

WARWICK

THE UNIVERSITY OF WARWICK

The Design of Flexural Ultrasonic Transducers for High Pressure Environments

Andrew Feeney, Lei Kang, Will Somerset, and Steve Dixon University of Warwick, Department of Physics, Coventry CV4 7AL, United Kingdom

3rd September 2019, International Congress on Ultrasonics, Bruges, Belgium

Research Overview

- The flexural ultrasonic transducer is a unimorph for operation in different fluids
- Piezoelectric or electromagnetic
- Proximity sensing and NDE
- Flexural ultrasonic transducers are currently only designed for operation at 1 bar
- New transducers required for industry

Section-view Schematic of a Classical Sealed Flexural Ultrasonic Transducer

Application	Example Pressure (bar)	Environment	Example Temperature (°C)
Residential gas meters	2	Oil production	120
Domestic water meters	20	District heating	250
Industrial gas meters	300	Petrochemical	350-450
Industrial flow meters	300+	Power plants	560

Objective: Develop strategies to design and test flexural ultrasonic transducers at elevated pressure levels

Experimental Method

- Stainless steel pressure chamber
- Ratiometric pressure sensor (Honeywell) to measure pressure level P
- Thermocouple to measure environmental temperature T
- High Pressure Sealing Glands (Thermal Detection Ltd) for insulated wire sealing

WARWICK

THE UNIVERSITY OF WARWICK

AAM =

Acoustically

Electrical Properties

(Impedance Z and

Phase Φ)

Φ_G

 Z_{G}

ZD

 $\Phi_{\mathbf{D}}$

Transducer Resonance Characteristics

- Two forms of flexural ultrasonic transducer: classical sealed and vented, both aluminium
- Classical sealed: silicone backing seal
- Vented: Removal of seal to balance pressure across membrane
- 3-D printed ABS holders
- Electrical impedance analysis used to monitor influence of holders on resonance frequency
- Important for operating flexural ultrasonic transducers in pressure chamber

Transducer Resonance Characteristics

- Nominal frequency of the fundamental (0,0) operating mode: 40 ± 1.0 kHz
- Simulation showing the mathematically computed mode shape using the physical properties of the transducer membrane
- Laser Doppler vibrometry used to measure mode shapes
- Differences in resonance frequency caused by minor variations in transducer physical characteristics

Key Properties

- Material Type
- Membrane Diameter
- Membrane Thickness

Membrane

TRASOUND

GROUP

JNIVERSITY OF WARWICK

Even with the removal of the sealing, the resonance frequency of each vented transducers is in the 40 \pm 1.0 kHz range, showing dominance of membrane dynamics

Electrical Characteristics with Pressure

- The classical sealed transducer exhibits inconsistent Z and Φ changes
- This is a direct consequence of the seal
- Steady increase in Z and decrease in Φ for the vented transducers
- Z spectra used to determine resonance frequency
- Likely leakage point determined

WARWICK

THE UNIVERSITY OF WARWICK

Pitch-catch Measurement at 1 bar

RASOUND

GR

- One generator transducer and one detector transducer facing each other
- Excitation: 40 kHz, 2-cycle sine burst, 20 V_{P-P}
- No evidence of ultrasonic wave reflection
- Pressure chamber hence suitably configured
- Longer 'ring-down' for the vented design
- Due to lack of silicone-type sealing which can also act as a damper

Resonant Decay Analysis

Hysteresis Phenomena

- Important to understand the influence of fluctuations in pressure level (increases or decreases)
- Voltage responses studied in two tests for patterns of hysteresis
- Stability of the vented design demonstrated compared to the classical sealed

Advantageous for an application such as ultrasonic flow measurement

Generator: Classical Sealed • Detector: Vented 2

Alternative Configurations

Summary and Future Research

Summary

- Dynamic performance of different flexural ultrasonic transducers at elevated pressure levels in air demonstrated.
- The vented design permits balanced pressure across transducer membrane.
- Stable dynamic response observed for the vented design compared to the classical sealed design.

Future Research

- Optimization of the measurement environment, and further mitigation of interference at elevated pressure levels.
- Investigate new designs of transducer, including oil-filled, and deployment in different fluid environments.
- Study the influence of different excitation conditions in small pressure chambers.

Acknowledgement

 I would like to thank Jonathan Harrington and Dr Susan Burrows of the University of Warwick for valuable technical contributions to this investigation, and acknowledge the Engineering and Physical Sciences Research Council (EPSRC) Grant Number EP/N025393/1 for funding this research.

THE UNIVERSITY OF WARWICK