, as well as an
enhanced bandwidth. However, the requirements of a large
bias voltage, as well as a thin flexible membrane as the
radiating front face, can be problematic for some applications,
including gas flow measurements, where intrinsic safety is
highly critical.

Another solution is to use the flexural modes of a metal
plate or membrane to produce ultrasound. Because the plate
displaces the air by bending, its mechanical impedance is
much lower than the acoustic impedance of the plate material
[13]. Transducers built on this principle, known as flexural
transducers [14]–[19], can produce large displacements for a
relatively low excitation voltage. In such a device configura-
tion, a piezoelectric disc can be bonded directly to the back of
the plate, without matching layers, thus minimising the number
of surface bonds that can fail over time. Also, by having a
metal plate as the radiating front face, the transducer gains
an inherent robustness, for which other transducers would
suffer a signal loss. These types of ceramic-metal transducers,
also known as unimorphs [20], bimorphs [21] or multimorphs
depending on the number of active layers, are not only used
for ultrasound transduction, but can be found in a variety of
actuator applications, e.g. energy harvesting [22], where their
vibrational and flexing properties are exploited.

Air-coupled flexural transducers are typically used for low
power proximity measurements [23], e.g. in parking sensors, as
well as for high power ultrasonics [24], [25]. Low frequency,
typically 40 kHz or lower, flexural transducers are commer-
cially available. However, many applications require higher



frequency signals, and the designs proposed in this paper
allowed operating frequencies of ∼ 90 kHz and ∼ 150 kHz
respectively.

Some initial results and analyses by the authors on flexural
transducers, upon which this article extends, can be found in
the conference proceedings [26], [27].

The frequency of the vibrations and hence of the ultrasonic
wave, depends on the driving frequency of the electrical
signal applied to the piezoelectric element, but large amplitude
displacements are achieved by driving the system at its reso-
nance frequencies. The resonance frequencies, i.e. the modal
frequencies, of the system depend on the geometry of the
passive layer and the piezoelectric disc, and are not signifi-
cantly affected by the through thickness resonance modes of
the piezoelectric element, which due to the small thickness
are typically over an order of magnitude greater than the
operational frequency of the flexural transducer.

Flexural transducers share many traits with the more
recently developed piezoelectric micromachined ultrasonic
transducers (pMUTs) [28], which combine the enhanced fluid
coupling of flextensional vibrations of a plate with micro
electromechanical systems (MEMS) technology. In essence, a
pMUT is an array of miniaturised flexural transducers operat-
ing in the fundamental bending mode. They have demonstrated
enhanced bandwidth and good fluid coupling, but lack the
intrinsic robustness of the macro flexural transducer. Also,
because of the microscopic nature of pMUTs, the manufactur-
ing process is more complicated and expensive. An excellent
article with experimental validation of theoretical calculations
on the flexural properties of the single pMUT element is found
in [29].

A. Theory of Vibrations in Plates

The equation describing the time dependent, normal dis-
placement of a thin plate is a fourth order partial differential
equation [30]:

D∇4w(x, t) + ρ
∂2w(x, t)

∂t2
= 0, (1)

where w is the normal displacement of the plate, ρ is the
volume density and D is the rigidity, which is given by

D =
Eh3

12(1− ν2)
, (2)

where E is Young’s modulus, h is the plate thickness and ν is
Poisson’s ratio. Solving (1) to find mode shapes Wm,n gives
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(3)
where An and Bn are constants determined by the boundary
conditions, a is the plate radius, λm,n is the mode constant
for the (m,n) mode, which has m radial nodes (excluding the
outer edge) and n nodal diameters. The frequency of a mode
is given by
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1

2π

(
λm,n

a

)2
√
D

ρ
. (4)

Fig. 1 illustrates the mode numbering convention used,
which is also used in [30]. Some numerically calculated values
of λ are given in Table I.

Fig. 1: Nodal lines of the four first modes of an edge clamped
plate.

TABLE I: Numerically calculated values of the mode constant
λm,n of a clamped plate, from (3), for m = 0, 1, 2 and n =
0, 1, 2.

n

m
0 1 2 3

0 3.19625 4.61085 5.90565 7.14355

1 6.30645 7.79925 9.19685 10.5366

2 9.43945 10.958 12.4022 13.795

II. METHODS

The two transducer designs are schematically shown with
labeled dimensions in Fig. 2. Two types of transducers were
made, one from aluminium and one from titanium. The values
of the dimensions for each type of transducer is given in
Table II. Aluminium was chosen because it is easy to process,
and titanium because it is the gold standard for durability and
strength to weight ratio in industry. For similar reason stainless
steel was also initially tested, but its material properties makes
it less efficient for flexural transduction.

Finite element (FE) methods [33], using software package
PZFlex (Weidlinger Associates Inc., USA), were used to
simulate axisymmetric flexural transducers. The FE model
was used to find the modal frequencies of the transducer
as well as for looking at the mode shapes. The effects on
mode frequencies due to small variations in dimensions of the
passive layer were also studied.

Before the transducers were fully assembled the flexural
properties of the passive layer (the metal cap) were studied,
by measuring the transverse displacement of the front face.
The transducers were excited thermoelastically [34] by a 10 ns



Fig. 2: Axisymmetric schematic diagram of the transducer,
with labeled dimensions.

TABLE II: Dimensions of the transducers in mm.

Trans.

Dim.
Al Ti

r 4.5 5.2

R 5.5 6.0

h 0.5 0.25

L 5.0 4.0

rpzt 3.2 1.5

hpzt 0.5 0.25

laser pulse, from an Nd:YAG laser, and the displacement was
measured at a point of the front face with a two wave mixer
laser interferometer [35]. The displacement was measured both
at the centre of the front face and off-centre, in order to
separate the axisymmetric modes from the non-axisymmetric,
as the non-axisymmetric modes have zero displacement along
a diameter.

The aluminium caps were also excited electrodynamically
[27] (non-contact), and the displacement signal of the whole
radiating face measured, using a Polytec (OFV-5000) laser
vibrometer and an xy-stage. Signal processing was used to
filter out the vibrations from individual modes, in order to
identify and characterise them.

The piezoelectric discs were attached to the back of the
caps with hard-set conductive epoxy. A function generator
(Tektronix AFG 3502C) was used to both generate broadband
pulses and continuous sinusoidal excitation at the modal
frequencies of the transducers. The assembled transducers
were tested in terms of front face displacement and acoustic
pressure.

III. RESULTS

The frequency spectra from the unloaded transducer caps
are shown in Fig. 4. The fundamental mode (0,0) is clearly
dominant for the aluminium cap, which has higher mode

Fig. 3: Schematic diagram of the setup used to measure the
front face displacement of a flexural transducer with a laser
vibrometer.

frequencies compared to the titanium cap. However, higher
modes are still visible in the spectra, and are more prominent
in the simulated data. One interesting feature is the three
closely spaced peaks in Fig. 4a, which were present in both the
simulated and experimental data, but does not emerge from the
theoretical model. The middle peak at ∼ 180 kHz, is roughly

(a) Al cap

(b) Ti cap

Fig. 4: Frequency spectra from the passive layers of the
unimorph, excited by non-contact methods. Non-axisymmetric
modes can be identified as those that are not present in the
FE data, and have smaller magnitude at the centre of the cap.

were the (1,0) mode is expected from (5). By looking at the
mode shapes from the FE model, in Fig. 5, it is seen that all
three frequencies correspond to modes with one nodal radius,



i.e. the (1,0) mode. Hence, these modes are referred to as
(1,0)a, (1,0)b and (1,0)c respectively in order of increasing
frequency. The shapes Fig. 5 shows that the main difference
between these modes is the displacement close to the edge.
Because the edges of the cap are not strictly clamped, the
boundary of the outer radius of the plate is not well defined.
(1,0)a behaves like a vibrating plate with a radius close to that
of the outer radius (R = 5.5 mm) of the cap, and (1,0)c as a
plate with radius close to the inner radius (r = 4.5 mm) of the
cap. And as expected (1,0)b has shape that suggests a plate
with a radius between the inner and outer radius of the cap.
For the fundamental mode, using (5) and λ0,0 = 3.2 we get
f0,0(a = R) = 42 kHz and f0,0(a = r) = 62 kHz, with the
experimental value, from the peak in Fig. 4a, in between these
two values at 50 kHz. In general it was found for a measured
mode frequency fexpm,n

fm,n(a = R) < fexpm,n < fm,n(a = r). (5)

Fig. 5: The split (1,0) mode shapes of the Al cap, from the
FE model.

Looking at the experimental data from the displacement
scan in Fig. 6, the split mode shapes become more compli-
cated. The same trend in the outer radius as that observed
in the FE model is seen, but the relative amplitude of the
outer antinode to the centre antinode also changes. The spread
of the experimental data for a given value of r indicates
how axisymmetric the mode is. In the limit of a perfectly
axisymmetric mode the spread would be zero along the mode
shape. Hence, it is seen that both (1,0)a and (1,0)c are picking
up contributions from non-axisymmetric modes. Since the FE
model is inherently axisymmetric this could not be observed
in the simulated data. A reasonable explanation for this spread
comes from the proximity of (1,0)a to the (0,2) mode, and the
proximity of (1,0)c to the (0,3) mode, as seen in Table I.

Fig. 7 shows the experimentally observed mode shapes of
(0,0), (0,1), (1,0)b and (1,1) in 3D of the Al cap. Being able to
visualise the actual movement of the front face gives insight
into the flexural behaviour of the metal cap, and gives final
confirmation as to the identity of the modes.

To see how the frequency of a mode changes with small
variations in the dimensions of the cap, the inner radius

(a) (1,0)a

(b) (1,0)b

(c) (1,0)c

Fig. 6: Experimental, normalised, mode shapes of the split
(1,0) mode of the Al cap as a function of dimensionless radius,
compared with the theoretical mode shape from (3). (a) mode
(1,0)a at 160 kHz with a = 5.5 mm, (b) mode (1,0)b at
180 kHz with a = 5.0 mm, and (c) mode (1,0)c at 210 kHz
with a = 4.5 mm.

and thickness of the front face of the cap in the FE model
were varied and the fundamental mode frequency recorded.
The results are plotted in Fig. 8. As expected the frequency
decreases with an increasing radius and increases with an
increasing thickness, as described by (5). The results are in
good agreement with the results from the theoretical model of
an edge clamped plate.

After the transducers were assembled, with the piezoelectric
disc bonded to the back of the cap (as in Fig. 2) the frequency
spectra of each cap was analysed again. Fig. 9 and Fig. 10



Fig. 7: (Animated online) experimentally observed modes of
the Al cap, corresponding to the peaks in the frequency spectra
in Fig. 4a. The amplitude of each individual mode has been
normalised, but the relative frequencies of the modes are
accurately represented in the animation.

Fig. 8: The fundamental frequency of the transducer as the
thickness is varied with a fixed inner radius of 4.5 mm (+),
and the as the radius is varied with a fixed thickness of 0.5
mm (◦).

shows the frequency spectra from for the Al and Ti transducers
respectively. The spectra from the Al transducer has notably
changed in terms of relative amplitude of the modes, e.g. the
(1,0)c mode has greater amplitude than the fundamental mode.
However, this effect could be due to the excitation signal,
rather than the loading of the active element. Also, there are
small shifts in the frequency of some modes, e.g. (1,0)a has
been shifted down by approximately 10 kHz.

The far-field beam profile of (1,0)a, measured with an acous-
tic microphone, is shown in Fig. 11. The large displacement
of the outer antinode of the plate gives rise to large side lobes,
which can be problematic in some applications.

Similarly for the Ti transducer, the higher modes became

Fig. 9: Frequency spectrum from the piezoelectrically actuated
Al flexural transducer, excited by a broadband pulse.

Fig. 10: Frequency spectrum from the piezoelectrically actu-
ated Ti flexural transducer, excited by a broadband pulse.

more prevalent after attaching the piezoelectric disc. There is
however a significant difference from the simulation data. In
the FE model the fundamental mode is still dominant, whereas
it is almost completely absent in the experimental results. This
surprising result was verified in another five transducers. There
is also a frequency shift of the (1,0) mode of ∼ 10 kHz,
which was expected from the additional rigidity and effective
thickness introduced by the active layer.

One important characteristic of a flexural transducer is the

Fig. 11: Far-field beam profile of the transducer operating in
the (1,0)a mode, at 150 kHz, taken at a distance of 20 cm
from the front face.



deflection of the front face for a given input, and increases
with improved electromechanical coupling. The frequency and
axisymmetric shape of the (1,0) mode of the Ti transducer
make it suitable for ultrasonic transduction. Fig. 12 shows
the front face displacement (animated online) and frequency
data from the Ti transducer when excited by 2.5 V amplitude,
3 cycle, sinusoidal signal, at 89 kHz. The addition of the
piezoelectric disc caused the shape profile to flatten at the
central antinode, and the outline of the disc can be roughly
made out. This also causes the relative amplitude of the outer
antinode to increase in comparison, making the shape deviate
from (3).

Fig. 12: (Animated online) instantaneous absolute displace-
ment across the transducer front face, centre point displace-
ment, and its frequency content of the Ti transducer, when
excited by a gated, 89 kHz, sine signal.

IV. CONCLUSIONS

The flexural transducers investigated use modes similar to
those of a circular edge clamped plate. FE analysis shows how
the individual modes predicted by the analytical theory split as
a result of the boundary conditions of the cap geometry. The
frequencies predicted by the theory are comparable to those
given by the FE model, and those measured experimentally.
For a flexural transducer cap design, which has an inner and
outer radius, the measured mode frequency lies within the
limits of an edge clamped plate with radius a = r (upper
limit) and a = R (lower limit). Significant contribution from
the non-axisymmetric modes were found in the split modes

(1,0)a and (1,0)c of the aluminium transducer, which can be
explained by the proximity of the (1,0) mode to the (0,2) and
(0,3) modes. These are factors that need to be considered when
designing a flexural transducer, and which cannot be directly
predicted from the analytical theory.

It was also seen that the flexural properties of the transducer
were determined and could be predicted from the passive layer
alone. This is important in the manufacturing stage, as it allows
for quality control, e.g. in terms of frequency matching, before
assembling the transducer.
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