HiFFUT – A New Class of Transducer

Project Meeting

26th September 2018 Dr Andrew Feeney

FUT Fabrication by Laser Welding

- The laser welding of different metals is being investigated for manufacture of FUTs.
- Cap membranes and supports have been fabricated from titanium, stainless steel, and aluminium.
- All parts are being laser welded in collaboration with WMG.
- Laser spot size is around 0.30 mm.
- HAZ results in a convex profile which can be modified to form a flat surface.
- Weld testing has been conducted to assess optimum welding parameters.

Test Welds on Titanium

FUT Fabrication by Laser Welding

- The HAZ for each titanium sample is shown below, with approximate widths in the order of 1.50 1.80 mm.
- Each membrane has a diameter of 11.46 mm.
- The characteristics of the HAZ can be investigated.

- Continuation of the studies into dynamic nonlinearity published in IEEE Sensors Letters.
- A selection of FUTs, a combination of commercial and custom fabricated, used to investigate origins of nonlinearity.
- Excitation up to 40 V_{P-P}, with LabVIEW control.
- Continuous-wave, sinusoidal signal.

- Using LabVIEW, the drive frequency is automatically switched, and the peak-to-peak amplitude recorded.
- The drive frequency is swept around resonance, indicated by the mode shape measurement.
- The voltage measurements are converted to velocity, using the mm/s/V sensitivity on the LDV system.

Frequency Reduction (Hz)
200
0
200
300
1350
1000

Amplitude-frequency Polynomial Fits for Two Operating Modes of Titanium FUT 2

Next Steps

- Complete the fabrication and subsequently characterise the laser welded transducers.
- High pressure HiFFUTs have been designed for pressures upwards of 200 bar. Testing of these transducers will be undertaken in 2019.
- Optimisation of the transducer fabrication process and of HiFFUT performance.
- Continue patenting of new devices, and publishing of new results.

Acknowledgements

- Dr Pasquale Franciosa, WMG, for assistance with laser welding.
- Jonathan Harrington and Mareike Herrmann, for fabrication of select transducer components.

11

• Polytec GmbH, for assistance with scanning laser Doppler vibrometry.

Project Gantt Chart

	Tasks/ Deliverables Mo	nth	1-6	7-12	13-18	19-24	25-30	31-36	37-42	43-48	49-54	56-60	
WP1 RA1	Calculate and publish parameter matrix for HiFFUT design												
Tech	Four demonstrator piezo based HiFFUTs tested.	d. (MS		M	\$1.2						
WP2	Driving flexural transducers electromagneticall	у											
RA1	Lorentz force based HiFFUT				C	Probability		MS2.1					
Tech	magnetostrictive force based HiFFUT.								MS2.2				
WP3 RA2	Evaluating transducer performance in hostile environments												
PI Tech	Design / construct / test pressure cell.								(A MORES	M. 3.1			
	Design / construct / test temperature cell								× 11	P/62	2		
	Design / construct / test high pressure HiFFUTs									× nores		MS3.3	
	Design / construct / test high temp HiFFUTs											Textile N	1\$3.4
WP4	Demonstrator applications, Outreach and Engagement												
RA1 RA2 PI	Demonstration of steerable array						MS4.						
	Online resources and data storage			MS4	.2				201				
Tech	General industry 🗖 / user engagement activities 🔳						MS4.3) =				 	
	Public lecture or science fair						-						
	School visit I / open day or widening participation						s4.4 🗖						
	Advisory Committee meetings		0	2	5	2	5	6	0	8	9	10	