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Research Overview

Environment Example Temperature (°C)

Oil production 120

District heating 250

Petrochemical 350-450

Power plants 560

Silicone-type 

Backing Layer

Epoxy Resin 

Bond Layer

Piezoelectric 

Ceramic Disc

Membrane

Section-view Schematic of  a Classical 

Sealed Flexural Ultrasonic Transducer

• The flexural ultrasonic transducer is a 

unimorph for operation in different fluids

• Piezoelectric or electromagnetic

• Proximity sensing and NDE

• Flexural ultrasonic transducers are currently 

only designed for operation at 1 bar

• New transducers required for industry

Cap

Objective: Develop strategies to design and test flexural 

ultrasonic transducers at elevated pressure levels

Application Example Pressure (bar)

Residential gas meters 2

Domestic water meters 20

Industrial gas meters 300

Industrial flow meters 300+



Function 

Generator
AmplifierPressure 

Chamber

TPVG VD

ZG ZDΦG ΦD

Experimental Method

Pressure Chamber

180 mm

98 mm

Electrical Properties 

(Impedance Z and 

Phase Φ)

Pitch-catch Voltage Responses

Detector DGenerator G

• Stainless steel pressure chamber

• Ratiometric pressure sensor (Honeywell) to measure 

pressure level P

• Thermocouple to measure environmental temperature T

• High Pressure Sealing Glands (Thermal Detection Ltd) 

for insulated wire sealing

AAM

AAM = 

Acoustically 

Absorbent 

Material



Transducer Resonance Characteristics

Bonded

• Two forms of  flexural ultrasonic transducer: 

classical sealed and vented, both aluminium

• Classical sealed: silicone backing seal

• Vented: Removal of  seal to balance pressure 

across membrane

• 3-D printed ABS holders

• Electrical impedance analysis used to monitor 

influence of  holders on resonance frequency

• Important for operating flexural ultrasonic 

transducers in pressure chamber

Boundary Condition Analysis

Multicomp



Classical Sealed

40.0 kHz

Mathematical

Simulation

Vented 1

39.6 kHz

Vented 2

40.4 kHz

• Nominal frequency of  the fundamental (0,0) operating 
mode: 40 ± 1.0 kHz

• Simulation showing the mathematically computed mode 

shape using the physical properties of  the transducer 

membrane

• Laser Doppler vibrometry used to measure mode shapes

• Differences in resonance frequency caused by minor 

variations in transducer physical characteristics

• Material Type

• Membrane Diameter

• Membrane Thickness

Key Properties

Even with the removal of the sealing, the resonance frequency of each vented 
transducers is in the 40 ± 1.0 kHz range, showing dominance of membrane dynamics

Transducer Resonance Characteristics

Membrane



Electrical Characteristics with Pressure

• Z and Φ monitored with air pressure 

Stability of  Z and Φ spectra with pressure 

for the vented transducers

• The classical sealed transducer exhibits 

inconsistent Z and Φ changes

• This is a direct consequence of  the seal

• Steady increase in Z and decrease in Φ

for the vented transducers

• Z spectra used to determine resonance 

frequency

• Likely leakage point determined

Likely leak 

formation
Emergence of  additional modes 

at elevated pressure levels in 

the vented transducers



Pitch-catch Measurement at 1 bar

• One generator transducer and one detector 

transducer facing each other

• Excitation: 40 kHz, 2-cycle sine burst, 20 VP-P

• No evidence of  ultrasonic wave reflection

• Pressure chamber hence suitably configured

• Longer ‘ring-down’ for the vented design

• Due to lack of  silicone-type sealing which can also 

act as a damper



Voltage Responses with Pressure

Little evidence of  

ultrasonic wave 

interference

Interference detected in 

responses at elevated 

pressure levels –

changing acoustic 

properties of  air



Resonant Decay Analysis

• Typical ring-down response in the 

generator transducer signal

• FFT of  the ring-down indicates resonance frequency

• Resonance of  the vented design is more stable than the 

classical sealed as pressure level changes

• Z exhibits a steady decrease as P increases for the vented

• The Z change is irregular for the classical sealed transducer

Each Pressure 

level shown is 
± 0.50 bar

FFTs of  the 

ring-down 

region only

Additional

Modes



Hysteresis Phenomena

• Important to understand the influence of  

fluctuations in pressure level (increases or 

decreases)

• Voltage responses studied in two tests for 

patterns of  hysteresis

• Stability of  the vented design demonstrated 

compared to the classical sealed

Advantageous for 

an application 

such as ultrasonic 

flow measurement

Generator: Classical Sealed

Detector: Vented 2



Alternative Configurations

Bellows-type 

Design

-
+-

+

Region of  High 

Compliance

Incompressible and 

non-conducting Fluid

Backing

Material



Summary

• Dynamic performance of  different flexural ultrasonic transducers at elevated pressure levels in air demonstrated.

• The vented design permits balanced pressure across transducer membrane.

• Stable dynamic response observed for the vented design compared to the classical sealed design.

Future Research

• Optimization of  the measurement environment, and further mitigation of  interference at elevated pressure levels.

• Investigate new designs of  transducer, including oil-filled, and deployment in different fluid environments.

• Study the influence of  different excitation conditions in small pressure chambers.
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