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Abstract

This thesis presents the results of a detailed analysis of the half-metallicity of

the B2 CoFexMn0.5−xGaySi0.5−y (0 < x < 0.5, 0 < y < 0.5) alloys. Using the

Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-

CPA), the electronic density of states (DOS) and Bloch spectral functions (BSFs),

which represent the ε–k dispersion relations in disordered alloys, are calculated. We

propose methods of quantifying the half-metallicity using information from the DOS

and BSF, which is applied to 5-component alloys. The analysis of the DOS involves

the calculation of the number of states around the Fermi level and the spin up-spin

down DOS difference at the Fermi level. From the BSF, the Fermi velocity and the

mean free path of the electrons is extracted. The combined results of the analyses

have shown that candidates for potential half-metals are among the ones that have

low Fe and Ga concentrations. The result also indicates that the half-metallicity of

the alloys is more sensitive to the increase of the Fe concentration, where it drops

more rapidly, compared with the increase of Ga concentration.
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Chapter 1

Introduction

The theory of electrical conductivity has over a 100 years of history [1]. In the

beginning, the description of conduction was based on classical kinetic theory [2].

It was indeed very successful in describing conductivity in metals. The sole use

of classical theory, however, does not give an accurate picture of the charge carri-

ers and has proven to have many problems [2]. For example, the phenomenon of

semi-conduction cannot simply be explained through classical theory, as the idea of

valence and conduction electrons is non-existent. The advent of quantum mechanics

later shed light on the theory of metallic conduction. The recognition of electron

spin and how conduction can be different depending on these spins allowed phenom-

ena such as half-metallicity. The heart of this thesis is the study of half-metallic

materials, thus quantum mechanics will constitute the pillar of the whole thesis.

Half-metallic materials or half-metals (HMs) are compounds for which only

one of the spin channels presents a conducting behaviour for the electrons while

the other spin channel is insulating [3]. This property is caused by the presence of

a band gap at the Fermi level, εf only for one spin channel, this spin channel is

therefore an insulator or a semiconductor. This also leads to 100% spin polarisation

at εf for the other spin channel, meaning that all HM are also ferromagnetic or fer-

rimagnetic [3]. These materials were predicted theoretically in the 1980’s [4], since

then they have attracted significant amount of attention [5] because of their po-

tential applications in spintronics (e.g., magnetic random access memory (MRAM),

decrease in power consumption and increase in data processing speed compared to

conventional electronic devices [6, 7]).

The most notable examples of potential HMs are oxides, sulphides and

Heusler alloys [8]. Although many materials were predicted to be HM, demon-

strating experimentally their half-metallicity has been shown to be tremendously
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difficult due to the effects of, structural disorder [9], for example. Though indeed,

experimental work has yet to demonstrate true HM behaviour, many materials have

been found that have a high spin polarisation at εf [10]. Geiersbach et al. [11]

found that the electrical conductivity is quite low for (1 1 0) thin films of Co-based

Heusler alloys grown on top of a MgO (1 0 0) substrate, indicating structural dis-

order. The study of disordered alloys is therefore of paramount importance. This

thesis is mainly concerned with the partially disordered B2 structure and the effects

of compositional disorder on HM. Moreover, the Co-based Heusler and B2 alloys

are of our primary interests, as they exhibit Curie temperatures well above room

temperature [10] which is important for spintronic applications.

To study the properties of the HM, simple models can be deployed, where the

many-body Hamiltonian is simplified with specific parameters, but for a more inde-

pendent and quantitative analysis, a first-principles approach is needed. There are

several first-principles quantum mechanical approaches, but the most noteworthy,

successful in both accuracy and computational expediency, is density functional the-

ory (DFT) [12]. DFT is a computational method that maps the complicated many-

body problem onto a Kohn-Sham (KS) non-interacting system [13]. The resulting

one electron equations from DFT can be solved using multiple scattering theory

(MST), the Korringa-Kohn-Rosoker (KKR) Green function (GF) method [14]. This

method was chosen on the basis of the fact that it can be generalised easily with

the coherent potential approximation (CPA), which can deal with disorder. This is

crucial, as we are mainly dealing with disordered systems. These calculations are

carried out using Munich SPRKKR package [15, 16], which was extensively used in

the present work.

We begin, in Chapter 2, by introducing the calculations behind DFT and the

use of the local density approximation (LDA) to specify a one electron exchange-

correlation potential. Then the method of using GF and MST to provide practical

solutions to the DFT equations is presented. The implementation of CPA with MST

to deal with substitutional disorder is then outlined.

With the calculations and theories forming the backbone of this thesis pre-

sented, we then detail the concepts of HM and Heusler alloys in Chapter 3. Following

the discussion of ferromagnetism in HM, we present DFT calculations of Cobalt in

the simple hexagonal close-packed (HCP) and face-centered cubic (FCC) structures,

in order to demonstrate ferromagnetism. We end the chapter with the study of the

well-known Heusler alloy L21 Co2MnSi, and its B2 structure, CoMn0.5Si0.5.

Chapter 4 is where we begin the analysis of the alloy of our interest, the B2

CoFexMn0.5−xGaySi0.5−y system. This chapter concentrates on studying the half-
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metallicity through the density of states (DOS), where the method of analysing the

band gap and DOS difference at εf is presented. Some of the main achievements of

this thesis through the analysis is also presented here.

We review in Chapter 5 the attempt to look beyond just the DOS and inves-

tigate the transport properties. Theory of transport properties of solids, namely the

Boltzmann transport equation is detailed here. The calculations of Bloch spectral

function (BSF) using GF and its relationship with the band structure is then pre-

sented. The extraction of the Fermi velocity and the mean free path of an electron

through the BSF is shown and the B2 CoFexMn0.5−xGaySi0.5−y is again looked at

with the two new analysis. The chapter ends with the final main achievements of

this thesis. Final conclusions concerning the main findings and an outlook then

conclude this thesis.
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Chapter 2

Ab-initio Theory of Electronic

Structure

2.1 Density functional theory

To study a solid state system, one can consider the Hamiltonian for a system of

interacting electrons [17],

Ĥ = K̂ + V̂ + Û = −1

2

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i

∑
j 6=i

1

|ri − rj |
. (2.1)

This is written in terms of Hartree atomic units, where me = h̄ = e = 1/4πε0 = 1.

The Vext term is some external potential, which can be included to incorporate the

effect of fixed nuclei. However, since a material contains more than a septillion

electrons interacting with each other, solving the Schrödinger equation with such

Hamiltonian is almost impossible. Instead, density functional theory (DFT) can be

used. It maps this complicated many electron Hamiltonian onto an effective one

electron Hamiltonian.

Hohenberg and Kohn laid out the foundation of DFT, where they have proved

two important theorems concerning the electronic density [18]. The first theorem

states that some external potential Vext(r) is a unique functional of the ground state

electron density, n(r). In other words, n(r) uniquely determines Vext(r) to within a

constant. The second theorem states that the energy functional of a system for a

given potential, E[n↑, n↓] is minimised by n(r). These are the original statements,

which are sufficient for illustration purposes. Though, applicable extensions to less

restrictive formulations and to degenerate ground states exist. It can be seen from

these two theorems that DFT concentrates on describing the ground state properties

4



of interacting electron systems.

With these two theorems established, let us now consider the energy func-

tional,

E[n↑, n↓] = 〈Ψ|K̂ + Û + V̂ |Ψ〉 =
∑
σ

∫
V σ
ext(r)nσ(r)dr + F [n↑, n↓], (2.2)

where the summation is over all spins, σ =↑↓ and F [n↑, n↓] is a universal functional

that is valid for any external potential and number of particles. The exact form of

this functional is unknown and therefore E[n↑, n↓] still cannot be minimised as it

is. However, by using a fictitious system as shown by Kohn and Sham [13], where

interacting particles are replaced by non-interacting ones that generates the same

density, F [n↑, n↓] can be written as [13]

F [n↑, n↓] = KS + EH + Exc

=
1

2

∑
σ

N∑
i

|∇φσi (r)|2 +
1

2

∫
dr

∫
n(r)n(r′)

|r− r′| dr
′ + Exc[n↑, n↓] (2.3)

The first term is the kinetic energy of the non-interacting system, the second term

is known as the Hartree interaction energy, where electron-electron interaction is

replaced by the average potential of the other electrons and the final term is the

exchange-correlation energy containing all the many-body effects of exchange and

correlation. By comparing Eq. (2.2) and Eq. (2.3), Exc can be written as

Exc = F − (KS + EH) = K −Ks + U − EH . (2.4)

This is only a small contribution, but a good approximation for it is very vital for

any accurate DFT calculations.

With F [n↑, n↓] defined, E[n↑, n↓] can now be minimised with respect to vari-

ations in n(r), that is to solve the Euler-Lagrange equation, which gives(
− 1

2
∇2 + V σ

eff (r)

)
φσi (r) = εσi φ

σ
i (r). (2.5)

This is known as Kohn-Sham (KS) equation, where V σ
eff is given by

V σ
eff (r) = V σ

ext(r) + VH(r) + V σ
xc(r). (2.6)
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From the Hartree interaction energy, the Hartree potential, VH(r) is given by

VH(r) =

∫
n(r′)

|r− r′|dr
′ (2.7)

and the exchange-correlation potential, V σ
xc(r) is defined as

V σ
xc(r) =

δExc[n↑, n↓]

δnσ(r)
. (2.8)

The form of Exc[n↑, n↓] is unknown except the most simple systems. Hence

a numerical approximation is needed. For n(r) varying slowly, the local density

approximation (LDA) can be used. LDA assumes that the exchange-correlation

energy density at each point in space is the same as in a homogeneous electron gas

(HEG) having the same charge density as at the given point. This gives [19]

Exc[n↑, n↓] =

∫
n(r)εHEGxc (n↑, n↓)dr. (2.9)

Despite the local approximation, LDA is remarkably successful in describing the

ground state properties of many real materials. The key for the success is mostly

due to the fact that the approximation satisfies the sum rules for the exchange-

correlation hole in the charge density [20]. However successful LDA is, it still has

many limitations and net error [19] (See reference [12, 21] for a more in-depth review

of the applications of the LDA to real systems and the DFT formulations).

If we now take the charge density from the Kohn-Sham approximation

n(r) =
N∑
i

fiφ
∗
i (r)φi(r), (2.10)

where fi the Fermi-Dirac distribution, it can be seen that the charge density depends

on the effective potential and the effective potential depends on the charge density.

This means that the charge density along with the KS equations is a set of closed

equations and can be solved self-consistently.

2.2 Multiple Scattering Theory

Although with the KS equations, the problem is already much simpler than the orig-

inal many-body problem, we are still left with a rather difficult eigenvalue problem

to solve. Here, we will introduce the Korringa-Kohn-Rostoker (KKR) method, based

on multiple scattering theory and the Green’s functions (GF) formalism, which is
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one way to find the solution to such equations [22, 23].

The GFs G(z) and G0(z) with the corresponding Hamiltonian H and H0

respectively at complex energy z = ε+ iδ, are defined as [24]

G(z) = (ε−H + iδ)−1 , G0(z) = (ε−H0 + iδ)−1. (2.11)

The density of state (DOS) of a system can be computed by considering the

position representation of the GF,

G(r, r′; ε) =
∑
i

ψi(r)ψ∗i (r
′)

ε− εi + iδ
. (2.12)

This can be rewritten using the identity [24]

lim
y→0+

(x+ iy)−1 = Px−1 − iπδ(x) (2.13)

as

G(r, r′; ε) =
∑
i

ψi(r)ψ∗i (r
′)

ε− εi
+ iπ

∑
i

δ(ε− εi)ψi(r)ψ∗i (r
′). (2.14)

With this definition of GF, the DOS can be easily obtained by integrating the GF

over r and taking the imaginary part, realising the quantity
∑

i δ(ε− εi) is the DOS

at ε, n(ε). This will arrive at the following relation,

− 1

π
Im TrG(ε) =

∑
i

δ(ε− εi) = n(ε), (2.15)

where G(ε) is the spectral representation which can be obtained following the iden-

tity from Eq. (2.13). Using Eq. (2.10), the electron density can be written in terms

of GF, giving

n(r) = − 1

π
Im Tr

∫ εf

−∞
f(ε)G(r, r′; ε)dε. (2.16)

Since we are only dealing with the ground state, we can take the temperature T = 0,

meaning that f(ε), the Fermi-Dirac distribution is simply f(ε) = 1 for ε ≤ εf and

zero otherwise.

From the KS equations, the problem is now only a single particle problem, so

to begin the description of this multiple scattering approach, lets consider a simple

single particle system with Hamiltonian H,

Hψi = εiψi ⇒ (εi −H)ψi = 0. (2.17)
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Suppose that H can be written as some perturbation V in addition to an unper-

turbed Hamiltonian H0 (i.e., H = H0 + V ), where H0 has its own set of eigenfunc-

tions φi and that the eigenfunctions ψi can be written in terms of the unperturbed

eigenfunctions φi with some change δψi (i.e., ψi = φi + δψi), we can write

(εi −H)δψi = V φi. (2.18)

Equating this with Eq. (2.11) will result in what is known as the Lippmann-Schwinger

equation [25],

ψi = φi +G(εi)V φi , ψi = G0(εi)V ψi. (2.19)

This equation gives rise to a simple physical significant, that the final wavefunction

is simply sum of the unperturbed wavefunction φi and the potential V that describes

the interaction between the colliding systems. Note that the small imaginary part, δ

takes two limits δ → ±0 but for this discussion it was taken to be positive. Although

it has no physical meaning, it will become apparent later on the necessity of this

constant.

Going back to the definitions of the GFs, Eq. (2.11), one can write G(z) in

terms of G0(z) which gives,

G(z) =
1

z −H =
1

z − (H0 + V )

=
1

z −H0

(
1

1− V (z −H0)−1

)

= G0(z)
∞∑
n=0

(
V G0(z)

)n
. (2.20)

This can be reformulated by defining an operator, the so-called T -operator,

T (z) = V
∞∑
n=0

(
G0(z)V

)n
= V + V G0(z)T (z) , (2.21)

such that

G(z) = G0(z) +G0(z)T (z)G0(z). (2.22)

This final expression is referred to as Dyson equation [26]. This T -operator contains

all the effects of the scattering from the potential V . Using these definitions, the

Lippmann-Schwinger equation can be rewritten as

ψi = φi +G0(εi)T (εi)φi. (2.23)
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vc

(a) (b)

Figure 2.1: Schematic diagrams of the muffin-tin potential. (a) A top-down view of
the potential. The white circles represent the spherically symmetric potentials with
a radius rc and the shaded area which are outside of rc have a constant potential vc
(b) 3D view of the potential.

Let us now proceed to solve the multiple scattering problem. We begin by

considering the potential for the multiple scattering problem, V (r) =
∑

i vi(ri−Ri).

In the following discussion, the muffin-tin approximation will be used, hence vi(ri−
Ri) is a set of single site muffin-tin potentials centred at Ri. Muffin-tin potentials

are spherically symmetric potentials within a certain radius and constant outside.

It is also assumed that these potentials are non-overlapping (see Fig. 2.1).

In order to solve Eq. (2.21), one way is to introduce the scattering path

operator,

τ ij(ε) = viδij +
∑
k

viG0(ε)τkj(ε). (2.24)

This operator gives the scattered wave at the jth site when operated on an incident

wave at the site i. From this, it can be shown that [27]

τ ijL,L′(ε) = ti,L(ε)δijδLL′ +
∑
k 6=i

∑
L′′

ti,L(ε)G0,LL′(Ri −Rk; ε)τ
kj
L′′,L′(ε), (2.25)

where L and L′ are the angular momenta about sites i and j respectively, ti is the

T -operator for the single-site potential vi and G0,LL′ are known as the structure

constants [28]. For a crystal of an element (i.e., pure metal), the ith and jth com-

ponents of τ ijL,L′(ε) will solely depend on the the vector distance Ri−Rj , since tL(ε)

will be the same on every site. Thus a lattice Fourier transform can be performed
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on τL,L′ and G0,LL′ , which are given by

τL,L′(k; ε) =
1

N

N∑
ij

e−ik.(Ri−Rj)τ ijL,L′(ε) (2.26)

and

G0,LL′(k; ε) =
1

N

N∑
ij

e−ik.(Ri−Rj)G0,LL′(Ri −Rj ; ε), (2.27)

where k is restricted to the first Brillouin zone and N is the total number of lattice

sites. With these equations it follows that,

τL,L′(k; ε) =
[
t−1(ε)−G0(k; ε)

]−1
, (2.28)

where G0(k; ε) is the matrix G0,LL′(k; ε) and t−1(ε) is a diagonal matrix with ele-

ments t−1
L (ε).

Eq. (2.3) is very important in deriving what is known as the KKR secular

equation which can be used to determine the band structure of a periodic crystal,

|| t−1
L (ε)δLL′ −G0,LL′(k; ε) || = 0. (2.29)

This secular equation comes from the fact that the divergence of Eq. (2.28) will

indicate the existence of a scattered wave even for stationary states.

Finally, the GF needs to be evaluated in order to complete the DFT self-

consistency approach. It can be shown that the GF can be written as [29]

G(r, r′; ε) =
∑
LL′

ZiL(ri; ε)τ
ij
L,L′(ε)Z

j
L′(r

′
j ; ε)− δij

∑
L

ZiL(r<; ε)J iL(r>; ε), (2.30)

where ZnL and JnL are respectively the regular and irregular solutions to the Schrödinger

equation for the potential vn(rn) with an angular character L = (l,ml). r> and r<

stand for the largest and the smallest of the vectors r and r′, respectively. With

this GF the electron density from Eq. (2.16) can be calculated, which in turn can

be used to calculate the new effective potential. This cycle can be repeated until

self-consistency is achieved.

2.3 Substitutional Disordered Alloys

In a pure metal, the potential described in the preceding section is rather simple, as

the potential is the same at every atomic sites and therefore perfectly periodic. This

10



thesis, however, mainly deals with substitutional disordered alloys, where there are

several types of scattering potential distributed randomly with probabilities propor-

tional to their concentration amongst the lattice sites. This is called substitutional

because the atoms occupy only the lattice sites. The potential for such system is

much more complicated and much cunning is needed in order to advance this part

of the computation.

One can follow some approximation scheme and construct a fictitious system

which produces the average properties of the true physical system. This is heart

of the effective medium approach. In the following discussions, the system will be

simplified to having only two different atoms A and B, and their potential is denoted

by vA(r −Ri) and vB(r −Ri) respectively. This simplification is merely to avoid

the algebra becoming too ponderous and can easily be generalised to having more

than two types of scattering potential.

The simplest model to solve for such disordered alloy is known as the rigid

band model [30]. This model neglects the difference between the two potentials and

thus assumes vA(r) = vB(r). The only difference between the systems is the number

of electrons per atom. This harsh treatment of the alloy may only be applicable to

systems where the elements are immediate neighbours in the periodic table and

carry the same crystal structure [31].

Another simple approach is the virtual crystal approximation (VCA). This

approximation is more sophisticated than the rigid band model, as it includes the

effect of the different of potentials in an average potential weighted by their concen-

trations (i.e., vav(r) = cvA(r) + (1− c)vB(r), where c is the concentration for atom

A). Although VCA has been recognised as an acceptable approximation for alloys,

it still lack many physics associated with alloy systems and it is only reasonable for

alloys with difference between vA(r) and vB(r) small [31].

A more superior model, which removed the limitations of both models de-

scribed above, was later developed. It is a more abstract approach, which was taken

by Soven [32], is to determine the effective medium self-consistently and is known

as the Coherent Potential Approximation (CPA). It has been derived by extending

the KKR method detailed in the previous section, thus the formalism is also called

the KKR-CPA method [33, 34].

We will begin CPA by defining a coherent potential vc(r−Ri) to all lattice

sites. For a site on the lattice, which we will call the central site, there will be a

potential vα(r−Ri), where α is either atom A or B (see Fig. 2.2). A conduction

electron moving in this otherise periodic potential will therefore be scattered by the

potential vα when it reaches the central site. A and B are hence impurities and this

11



c + (1− c) =

Figure 2.2: The construction of the coherent potential. The green circles represent
an effective average potential and the blue and red atoms are atom A and B respec-
tively. This equation indicates that the weighted average over sites A and B with
concentration c is needed to be the same as the average potential.

is equivalent to an impurity problem.

Since the choice of the impurity site is not important as the coherent potential

lattice is translationally invariant, let us assume the impurity is at the 0th site. We

will also define a single-site matrix t̃, which describes scattering due to impurities

in the pure coherent potential lattice and is given by

t̃α,0 = (vα,0 − vc,0) + (vα,0 − vc,0)Gct̃α,0, (2.31)

at the 0th site and Gc is the GF of the pure coherent potential lattice. The average

of t̃α,0 with respect to the occupation α is required to be zero, because by definition,

t̃ will be zero for sites of the effective medium. This means

ct̃A,0 + (1− c)t̃B,0 = 0. (2.32)

From Eq. (2.22), the Dyson equation, Gα can be written in terms of the

free-space GF G0,

Gα = G0 +G0TαG0, (2.33)

where Tα is the total T-matrix for the system, which describes scattering by both

the impurity potential vα and the coherent potential vc. Alternatively, Gα can be

expressed in terms of the GF for the coherent potential lattice Gc,

Gα = Gc +GcTα,0Gc (2.34)

and from Eq. (2.32), it follows that

Gc = cGA + (1− c)GB. (2.35)

Substituting Eq. (2.33) into this equation will result in the total scattering matrix

12



for the pure coherent potential lattice Tc,

Tc = cTA + (1− c)TB, (2.36)

which satisfies

Gc = G0 +G0TcG0. (2.37)

Eq. (2.36) gives the physical interpretation that on average, an impurity potential,

when embedded into the effective medium, will cause no extra scattering. It is also

generally used to define the KKR-CPA [35].

From the definition of our coherent potential, vc is the same on every sites.

Without the impurity, the solution of the Eq. (2.25) is equivalent to that of a pure

metal. So by taking the Fourier transform of Eq. (2.26) back to the real space will

give

τ00
c,L,L′(ε) =

1

ΩBZ

∫ [
t−1
c (ε)−G0(k; ε)

]−1

L,L′dk, (2.38)

where ΩBZ is the volume of the Brillouin zone and t−1
c (ε) is a diagonal matrix with

elements t−1
c,L(ε). Note that tc is the single site t-matrix for the coherent potential

vc.

With the impurity, the scattering path operator, τ00
c,L,L′ will not be in the

same simple form as Eq. (2.38) because now the scattering potentials are dependent

on the site and the t-matrices are given by tiL = tc,L + (tα,L − tc,L)δi0. However, it

is possible to express τ00
α,L,L′(ε) in terms of τ00

c,L,L′(ε) by considering the full matrix

form of the scattering path operators τ ijc,L,L′(ε) and τ ijc,L,L′(ε), which results in [36]

τ00
α,L,L′(ε) =

[
τ00
c

(
1 + (t−1

α − t−1
c )τ00

c

)−1
]
LL′

. (2.39)

Now by using the CPA condition, Eq. (2.36) and identitifying that T =
∑

ij τ
ij ,

a closed set of equations can be formed. It will arrive at

τ00
c,L,L′(ε) = cτ00

A,L,L′(ε) + (1− c)τ00
B,L,L′(ε). (2.40)

This is a self-consistency criterion for the multiple scattering substitutional alloy

problem. This is almost enough to close the loop in the self-consistent calculations.

The final quantities needed are the partially averaged charge densities, nα(r), for

α being atom A and B. nα(r) is defined formally by evaluating the charge density

at a site, then averaging over all possible alloy configurations, with the constraint

that the potential is always vα at that specific site. Recall Eq. (2.16), the electron
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density, this means that nα(r) can be calculated with the GF appropriately averaged

over all possible alloy configurations from Eq. (2.30). This can now close the loop

from the effective potentials to the density and back, completing the self-consistent

field KKR-CPA (SCF-KKR-CPA) scheme.
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Chapter 3

Half-metals

3.1 Heusler alloys and properties of half-metals

Heusler alloys are intermetallic compounds which were first considered by Heusler

in 1903 [37], although half-metallic behaviour of some of them was not discovered

until 1983 by de Groot et al [4]. There are two families of Heusler alloys. First,

the full Heusler alloys, which have the form X2Y Z, where X and Y are normally

transition metals and Z is typically an element from group IVB. They adopt the

ordered L21-type structure, which consists of four interpenetrating face-centered-

cubic (FCC) lattices (see Fig. 3.1a). Secondly, the half Heusler alloys, which were

discovered after the full Heusler alloys, when it was found that it is possible to leave

one of the four sublattices unoccupied and hence they have the form XY Z and the

C1b structure.

Full Heusler alloys do not just exist in L21 structure, they also exist in other

structures, namely the partially disordered B2, the partially disordered D03 and

the fully disordered A2 structures [38]. They still have the same FCC structure,

but for B2, there is disordering between the Y and Z elements, meaning that the

sublattice is randomly occupied by the Y and Z atoms. The B2 structure can

therefore be constructed using the primitive cell or simple cubic (SC) (as shown in

Fig. 3.1). For D03, it is similar to B2 but the disordering is between the X and Y

elements. For A2, the disordering also occurs between X and Y Z sublattices, hence

fully disordered.

The simplest way to explain HMs is via the Kohn-sham electronic density of

states (DOS). HM can be considered as the hybrid between metals and insulators

or semiconductors. In normal metals, the DOS is non-zero at the Fermi level εf ,

which allows electrons to be easily excited above εf or the conduction band, leading
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Figure 3.1: Schematic view of (a) L21 structure. The lattice consists of 4 interpen-
etrating FCC sublattices. The unit cell is an FCC lattice with 4 atoms as the basis:
X1
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and Z

(
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4

)
. a is the lattice parameter. (b)

Simplified B2 structure. This is a primitive cell or a SC as there are no distinctions
between the Y and Z sites now, but replaced by a single YxZ1−x atom, where x is
the concentration of the Y atom. The lattice parameter with respect to the L21

structure is a/2.

Ε f

Ε

(a) Metals

Ε f

Ε

(b) Ferromagnets

Ε f

Ε

(c) Half-metals

Figure 3.2: Schematic representations of DOS for (a) metals, (b) ferromagnets and
(c) half-metals. The shaded areas represent the occupied states at T = 0 and the
arrows denote the spin orientation. Note that the horizontal line is where ε = εf .
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to conduction, as shown in Fig. 3.2a. Insulators are very different as they possess a

large band gap at εf stopping the electrons from being excited into the conduction

band. HM acquire the behaviour of both of these materials since they possess the

DOS of both metals and insulators in separate spin channels (see Fig. 3.2c).

An interesting property of Heusler alloys is that at T = 0, they possess integer

spin magnetisation. In a stoichiometric compound (one that has a formula XaYb,

where a and b are integers), the number of electrons per unit cell N = N↑+N↓ is an

integer [39]. In a HM, the presence of a band gap at εf for one spin channel means

that the last occupied spin up or down band is filled and therefore contains integer

number of electrons. Hence, the spin magnetisation in the units of Bohr magneton

M = N↑ −N↓, must also be an integer. In addition, the spin magnetisation should

follow the Slater-Pauling behaviour, where the spin magnetisation scales linearly

with the number of valence electrons Z. For the half Heusler alloys, it follows the

simple rule that M = Z − 18 and for the full Heusler alloys, it follows the so-called

‘rule of 24‘: M = Z − 24 [40].

Another property is that HMs are ferromagnetic, since all HM are ferromag-

netic. Hence they are also known as half metallic ferromagnets. However, note that

it has also been predicted that HMs can also be antiferromagnetic [41]. For the

scope of this thesis, this will not be discussed further. Ferromagnets are materials

with spontaneous magnetisation or a non-zero spin polarisation, P > 0 [42]. Spin

polarisation at energy ε is defined as [43]

P =
n↑(ε)− n↓(ε)
n↑(ε) + n↓(ε)

. (3.1)

In order to take the account of different transport properties and for comparison

with experimental results, it is often useful that P is weighted by the Fermi velocity,

vf (for ballistic transport) or v2
f (for diffusive transport) [44, 45]:

P =
n↑(εf )vnf,↑ − n↓(εf )vnf,↓
n↑(εf )vnf,↑ + n↓(ε)v

n
f,↓

. (3.2)

In ferromagnetic materials, the DOS for one spin polarity is shifted respect

to the opposite polarity, as shown in Fig. 3.2b. This causes the DOS at εf for

one polarity to differ with respect to that of the opposite polarity and thus from

Eq. (3.1), P > 0. Going back to the DOS for HM, Fig. 3.2c, there is a band gap

for spin down at εf , thus n↓(εf ) = 0, which again from Eq. (3.1) means P = 1 (i.e.,

100% spin polarisation). This band gap emerges from the separation of the bonding

and the anti-bonding states created by the interaction between the d orbitals of the
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higher-valence transition metal atom like Co or Ni and the lower-valence transition

metal atom like Mn or Cr [7, 43].

Ferromagnetic materials do not always have spontaneous magnetisation, their

magnetisation can be destroyed by thermal excitations. This happens at the so-

called Curie temperature TC , which differs between materials, when a ferromagnet

is above this temperature, it will loses its magnetisation and becomes a paramag-

net. The cobalt based full Heusler alloys of the form Co2Y Z have high values of TC ,

which are the type of Heusler alloys studied here. It is believed that by changing

the electron number, more robust HMs could be found, since the electron number

could affects the properties of the alloy such as the Fermi level and band gap.

3.2 HCP and FCC Cobalt

Before we investigate the Heusler alloys, a simple Co structure in hexagonal closed

packed (HCP) and FCC phase were looked at to demonstrate ferromagnetism in

terms of the DOS. The lattice parameters for the HCP structure were taken to

be a = b = 2.503Å and c = 4.0574Å [46]. For the FCC phase, a = 3.548Å [47].

Since cobalt is ferromagnetic, we expect the DOS for the spins to be shifted with

respect to each other, as illustrated in Fig. 3.2b. This is indeed the case, as shown

in Fig. 3.3, both the HCP and FCC phases have their spin down DOS shifted to a

higher energy to that of spin up. The magnetisation, M , per cobalt site was found

to be ∼ 1.5µB for both HCP and FCC. This means that both HCP and FCC are

ferromagnetic. Although the FCC phase is the first phase transition of the stable

HCP phase for Co at T = 720K [47], but cobalt has a much higher TC at 841K [48]

hence its ferromagnetic behaviour persists after this phase transition.

3.3 L21 Co2MnSi and B2 CoMn0.5Si0.5

In this section the standard Co2MnSi which is known to have a 100% spin polarisa-

tion [49] is studied for both L21 and B2 phases. The electronic structure calculations

were performed using the Munich SPRKKR package [15, 16], which is based on the

SCF-KKR-CPA scheme detailed in Chapter 2. The crystal potential was created in

the framework of the LDA and the Vosko, Wilk and Nussair (VWN) formula [50] was

used for the exchange-correlation functional. 10−5 Ry for the largest potential error

and an angular momentum cutoff number lmax = 3 were used on the self-consistent

cycle. The imaginary part of the GF, δ was taken to be 0.0005Ry and the scalar

relativistic approximation was used instead of a fully relativistic calculation, where
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Figure 3.3: Spin polarised DOS for Co, where (a) is the HCP structure and (b)
is the FCC structure. Spin up and spin down are represented by positive and
negative value of the DOS respectively. Both structures have similar DOS, in which
the minority channel is shifted towards the conduction band with respect to the
majority channel, thus demonstrating ferromagnetism.

the spin-orbit coupling effect is neglected [51]. These computational details were

used across all the calculations.

The L21 Co2MnSi was constructed using the FCC structure (see Fig. 3.1a),

with the lattice parameters a = b = c = 5.645Å [49]. The B2 CoMn0.5Si0.5 was

constructed using the SC structure (see Fig. 3.1b), with the lattice parameters half

of that of the L21 structure, a = b = c = 2.823Å. The DOS results from the

calculations are shown in Fig. 3.4. Both structures clearly show a band gap only for

the minority spin. However, the band gap seems to be situated just below the Fermi

level, thus lowering the spin polarisation at the Fermi level. This is unexpected,

since it is contradictory to the fact that Co2MnSi have a 100% spin polarisation and

other published results [49, 52], in which alternative techniques were used. Though,

it is believed that this shift of the Fermi level is a small numerical error.

The spin magnetisation per unit cell for Co2MnSi and CoMn0.5Si0.5 were

calculated to be 5.1738µB and 2.5493µB, respectively. Since the B2 phase has a unit

volume half of the L21 phase, the spin magnetisation will also be halved. Hence for

the same unit volume, the spin magnetisation for the B2 phase is 5.0986µB. Because

the L21 phase contains 29 valence electrons, using the ‘rule of 24’ from the Slater-

Pauling behaviour, one will arrive at the spin magnetisation of 5µB. This means

that the calculations have overestimated the spin magnetisation. This problem is

also related to the shift of the Fermi level, as it causes an increase of minority spin

states at the Fermi level, therefore increasing the spin magnetisation.
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Figure 3.4: Spin polarised DOS for (a) L21 Co2MnSi and (b) B2 CoMn0.5Si0.5.
Spin up and spin down are representated by positive and negative value of the DOS
respectively.

Another point that can be seen is that the band gap is very small, about

0.4eV, compared with the size of 1eV which was calculated by others [49, 52, 53].

This is a well known problem, where the LDA would underestimate the band gap

size by roughly 40% [54]. However, even with this underestimation, both structures

is shown to be nearly half-metallic, and they become half-metallic with a small shift

of the Fermi level. The underestimation of the band gap is not only from LDA but a

general problem of DFT using standard functionals. A more sophisticated approach

such as the many-body pertubation theory in GW-approximation (GWA) [55] could

be used to fix semiconductor band gaps. However, this is not an important fac-

tor since this thesis is not looking to give exact calculations of the half-metallic

properties but just the general trend on the effects of different compositions.

In summary, we have presented the properties of HMs and Heusler alloys,

and how the half-metallicity of materials can be analysed through their DOS. In the

next chapter, using the same SCF-KKR-CPA scheme, we will begin the analysis of

a 5-components alloy, namely CoFexMn0.5−xGaySi0.5−y, in the light of discovering

new potential HMs. Attempts to counteract the problems described in this section

and to extract trends from our results will also be presented.
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Chapter 4

Half-metallicity of

CoFexMn0.5−xGaySi0.5−y

To achieve the desired HM behaviour, it is necessary to investigate how different

concentrations of different elements affect the half-metallicity of the alloy. Here, a

5-components alloy of the form CoFexMn0.5−xGaySi0.5−y was constructed, where x

and y are the concentrations going from 0 to 0.5 for a B2 structure. The alloy was

constructed using the SC structure, hence why the concentrations only go up to 0.5.

For simplicity, the lattice parameter a = 2.823Å was used for all the concentrations.

441 DOS data were simulated, using the computational details specified in previous

section, with different permutations of the concentrations. In order to analyse these

data, algorithms were designed to study the criteria required for HM behaviour.

Due to the errors from the LDA, the algorithms were designed to only look for the

trend from the effect of compositional disorder.

4.1 Band gap analysis

One of the criteria is to have a band gap at the Fermi level εf for the minority

spin channel. As discussed in the previous section that there is a reduction of the

band gap introduced by the LDA calculation. This means that one can not simply

calculate the band gap size because it is not accurate and the reduction can cause

the band gap to close up completely. But we can use the LDA calculations to extract

half-metallic trends. The band gap was studied by integration, which calculates the

number of states in the vicinity of εf . If the alloy does indeed have a band gap, then

the integral should be near or equals to zero. Conversely, if the alloy does not have

a band gap, then the integral will be far from zero.
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Figure 4.1: Band gap analysis for minority spin. The darker and lighter region
correspond to alloys with and without a band gap, respectively. Here, the darker
region is the region of interest.

Individual minority spin DOS data were first linearly interpolated to allow

for better integration, but because of the small error in pinpointing εf , an integration

cannot be performed directly around εf , as the band gap might not be exactly there.

A more sophisticated approach was designed, where the band gap integral is

Ibg = min

{∫ a+k+δ

a+δ
n(ε)dε

∣∣∣∣∣ δ ∈ (0,−a)

}
. (4.1)

This equation select the correct band gap integral by integrating a fixed width strip

with size k, translating this strip and perform the integral again, repeat this until

a + δ = 0, then take the smallest integral value. The values a = −0.5eV and strip

size k = 0.4eV, where the translation step size is +0.05eV, were used to produce

the results shown in Fig. 4.1. These parameters were chosen on the basis of the

lowest value that the valence band maximum can take is about −0.5eV and the

largest band gap size is about 0.4eV. Note that if k is set much smaller than the

largest band gap then larger area of the result would present itself as having a large

band gap. For example, if k = 0.2eV then any band gap more than 0.2eV will have

roughly the same integral.

Fig. 4.1 shows that the lower the concentration of Fe and Ga, the bigger

the band gap. This becomes apparent when taking the DOS from the two opposite
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Figure 4.2: Spin polarised DOS plot of (a) CoFe0Mn0.5Ga0.025Si0.475, where there is
a big band gap, and (b) CoFe0.5Mn0Ga0.5Si0, where there is no band gap.

ends of the graph, as shown in Fig. 4.2. Both Fe and Ga have more electrons than

Mn and Si, respectively, so having higher concentration of them means adding more

electrons. From Fig. 4.2, it seems to suggest that adding more electrons will fill

more states near εf , which causes the band gap to close up. It can also be seen

from Fig. 4.1, that the increase of Fe has a greater impact on the band gap than

the increase of Ga. This can be explained from the fact that the origin of the band

gap is from the interactions between the higher-valence transition metal atom, in

this case the Co, and the lower-valence transition metal atom, in this case the Fe

and the Mn. This means that Fe would play a more important role than Ga for the

induction of the band gap.

4.2 Density of states difference at Fermi energy

Another important criterion is the difference in DOS between spin up and down

at εf . This allows us to gain insights into the magnetisation and polarisation at

εf . Again, due the numerical error in locating εf , it is not possible to take the

difference directly. A simplified approach was used to correct εf , where the new

εf is estimated by finding the lowest value of n↓tot in the vicinity of the original εf .

Then the difference is simply calculated by

IDOS = n↑tot(εf )− n↓tot(εf ). (4.2)

23



0.0 0.1 0.2 0.3 0.4 0.5
Fe concentration

0.0

0.1

0.2

0.3

0.4

0.5

G
a
co
n
ce
nt
ra
ti
on

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

D
O
S
(eV

−
1)

Figure 4.3: DOS difference analysis. The ligher and darker region correspond to
alloys with high and low DOS difference, respectively. Here, the lighter region is the
region of interest.

The range of (εf − 0.5) eV and (εf + 0.5) eV was used to look for the new εf .

The results from this calculation is shown in Fig. 4.3. It shows a similar relation

to the band gap analysis (see Fig. 4.1), where having high concentration of both Fe

and Ga is not ideal, and that there is a greater freedom towards increasing the Ga

concentration. The band gap tends to vanish on the increase of the Fe and the Ga

concentrations, which raises the minority DOS, thus decreasing the DOS difference.

However, there is a possibility that the LDA can cause the band gap to close up

even if the alloy does indeed have a band gap. One cannot also assume that all

the alloys have a band gap and therefore just look at the correlation between the

concentrations and the majority DOS. This is certainly a limitation of using the

LDA. Nevertheless, for illustration of the general trend between the concentrations

and the DOS difference, this is enough.

4.3 Potential half-metals from density of states analysis

With these 2 criteria established, we can combine the values calculated to find the

best candidates for the potential HM. However, if the values are summed together

as they are, it will impose a problem with the weighting. For example, Fig. 4.3 and

Fig. 4.1 show that the DOS difference calculations will be weighted more heavily
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Figure 4.4: Combination of the band gap and DOS difference at εf , where higher
index shows alloys with behaviour closest to or is HM. The lighter region where the
Ga and Fe concentration are low is therefore the region of interest.

than the band gap calculations when summed (i.e., DOS difference is taken to be

more important than the band gap). To resolve this issue, each of the analyses were

rescaled to 0 to 1 before summing, assuming that each one is weighted the same.

They were rescaled via

Irescaled =
I − Imin

Imax − Imin
, (4.3)

where Imax and Imin are the largest and smallest value of the analysis, respectively.

In the following discussion, I will be referred to as the index. This index is

defined as a measure how close a material is to a HM, where the larger the index, the

closer it is to a HM. Note that for the band gap analysis, the calculated values had

to be inverted (i.e., 1− Ibg) before rescaling, because the smallest value represents

the material closest to a HM and the largest value represents the material furthest

from a HM. With the indices rescaled and summed, it will result in Fig. 4.4.

Fig. 4.4 indicates that the best candidates for potential HMs are in the region

where there are low concentrations of Ga and Fe. Moreoever, the half-metallicity

seems to be more sensitive to the increase of Fe than the increase of Ga. This is

just an initial conclusion, it is necessary to look at the transport properties at εf to

further support this conclusion, which is presented in the next chapter.

25



Chapter 5

Transport Properties of Solids

The previous chapter has discussed different methods of analysing the DOS to deter-

mine the best candidates for HM. However, the methods were all based on analysing

the magnetic behaviour of the material and have missed out an important factor, the

electrical conductivity. This chapter will begin by describing the basic theory behind

electrical conductivity, followed by a more refined theory. Then how the transport

properties can be analysed through the Bloch spectral function (BSF) is presented.

Finally, we then continue the investigation into the CoFexMn0.5−xGaySi0.5−y alloy

from Chapter 4.

5.1 Drude model

An early attempt to explain the existence of currents through metals was made by

Weber in 1875 [1]. His idea was that a molecule of a metal consisted of a positive

charged particle orbiting around a negative charged particle and upon application

of an external electromotive force, the orbital radius would increase until the pos-

itive charge leaves the molecule and captured by another molecule. This will then

continue through the metal while the electromotive force is active, thus achieving

a current. The theory of electrical conduction was better understood after the dis-

covery of electrons by J. J. Thomson in 1897 [56].

The first theoretical model of electrical conduction is the Drude model pro-

posed by Drude in 1900 [57], which is an application of kinetic theory. In the

following discussion, let us assume the metal is isotropic. The model assumes that

there are free electrons in a metal forming an ideal gas (i.e., non-interacting point

particles that pursue random motions) and have an average velocity 〈v〉. The elec-

26



trical conductivity σ, from the macroscopic viewpoint is defined by Ohm’s law [58]

J = σE, (5.1)

where J is the current density resulting from an applied electric field E. From the

microscopic point of view, the current density is given by

J = −ne〈v〉, (5.2)

where n is the electron density and −e is the electron charge.

Suppose now that during some time interval dt, there is a probability dt/τ

for an electron to collide with an ion, where τ , for simplicity, is assumed to be a

constant. We will also assume that during the collision, the electron loses all its

energy gained from the electric field and its velocity is random after the collision.

Under these assumptions, the rate of change of 〈v〉 due to the field alone and due

to collisions alone are(
∂〈v〉
∂t

)
field

= −eE
m

and

(
∂〈v〉
∂t

)
coll

= −〈v〉
τ
, (5.3)

respectively. Hence, the following must be satisfied for a steady state,

d〈v〉
dt

=

(
∂〈v〉
∂t

)
field

+

(
∂〈v〉
∂t

)
coll

= 0. (5.4)

From this, it follows directly that the average velocity is given by

〈v〉 =

(
− eτ

m

)
E. (5.5)

This average velocity due to an electric field is also known as drift velocity. It can

be shown from Eq. (5.2) and Eq. (5.5) that the conductivity is given by

σ = ne2τ/m. (5.6)

This equation form the basis of Drude model for electrical conductivity.

Going back to the rate of change of the drift velocity due to collisions alone,

Eq. (5.3), the solution is

〈v(t)〉 = 〈v(0)〉e−t/τ . (5.7)

The physical meaning of this equation is that if an electric field is suddenly switched

off at t = 0, where the electrons at that time have a drift velocity of 〈v(0)〉, the
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drift velocity will gradually approach zero. This means that τ is the relaxation time,

because of the exponential nature of Eq. (5.7).

In our case where the velocity after collision is random, the relaxation time

can also be considered to be the mean free time of the collisions or the lifetime of the

electrons. This will be shown as follows. Let P (t) and P (t+ dt) be the probability

that an electron has not collided again after t and t+ dt seconds, respectively, after

a collision has occurred. One can write

P (t+ dt) = P (t) + (dP/dt)dt (5.8)

and may also write

P (t+ dt) = P (t)P (dt) = P (t)(1− dt/τ), (5.9)

where 1 − dt/τ represents the probability for an electron not to collide during the

interval dt. From the last two equations and the fact that P = 1 for t = 0, it follows

that

P (t) = e−t/τ . (5.10)

Hence the mean free time between collisions is

〈t〉 =

∫ ∞
0

t(dP/dt)dt = τ. (5.11)

It must be emphasized that this definition of the mean free time, that it is

identical to the relaxation time, is only true if the velocity after collision is random.

If the scattering is not isotropic, the relaxation time can easily be shown to be

τ = τc/(1− 〈cosβ〉), (5.12)

where τc is the mean free time between collisions and 〈cosβ〉 is the average of the

cosine of the scattering angle.

The drastic assumption that the electrons form an ideal gas is a very crude

treatment, as they are now known to follow the Fermi-Dirac distribution and have

noticeable interactions. However, we shall see later that by using a more sophisti-

cated method, for certain cases, it can be well modelled by Drude model.
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5.2 Boltzmann transport equation

The usage of average properties such as the average velocity and the relaxation time

solely, as used by the Drude model, is rarely possible in strict analysis of transport

phenomena. It is more instructive to look at the spatial coordinates of the electrons

and how many are travelling to the left and right with a certain velocity. Therefore

it is necessary to determine a distribution function for the electrons for a given

external field.

For simplicity, the following discussion will only be in 1 dimension. Let us

assume there exists a distribution function f(rx, px; t) that determines the probabil-

ity that a state is occupied at some particular position rx, momentum px and time

t. For ballistic transport, where scattering does not occur, it will follow Liouville’s

theorem [59] that along any trajectory in phase space, the distribution function is

invariant, i.e., df/dt = 0. The total derivative is thus

df

dt
=
∂f

∂t
+
∂f

∂rx

drx
dt

+
∂f

∂px

dpx
dt

=
∂f

∂t
+
∂f

∂rx
vx +

∂f

∂px
Fx = 0, (5.13)

where Fx = dpx
dt , the force in the x-direction. This can be generalised to 3 dimensions

and writing p = h̄k, giving

∂f

∂t
+ v · ∇rf + F · ∇kf = 0. (5.14)

In the presence of scattering, there will be electrons scattering into and out

of a certain state, which would change the probability of that state being occupied.

Hence, the zero from Eq. (5.14) would be replaced by some net rate of change of

states. If we let [∂f/∂t]scatt be this rate of change, then we can write

∂f

∂t
+ v · ∇rf + F · ∇kf =

[
∂f

∂t

]
scatt

. (5.15)

For a steady state ∂f/∂t = 0. The force F is from the effect of the external electric

E and magnetic fields H and is defined as

F = − e
h̄

(
E +

1

c
v ×H

)
. (5.16)

This will result in

v · ∇rf −
e

h̄

(
E +

1

c
v ×H

)
· ∇kf =

[
∂f

∂t

]
scatt

, (5.17)
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which is the Boltzmann transport equation in its general form [2].

The scattering term is what makes the Boltzmann equation difficult. In

order to find an expression for this scattering, suppose that W (k,k′) is the intrinsic

probability that an electron makes a transition from the state k to state k′. To

include the effect of the exclusion principle, we must multiply W (k,k′) with f(k),

the chance of an electron being occupied in the initial state k, and 1 − f(k′), the

chance for the final state k′ being vacant initially. Hence, the probability of a

transition into k′, if k′ lies in the range of dk′ is

P(k,k′)dk′ = f(k)
{

1− f(k′)
}

W (k,k′)dk′. (5.18)

A similar relation can be written for the transition from k′ to k,

P(k′,k)dk′ = f(k′)
{

1− f(k)
}

W (k′,k)dk′. (5.19)

The net change in f is simply the difference between these two expressions and sum

over all the states k′, that is,[
∂f

∂t

]
scatt

=

∫ [
W (k′,k)f(k′)

{
1− f(k)

}
−W (k,k′)f(k)

{
1− f(k′)

}]
dk′. (5.20)

In equilibrium, we can write f as the Fermi-Dirac distribution function f0

and Eq. (5.20) must vanish, thus we can define a function W (k,k′) to be

W (k,k′) = eEk′/kTW (k,k′) = eEk/kTW (k′,k). (5.21)

If we assume that when a current is present, the transition probabilities are the

same as that of in equilibrium state. Then, it will result in[
∂f

∂t

]
scatt

=

∫
W (k,k′)

[
e−Ek/kT f(k′)

{
1− f(k)

}
− e−Ek′/kT f(k)

{
1− f(k′)

}]
dk′. (5.22)

When W (k,k′) is known, the formal theory of electrical conductivity is involved

with the solution of Eq. (5.17) and Eq. (5.22).

In order to get an idea of the form of the conductivity, we will again as-

sume there exists a time relaxation, as described in the preceding section, so that
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[∂f/∂t]scatt takes the form [
∂f

∂t

]
scatt

= −(f − f0)

τ
. (5.23)

Furthermore, we will assume H = 0, ∇rf = 0 and can neglect terms in E2, because

the electric field is always small in a metal. Writing f = f0 from Eq. (5.17) and the

above definition of the time relaxation will result in

f = f0 +
e

h̄
τE · ∇kf0 = f0 + eτv ·E∂f0

∂ε
. (5.24)

With this, we can calculate the current density using

J = − e

4π3

∫
vfdk = − e2

4π3

∫
τv(v ·E)

∂f0

∂ε
dk. (5.25)

From Ohm’s law, Eq. (5.1), the conductivity tensor is therefore

σ = − e2

4π3

∫
τvv

∂f0

∂ε
dk. (5.26)

This is a tensor, meaning that the conductivity can be different for different direc-

tions (i.e., an anisotropic material).

The integral from Eq. (5.26) can be evaluated by considering the k-space to

be divided up by the set of surfaces ε(k) = constant. If dk is an element contained

between the surfaces ε and ε+ dε, then

dk = dSdε/(dε/dn), (5.27)

where dS is an element of surface and dε/dn is the normal derivative of ε, which is

also dε/dn = |∇kε|, and thus

σ = − e2

4π3

∫
∂f0

∂ε
dε

∫
τvv

|∇kε|
dS, (5.28)

where the first integral with respect to ε can be calculated by the use of the asymp-

totic formula to any order [2],

−
∫ ∞

0
φ(ε)

∂f0

∂ε
dε = φ(εf ) + 2

∞∑
n=1

c2n(kT )2nd
2nφ(εf )

dε2nf
, (5.29)
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where c2n =
∑∞

s=1[(−1)s+1/s2n]. The first order approximation is

σ = − e2

4π3

∫
ε=εf

τvv

|∇kε|
dS. (5.30)

With the conductivity in this form, it can be seen that by finding the relaxation

time and the velocity of the electrons at the Fermi surface, the conductivity can be

found. Another useful quantity that we could consider is the mean free path of the

electrons, the average distance it travels between collisions, which is simply

Λ = τv. (5.31)

Under isotropic conditions, the conductivity tensor becomes a scalar and would

arrive back at the Drude model, Eq. (5.6).

5.3 Bloch spectral function

To look at the transport properties of the alloy, we turned to the Fermi surface. For

defining this surface, a useful tool is the Bloch Spectral Function (BSF), which is

related to the Fourier transformed averaged GF for the electrons [15, 60, 61], given

by

AB(k; ε) = − 1

πN

N∑
i,j

eik(Ri−Rj) Im Tr

∫
Ω
〈G(r + Ri, r + Rj ; ε)〉dr, (5.32)

where i, j are lattice site indices and the integration is over the unit cell volume at

the origin. From this expression, one can be seen as a k-resolved DOS function,

n(ε) =
1

ΩBZ

∫
AB(k; ε)dk, (5.33)

because the imaginary part of the GF is associated to the DOS [60]. Within the

KKR-CPA formalism, AB(k, ε) is given as [29]

AB(k; ε) = − 1

π
Im Tr

[
F cτCPA(k; ε)

]
− 1

π
Im Tr

[
(F c − F cc)τ iiCPA

]
, (5.34)

where the matrices F c and F cc are defined in terms of the overlap integrals [60]

FL,L′,αβ =

∫
Ω
ZL,α∗(r; ε)ZL′,β∗(r; ε)dr (5.35)
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plane shows a slice of the cell spanned by the vectors k1 = (1 0 0) and k2 = (0 1 0),
also known as the Γ-X×Γ-X plane.

and the matrices τCPA(k; ε) and τ iiCPA are analogous to Eq. (2.38).

For ordered systems (i.e., perfect crystal), the BSF is a set of δ-functions,

AB(k; ε) =
∑
n

δ(ε− εn(k)), (5.36)

where n is the band index and εn(k) is the Bloch energy eigenvalue, which bears the

same information as the usual dispersion relation. By fixing ε and going through k,

we will pick up some δ peaks at the energy eigenvalues. Repeating this for other ε

values and picking up more δ peaks, the complete band structure picture would be

found. The BSF is therefore an alternative way of representing the band structure

with broadening according to the imaginary part of ε. As an example, the BSF of

the ordered L21 Co2MnSi is shown in Fig. 5.2a with the band structure well defined

by the peaks of the BSF with small broadening.

For disordered systems, the more electron scattering by impurities, the wider

the BSF [62]. With this broadening, the band structure is defined by the position

of the peaks of the BSF. To demonstrate this, Fig. 5.2b shows the BSF of the B2

CoMn0.5Si0.5, where the peaks are very wide from the disordering, in contrast with

the L21 Co2MnSi shown in Fig. 5.2a. However, the position of the peaks can still

be interpreted as the band structure. If the effect of the disordering is somewhat
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Figure 5.2: BSF of (a) L21 Co2MnSi from an FCC lattice along the path Γ-∆-X and
(b) B2 CoMn0.5Si0.5 from a primitive cell lattice along the path Γ-∆-X-Y-M. The
symmetry points and lines of a primitive cell are indicated the same as in Fig. 5.1.
Both (a) and (b) used δ = 0.001.

weak or moderate, it can be considered that it takes the form of a Lorentizian,

f(x;x0,Γ, I) = I

[
Γ2

(x− x0)2 + Γ2

]
, (5.37)

where x0 is the position of the peak, I is the value at x0 and Γ is the full width at

half maximum (FWHM). For a fixed k wavevector, Γ would be in energy and it is

interpreted as an inverse lifetime [63],

τ =
h̄

Γ
. (5.38)

The Fermi surface is defined as the locus of the peaks at energy ε = εf .

Fig. 5.3 shows the BSF ofB2 CoMn0.5Si0.5 sliced by the Γ-X×Γ-X plane (see Fig. 5.1)

through the Fermi surface. It can be seen that at the Fermi surface, the BSF can

still be considered to take the form of a Lorentizian, but instead of Γ representing

the inverse lifetime, it can now be interpreted as the inverse of the mean free path

of the electrons in real space,

Λ =
1

Γ
. (5.39)

Since the conductivity, as suggested by Eq. (5.30), is directly proportional to the

mean free path, a sharp BSF would indicate a high conductivity. Fig. 5.3 shows the

spin up channel to have high conductivity because of the sharp BSF peaks, whereas
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Figure 5.3: BSF of B2 CoMn0.5Si0.5 sliced by the Γ-X×Γ-X plane (as indicated on
Fig. 5.1) through the Fermi surface, where (a) shows spin up and (b) shows spin
down.

the Mn-Si disorder has a large effect on the spin down channel and reduces the

conductivity.

5.4 Fermi velocity

This section will continue the discussion from Chapter 4 to find the best candidates

for HM. So again, the 5-components alloy of the form CoFexMn0.5−xGaySi0.5−y

was constructed, but instead of using the DOS data, BSF data were simulated with

different permutations of the concentrations. For each concentration, 10 even cuts

by the Γ-X×Γ-X plane from (εf−0.004)Ry to (εf +0.005)Ry of BSF were simulated,

where εf was taken to be 0.8652Ry for all the concentrations. Each cut gives pictures

such as Fig. 5.3. The reason for the cuts at the Fermi level, εf is because it allows us

to calculate quantities such as the velocity and the mean free path of the electrons at

the Fermi surface. The small range of 0.01Ry around εf was chosen, because having

a larger range may start to include other bands (this can be see from Fig. 5.2b),

which will interfere with the calculations. Having a smaller range, we may not even

observe changes with the BSF.

The velocity at the Fermi surface, known as the Fermi velocity was first

analysed in the light of Eq. (5.30), since it states that the conductivity increases with

the Fermi velocity. Recall the condition that a HM must only conduct electricity in

one spin channel, so we are particularly interested at the minority spin where the

band gap is and whether it has zero or at least close to zero Fermi velocity. The
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Figure 5.4: Minority spin BSF at ky = 0 of B2 CoMn0.5Si0.5 sliced by the Γ-X×Γ-
X plane through the Fermi surface at ε = (εf − 0.004)Ry, (εf − 0.002)Ry, εfRy,
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respectively. This demonstrates how the BSF is moving outward from kx = 0.5 as
the energy increases.

Fermi velocity was calculated using

Ivf =
∆E

∆k
, (5.40)

where ∆E is the total change in energy (in this case, 0.01Ry) and ∆k is the total

change in position of the peak that we are “tracking” in k-space. Note that the

atomic units were used, hence h̄ vanished from our calculation of the velocity.

In order to track the motion of the BSF, a much simplified approach was

taken. Only the motion of a single strip of the BSF at ky = 0 was considered.

Fig. 5.4 is an example of this BSF at ky = 0, where the movement is clearly shown

by the different coloured plots. The problem was further simplified by having only

one of the peaks tracked. This is done by cropping the data to only range from

kx = 0 to kx = 0.5. Then ∆k is taken to be the absolute value of the difference in

the position of the peak at ε = (εf − 0.004)Ry and ε = (εf + 0.005)Ry, i.e.,

∆k =
∣∣ kpeak(εf + 0.005)− kpeak(εf − 0.004)

∣∣. (5.41)

The cropping of the data and tracking only a single peak can be justified by the

assumption that the BSF is symmetric at kx = 0.5, which is shown by figures such

as Fig. 5.3 and Fig. 5.4.

Fig. 5.5 shows the result of the calculations from the above procedure for

the minority spin. This is a rather interesting result, as a pattern does emerge to
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Figure 5.5: Fermi velocity analysis for minority spin. The lighter and darker region
correspond to alloys with higher and lower Fermi velocity, respectively. Here, the
darker region is the region of interest.

some extent, where low Fe concentration is more preferable. However, it can be seen

that most values of the Fermi velocity are the same and the pattern only arises by

some fluctuations of the calculation. It is therefore very hard to conclude, from our

model, the correlation between the different concentrations and the Fermi velocity.

This certainly showed the limitation of our simplification to the calculation. To

improve this results, one can simulate much higher resolution of BSF data. The

most accurate way to get the Fermi velocity, however, would be to sample the

motion of the whole BSF as a function of energy, but this approach could not be

used because the BSF does not contain enough information about the exact direction

the carriers are travelling at different points. For example, the peak at kx = 0 was

found to be moving in the ky direction instead of kx, as in our case.

This analysis was also applied to the majority spin, since the conductivity for

this spin channel is also of importance as higher conductivity is more preferable for

this spin channel. Instead of using a single strip of BSF at ky = 0, the strip at ky = 1

had to be taken because Fig. 5.3a clearly shows that the peaks for the majority spin

is mainly situated at ky > 0.5. Fig. 5.6 shows the result of the calculations for the

majority spin. This is a very different result compared to the minority spin. A clear

pattern emerges where the increase of Fe and Ga concentrations increases the Fermi

velocity and hence the conductivity. This is can be explained by the fact that both

Fe and Ga have higher conductivity than Si and Mn, respectively.
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Figure 5.6: Fermi velocity analysis for majority spin. The lighter and darker region
correspond to alloys with higher and lower Fermi velocity, respectively. Here, the
lighter region is the region of interest.

5.5 Mean free path

To gain complete insite to the conductivity, the mean free path is also needed.

As discussed in Chapter 5.3, the mean free path can be calculated by taking the

FWHM, Γ of the peaks of the BSF,

IΛ =
1

Γ
. (5.42)

The same BSF data detailed in the previous section was used for this calculation,

including taking only a single strip of BSF at ky = 0. We again assumed the

symmetry and therefore only one of the peaks was considered. To calculate Γ,

a Lorentzian, Eq. (5.37) was fitted using least squares fit to the BSF. However,

Fig. 5.4 shows that smaller peaks are forming on the two sides, thus it can pose a

problem with the fitting. In order to overcome this problem, further cropping of

the data was done, such that the peak is positioned in the middle and the width of

the data is the distance from the position of the original peak to kx = 0.5 doubled.

Fig. 5.7 shows the effect of the cropping and the Lorentzian fit. It can be seen that

the cropping would still include part of the smaller peak formed on the left. As a

result, the width of the Lorentzian is slightly larger than the data. Nonetheless, the

difference is negligible.
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Figure 5.7: The cropped BSF from Fig. 5.4 at ε = εf − 0.004Ry. The BSF data and
the fitting is shown in blue and red, respectively.

Γ automatically arises from the fitting and hence the mean free path. The

mean free path was calculated for the 10 slices of BSF at ε = (εf − 0.004)Ry to

ε = (εf + 0.005)Ry and the average was taken to get the final value. We once again

performed the calculations for both the minority spin and the majority spin. Fig. 5.8

shows the results for the minority spin. Since we are looking for small mean free

path or small conductivity in this channel, it shows that increasing Ga concentration

is not desirable, whereas it is insensitive to the increase of Fe concentration. This

result is unexpected because from the band gap analysis in Chapter 4.1, it shows that

the band gap would vanish for high Fe concentration, meaning that the conductivity

would increase with the Fe concentration.

Fig. 5.9 also shows a rather unexpected results for the majority spin. It

shows that it is more preferable to have low Fe and Ga concentrations. Although

this seems to show the same correlation as the DOS analysis in Chapter 4, this

shows a contrary result to the Fermi velocity analysis from the previous chapter,

where the conductivity increases with the Fe and Ga concentrations. However, both

problems from the minority spin and the majority spin might be related to the shift

of the Fermi level. A more sophisticated approach could be employed by using the

DOS data to correct the Fermi level, then calculate the BSF around the corrected

Fermi level. Although it could again be caused by the simplification that only a

single strip of the BSF was used, whereas the full BSF should be sampled instead.
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Figure 5.8: Mean free path analysis for minority spin. The ligher and darker region
correspond to alloys with higher and lower mean free path, respectively. Here, the
darker region is the region of interest.
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Figure 5.9: Mean free path analysis majority spin. The ligher and darker region
correspond to alloys with higher and lower mean free path, respectively. Here, the
lighter region is the region of interest.
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Chapter 6

Candidates for Potential

Half-metals

Fig. 6.1 shows the correlation between the concentrations and the half-metallicity of

the CoFexMn0.5−xGaySi0.5−y alloys. It was calculated by summing the calculations

from the band gap analysis in Chapter 4.1, DOS difference εf in Chapter 4.2 and

the mean free path analysis in Chapter 5.5. They were assumed to be weighted

evenly, thus using the rescaling method described in Chapter 4.3. Note that the

result from the Fermi velocity calculations in Chapter 5.4 was ignored because it is

not correlated.

It was found that the B2 CoFe0.5Ga0.5 was furthest from a HM. This result

is consistent with the experimental work by Varaprasad et al. [10], in which they

reported the Co2FeGa alloy in both L21 and B2 structures not to be a HM. In

addition, we can see a similar trend from their spin polarisation calculations to some

extent, that the low Fe and Ga concentrations are more preferable. For example, the

Co2Mn(Ga0.25Si0.75) was found to have spin polarisation of 0.63 and the increase

of the Ga concentration to 1 would reduce the spin polarisation to 0.6, similarly

with the increase of Fe concentration. As a surprise, though, the Co2MnSi and

Co2(Mn0.5Fe0.5)Ga shows a low and high spin polarisation, respectively, which is

in contrast with our calculations. This could be caused by the effect of the B2

disordering, since their measurements were done for the L21 phase.

It must be emphasised that our calculations only illustrate the general trend

for the effects of compositional disorder affect one spin channel more than the other

which promotes HM behaviour, and not to calculate exactly which material is a

HM. From Fig. 6.1, it is clear that the increase of the Fe or the Ga concentration

would cause the half-metallicity to disappear, therefore the half-metallic property of
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Figure 6.1: Combination of the band gap analysis, DOS difference at εf and the
mean free path calculations, where higher index shows alloys with behaviour closest
to a HM. The lighter region where the Ga and Fe concentrations are low is therefore
the region of interest. Some related alloys in L21 phase measured by Varaprasad et
al. [10] using the PCAR technique are also plotted along with their spin polarisation.

CoFexMn0.5−xGaySi0.5−y is more robust for low Fe and Ga concentrations. It can

also be seen that the increase of Fe concentration can cause the HM behaviour to

vanish quicker than the increase of Ga concentration.
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Chapter 7

Conclusions and Outlook

In this thesis, we have presented the analysis of the half-metallicity of a new series

of Co-based alloys with B2 disordering, CoFexMn0.5−xGaySi0.5−y (0 < x < 0.5,

0 < y < 0.5). The 5-components alloys were investigated using ab initio calcula-

tions, where techniques were developed to extract the half-metallic properties from

their DOS and BSF. In Chapter 4 we presented the first set of analyses using the

DOS. The first method developed involves finding a spin down band gap through

calculating the number of states around the Fermi level. The second method de-

veloped calculates the spin up-spin down difference at the Fermi level. These two

methods at no stage assumes the accuracy of the DOS calculation. In fact, both

methods were developed to only give a general overview of the correlation between

the concentrations and the half-metallicity. Exact calculation of the band gap size

and the spin polarisation were not used, therefore problems such as the band gap

problem introduced by the LDA can be avoided. The analyses of the DOS alone

show that the alloys with low concentrations of both Fe and Ga can be potential

candidates for HM. Moreover, the half-metallicity drop more rapidly for the increase

of Fe concentration compared to the increase of Ga concentration.

Another 2 methods of quantifying the half-metallicity from BSF were devel-

oped, which is outlined in Chapter 5. These two methods involves in finding the

Fermi velocity and the mean free path from slices of the BSF at the Fermi level.

As both quantities require much cunning to calculate accurately, simplification of

the BSF was needed. The Fermi velocity calculations show the limitations of the

simplification, where the correlation is not well defined. Due to this problem, the

Fermi velocity calculations were not considered further. Although, the mean free

path calculations show a better correlation, the correlation seems to be inconsistent

with the band gap analysis, where the increase of Fe concentration should have
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destroyed the band gap, thus increasing the mean free path, as its opposite in our

case. Nevertheless, in Chapter 6 we have combined the calculations from the DOS

analysis and the mean free path calculations to conclude that it is most desirable to

have low concentrations of Fe and Ga for spintronics applications. This is indirectly

supported by the experimental work done by Varaprasad et al. [10].

The use of the LDA for the exchange correlation functional is because it

is fast and this thesis is not looking to give exact calculations of the half-metallic

properties. Nonetheless, it is preferable to seek for better electronic structures calcu-

lations to support our conclusion. The problem with the shift of the Fermi level can

be fatal in determining the half-metallicity, because the location of the band gap is a

very important factor in HMs. There are many other approximation schemes which

can provide significant improvement over LDA can be used, such as the generalised

gradient approximation (GGA) [64, 65], GWA [55] and the self-interaction correc-

tion (SIC) method [66]. Using these methods will definitely improve the quality of

the results. However, it must be stressed that attemts were made to reduce the lim-

itations of the LDA and the analyses were designed to only give a general overview.

The trends from all the analyses presented will change, but not drastically. Hence

the conclusions will not necessarily change.

There are still plenty of scope for extensions of the methods. If possible, a

more sophisticated approach which can remove the needs for the simplification of

the BSF in order to calculate the transport properties would be favourable. The

versatility of the methods developed in this thesis should be emphaised. It can

be considered as general techniques to quantify half-metallicity and can be applied

on to other alloys. To conclude, the analysis on multi-components alloys can pro-

vide experimentalists a framework to guide the growth of HM. Furthermore, the

analytical methods developed in this thesis can spur new investigations into other

compounds in the light of disovering new HMs.
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