

WARWICK THE UNIVERSITY OF WARWICK

The Nonlinear Dynamics of Flexural Ultrasonic Transducers

Andrew Feeney, Lei Kang, George Rowlands, and Steve Dixon University of Warwick, Department of Physics, Coventry CV4 7AL, United Kingdom

3rd September 2019, International Congress on Ultrasonics, Bruges, Belgium

Research Overview

- The flexural ultrasonic transducer (FUT) is a unimorph for operation in different fluids such as air and water
- Piezoelectric or electromagnetic
- Proximity sensing and NDE
- Development of high-frequency FUTs for hostile environments

Section-view Schematic of a Classical Flexural Ultrasonic Transducer

AŜOUN

Application	Example Pressure (bar)	Environment	Example Temperature (°C)
Residential gas meters	2	Oil production	120
Domestic water meters	20	District heating	250
Industrial gas meters	300	Petrochemical	350-450
Industrial flow meters	300+	Power plants	560

Objective: Examine the nonlinear dynamics of different FUTs

A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations. Hoboken, NJ, USA: Wiley, 2008.

Mode Shape Measurements

Norm. Amp.

Norm. Amp.

Primary Resonance Solution

- Softening nonlinear response
- Asymmetry between maximum and minimum in response
- Phase shift as a function of excitation amplitude
- Linear relationship between vibration response and excitation amplitude

FUTs in Continuous Mode

42

R 50 18 22 26 30 34 38 Peak-to-Peak Excitation Voltage (V) Linearity between b and BTRASOUND GROUP

1500

Analysis on a Set of FUTs

- Aluminium FUT, (0,0) mode
- Five transducers, nominally identical

	Electrical Impedance Analysis		Laser Doppler Vibrometry		
FUT	Coupling Coefficient k ²	Quality Factor Q _M	Resonance Frequency f _r (kHz)	f _r , nom. 4 V _{p-p} (kHz)	f _N - f _S (Hz) nom. 4 to 20 V _{p-p}
1	0.33	71.01	39.51	40.00	300
2	0.32	56.13	40.64	41.00	200
3	0.33	56.71	39.97	40.40	200
4	0.31	54.17	38.23	37.90	200
5	0.32	49.75	39.72	40.10	200
Mean	0.322	57.55	39.59	39.66	220
Standard Deviation	0.007	7.16	0.88	0.90	40

ULTRASOUND GROUP

Summary and Future Research

- Nonlinear behaviour can manifest from boundary condition, operating mode, excitation amplitude, FUT cap material, piezoelectricity
- Although individual causes of nonlinearity are difficult to isolate, it is closely related to stiffness properties
- Experimental data consistent with mathematical theory
- Investigate alternative FUTs in future, such as electromagnetic-driven devices

Acknowledgement

I would like to thank Jonathan Harrington of the University of Warwick for valuable technical contributions to this investigation, and acknowledge the Engineering and Physical Sciences Research Council (EPSRC) Grant Number EP/N025393/1 for funding this research.

Transducer and Associated Operating Mode	Frequency Reduction (Hz) 20 V _{P-P} to 40 V _{P-P}	
Small Aluminium FUT: (1,0) Mode	200	
Large Aluminium FUT: (1,0) Mode	200	
Brass FUT: (0,0) Mode	300	
Titanium FUT: (0,0) Mode	400	
Titanium FUT: (1,0) Mode	1400	

