HiFFUT – A New Class of Transducer

Project Meeting

19th March 2018

Dr Andrew Feeney

High Frequency Ultrasound Measurement

- Measurement of high frequency ultrasound in air using two FUTs, one as a transmitter and one as a receiver.
- Separation: 500 mm, but with the capacity for data acquisition at much ٠ greater distances.

Amp.

0.5

High Frequency Ultrasound Measurement

High Temperature HiFFUTs

- Two high temperature HiFFUTs constructed.
- Custom pressure rig used to bond components together.
- A high temperature epoxy resin (EPO-TEK® 353ND) used.
- Titanium (Grade 2 ASTM) cap.
- PZ46 bismuth titanate (BiT) ceramic (Meggitt), 0.89 mm thick, 6.35 mm diameter.

Cap components fabricated from laser welding

High Temperature HiFFUTs

- LDV and microphone measurements (distance of 65 mm) undertaken at room temperature prior to thermal characterisation.
- Laboratory furnace (Pyrotherm) used for thermal characterisation, at 300 mm.

(0,0) mode, PZFlex FEA

High Temperature HiFFUTs

Measurement at High Pressure

- Full system assembled and tested, with a ratiometric pressure sensor (Honeywell) for pressure measurement.
- Two M.Phys. dissertation students have conducted tests on commercial FUTs and FUTs with oil in the housing.

Thermal Detection Ltd High Pressure Insulated Wire Sealing Gland (HPPL)

- · Viton sealant
- Seals up to 2070 bar (at 20°C)
- Grade 316L stainless steel

Honeywell Pressure Sensor

- 1/4"-18NPT Connection
- Rated up to 3000 psi (207 bar)
- Ratiometric

MK4 Hill Air Pump

1/8" BSP Connection Rated up to 4000 psi (276 bar)

Outside diameter [mm]	Wall thickness [mm]	Volume (I)	Weight [kg]
180	27	2.2	45

Sample Data at High Pressure

Research Output (Sep. 2017 – Present)

PAPERS

- A. Feeney, L. Kang, and S. Dixon, "High frequency measurement of ultrasound using flexural ultrasonic transducers," *IEEE Sensors Journal*, Accepted subject to approval of revision, 2018.
- A. Feeney, L. Kang, G. Rowlands, and S. Dixon, "HiFFUTs for high temperature ultrasound," *Proceedings of Meetings on Acoustics*, vol. 32, no. 1, 045003, 2017.
- A. Feeney, L. Kang, G. Rowlands, and S. Dixon, "Dynamic characteristics of flexural ultrasonic transducers," *Proceedings of Meetings on Acoustics*, vol. 32, no. 1, 045002, 2017.
- L. Kang, A. Feeney, and S. Dixon, "Flow measurement based on two-dimensional flexural ultrasonic phased arrays," *Proceedings of Meetings on Acoustics*, vol. 32, 2017.
- A. Feeney, L. Kang, and S. Dixon, "Nonlinearity in the dynamic response of flexural ultrasonic transducers," IEEE Sensors Letters, vol. 2, no. 1, pp. 1-4, 2018.
- A. Feeney, L. Kang, G. Rowlands, and S. Dixon, "The dynamic performance of flexural ultrasonic transducers," *Sensors*, vol. 18, no. 1, 270, pp. 1-14, 2018.

PRESENTATIONS & PUBLIC ENGAGEMENT

- A. Feeney, L. Kang, and S. Dixon, "HiFFUTs for high-temperature ultrasound," *The 2017 International Congress on Ultrasonics*, Honolulu, Hawaii, USA, December 2017.
- **A. Feeney**, L. Kang, G. Rowlands, and S. Dixon, "Dynamic characteristics of flexural ultrasonic transducers," *The 2017 International Congress on Ultrasonics*, Honolulu, Hawaii, USA, December 2017.
- L. Kang, A. Feeney, and S. Dixon, "Flow measurement based on two-dimensional flexural ultrasonic phased arrays," *The 2017 International Congress on Ultrasonics*, Honolulu, Hawaii, USA, December 2017.
- A. Feeney and L. Kang, demonstrators of ultrasonics and HiFFUT research to the public, *XMaS Science Gala*, University of Warwick, January 2018.

Next Steps

- Complete fabrication and testing of demonstrator piezoelectric HiFFUTs.
- Develop the second phase of HiFFUTs for high temperature applications, accounting for the outcomes from the first phase reported at the 2017 International Congress on ultrasonics.
- Construct and test a laser-welded HiFFUT.
- Design HiFFUTs for high pressure environments towards 200 bar.

Project Gantt Chart

Activity of PDRA1, PI & Technician

