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Abstract

T2K is a neutrino oscillation experiment using an off-axis beam of muon neu-

trinos to study rates of (−)
ν µ →

(−)
ν µ and (−)

ν µ →
(−)
ν e. We use its ND280 near detector

to make measurements of neutrino interactions in argon gas. Long baseline neutrino

experiments are approaching the point of being limited by systematic uncertainties

on neutrino-nucleus cross sections rather than only statistics. This makes it imper-

ative for a proper understanding of such processes to reduce their uncertainties. A

gas interaction analysis provides a way to gain such an understanding.

This thesis describes the first successful neutrino–nucleus cross section mea-

surement performed on gas. The TREx reconstruction algorithms developed for this

goal feature a novel path finding based pattern recognition algorithm and have now

become the official TPC reconstruction software for the T2K experiment. The anal-

ysis itself uses real data and Monte Carlo based on the NEUT and GENIE neutrino

interaction generators. It extracts a cross section for charged current quasi-elastic νµ
interactions on argon, integrated over the T2K flux, of σ40Ar

νµCC = (4.19± 0.70(stat)±

1.04(sys))× 10−39 cm2 or σ40Ar
νµCC = (4.61± 0.78(stat)± 0.94(sys))× 10−39 cm2, de-

pending on the simulation used for efficiency and purity calculations.

The distributions of these results with respect to muon and proton kinematics

and proton multiplicity are discussed in the context of differences between the two

generators. The ND280 TPCs have the advantage of detailed reconstruction which

affords unique opportunities to test the agreement with data of nuclear models used

in simulation. Future generations of this analysis are expected to produce more

varied and precise measurements in this vein.
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The following abbreviations are used through the thesis and presented here for
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• AGKY model: Model for hadronisation.
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• CCQE: Charged Current Quasi-Elastic.

• CDHSW: Cern-Dortmund-Heidelberg-Saclay-Warsaw.

• CERN: Conseil Européen pour la Recherche Nucléaire, now European Orga-

nization for Nuclear Research.

• CHARM: CERN-Hamburg-Rome-Moscow.

• CHORUS: CERN Hybrid Oscillation Research apparatUS.
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• CHOOZ: Not actually an acronym despite often being capitalised; comes

from the Chooz region and nuclear power plant.

• CORSIKA: COsmic Ray SImulations for KAscade.

• DIS: Deep Inelastic Scattering.

• DONUT: Direct Observation of the NU Tau.

• Double-CHOOZ: See CHOOZ.

• DUNE: Deep Underground Neutrino Experiment.

• ECal: Electromagnetic CALorimeter.

• EM: ElectroMagnetic.

• E531: Generic Fermilab experiment number.

• FGD: Fine Grained Detector.

• FLUKA: FLUktuierende KAskade.

• FNAL: Fermi National Accelerator Laboratory.

• GALLEX: GALLium EXperiment.

• GEANT / Geant: GEometry ANd Tracking.

• GENIE: Generates Events for Neutrino Interaction Experiments.

• GNO: Gallium Neutrino Observatory.

• GRV98: Glück-Reya-Vogt 1998.

• HIP: Highly Ionising Particle.

• HighLAND: HIGH Level Analysis at the Near Detector.

• Hyper-Kamiokande: See Kamiokande.

• HV cluster: Horizontal or Vertical cluster.
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• ICAL: Iron CALorimeter.

• ICARUS T600: Imaging Cosmic And Rare Underground Signals (ICARUS)

detector filled with ∼ 600 tonnes of liquid argon.

• ILL: Institut Laue-Langevin.

• IMB: Irvine-Michigan-Brookhaven.

• INGRID: Interactive Neutrino GRID.

• INO: India-based Neutrino Observatory.

• J-PARC: Japan Proton Accelerator Research Complex.

• JNUBEAM: J-PARC ν BEAM.

• JUNO: Jiangmen Underground Neutrino Observatory.

• Kamiokande: KAMIOKA Nucleon Decay Experiment.

• KamLAND: KAMioka Liquid scintillator Anti Neutrino Detector.

• KARMEN: KArlsruhe Rutherford Medium Energy Neutrino.

• KEK: High Energy Accelerator Research Organization (the abbreviation works

better in Japanese).

• KM3NeT: km3 NEutrino Telescope.

• K2K: KEK-to-Kamioka (see KEK).

• LArTPC: Liquid ARgon TPC.

• LAMPF: Los Alamos Meson Physics Facility.

• LINAC: LINear ACcelerator.

• LSND: Liquid Scintillator Neutrino Detector.

• MACRO: Monopole, Astrophysics and Cosmic Ray Observatory.
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• MINOS: Main Injector Neutrino Oscillation Search.

• MINOS+: See MINOS.

• MEC: Meson Exchange Current.

• MiniBooNE: (Mini-) BOOster Neutrino Experiment.

• MicroBooNE: (Micro-) BOOster Neutrino Experiment.

• MINERVA: Main INjector ExpeRiment for ν-A.

• MINUIT: A tool for finding the minimum value of a multi-parameter func-

tion.

• MIP: Minimum Ionising Particle.

• MPPC: Multi-Pixel Photon Counter.

• MR: Main Ring.

• MSW effect: Mikheyev-Smirnov-Wolfenstein effect.

• MUMON: MUon MONitor.

• mwe: Meter Water Equivalent.

• NA61/SHINE: CERN experiment NA61; SPS Heavy Ion and Neutrino Ex-

periment.

• NC: Neutral current.

• ND280: Near Detector at 280 m.

• NEOS: NEutrino Oscillation at Short baseline.

• NEUT: Neutrino interaction generator used by T2K.

• NOMAD: Neutrino Oscillation MAgnetic Detector.

• NuMi: ν at the Main Injector.
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• NOνA: NuMi Off-axis νe Appearance.

• npnh: n Proton n Hole.

• NUSEX: NUcleon Stability EXperiment.

• NuTeV: ν at the TEVatron.

• OPERA: Oscillation Project with Emulsion tRacking Apparatus.

• ORCA: Oscillation Research with Cosmics in the Abyss.

• P0D: Pi-Zero Detector.

• PAI: PhotoAbsorption Ionisation model.

• PDF: Probability Density Function.

• PID: Particle IDentification.

• PINGU: Precision IceCube Next Generation Upgrade.

• PMNS matrix: Pontecorvo-Maki-Nakagawa-Sakata matrix.

• PROSPECT: Precision Reactor Oscillation and SPECTrum.

• PYTHIA: Code for simulating hadronic interactions.

• PYTHIA/JETSET: Combination of two sets of code for simulating hadronic

interactions.

• QE: Quasi-Elastic.

• RCS: Rapid Cycling Synchrotron.

• RENO: Reactor Experiment for Neutrino Oscillation.

• RENO-50: RENO (see RENO), located ∼ 50 km from a reactor.

• ROOT: Not an acronym despite capitalisation.

• SAGE: Soviet-America Gallium Experiment.
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• sbcat: SciBar Cellular AuTomaton.

• SBND: Short Baseline Near Detector.

• SciBooNE: SciBar BOOster Neutrino Experiment.

• SciBar: SCIntillator BAR.

• SMRD: Side Muon Range Detector.

• SNU: Solar Neutrino Unit.
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• SNO+: See SNO.
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INO.

• SPS: Super Proton Synchrotron.

• SRIM: Stopping Range of Ions in Matter.

• Stereo: Search for sterile neutrinos at ILL reactor.

• Super-Kamiokande: See Kamiokande.

• T2K: Tōkai-to-Kamioka.

• TPC: Time Projection Chamber.

• t0: Absolute time used to calculate x position in an ND280 TPC.

• TREx: TPC Reconstruction EXtension.

• UA1: Underground Area experiment 1, the CERN experiment from which
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• WLS fibre: WaveLength Shifting fibre.

• 2p2h: Two Proton Two Hole.
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Chapter 1

Historical Background

The history of the theory and discovery of neutrinos has been discussed in a plethora
of works for both lay and scientific audiences, (see for example [1][2][3]).

Wolfgang Pauli first postulated the existence of what is now known as the
neutrino in 1930. At the time his ‘desperate remedy’ was needed to patch up
some problems with energy conservation and spin statistics in β decay. The energy
conservation issue was most troubling to physicists at the time; the products of two
body decays should be monochromatic but β decay electrons were observed with a
continuous spectrum of energies.

The neutrino was by no means the only proposed explanation. Niels Bohr
was prepared to accept violation of conservation of energy rather than the addition
of a third wheel to the existing model of protons and electrons[4] and more exotic
models were also proposed. Pauli himself was somewhat reluctant to publish the
proposal, mainly discussing it at conferences.

A new electrically neutral particle became less unwelcome following the dis-
covery of the neutron, as a result of which Pauli’s particle was called the ‘neutrino’.
Enrico Fermi’s β decay theory[5][6] incorporated this neutrino. Despite growing
theoretical acceptance it looked like the neutrino was to all intents and purposes in-
visible from an experimental standpoint. Pauli himself wagered a box of champagne
against its detection. It would be a quarter of a century before he had to pay up.

Since they were first proposed, neutrinos have necessitated increasingly clever
and intricate experiments as researchers attempt to uncover more and more of their
properties. This chapter looks at noteworthy experiments leading up to the discovery
of neutrino oscillations, as well as providing background and motivation to the
theories discussed in Chapter 2 and modern experiments discussed in Chapter 3.
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1.1 The search for neutrinos

We know from the invisible decay width of the Z boson that there are at most three
flavours of light (mass < 1

2mZ), active (weakly interacting) neutrinos[7]. Confirming
their existence through experiment was not easy. The electric neutrality of neutri-
nos makes them inherently difficult to observe, hence the early pessimism over the
chances of detecting them. Experimentalists nonetheless found ways around this
with initial detections using high flux neutrino sources.

1.1.1 Cowan–Reines neutrino experiment

The Nobel prize winning result confirming the existence of (anti) neutrinos was
published in 1956[8]. Frederick Reines, Clyde L. Cowan, Jr. et al conducted the
experiment at the Savannah River nuclear power plant following a preliminary ex-
periment with a tentative positive result at Hanford[9].

Initial plans to use a nuclear bomb as a neutrino source never came to fruition.
Their spirit lived on in the use of a nuclear reactor, providing ν̄e from nuclear fission
in a much more controlled manner. These were detected with the inverse β decay
reaction

ν̄e + p→ e+ + n, (1.1)

on a 108Cd infused scintillator. It is characterised by a prompt γ pair from e+

annihilation on an e− followed by a delayed γ once the neutron thermalises and is
captured.

A reactor power dependent signal was witnessed at 20× expected back-
ground, confirming the existence of (electron) neutrinos.

1.1.2 Muon neutrinos at the AGS

Until 1956 only one type of neutrino had been detected, producing e+ in weak
interactions. An experiment at the Alternating Gradient Synchrotron (AGS) at
Brookhaven National Laboratory (BNL)[10] led to the identification of another dis-
tinct flavour which instead produced µ±.

The (−)
ν µ produced in the decays of secondary particles from a proton beam

impinging on a target were picked up by a well shielded detector downstream. Here
spark chamber modules were able to observe µ± produced by neutrino interactions.

A total of 51 events were found where the identity of the lepton (µ± track
rather than e± shower) was clear. This indicated the existence of at least two
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neutrino types; (−)
ν e coupling with e± and (−)

ν µ coupling with µ±.

1.1.3 DONUT and tau neutrinos

Although the τ lepton was discovered in 1975[11] observation of a (−)
ν τ was not

published until 2000, after the DONUT experiment[12] at Fermilab observed their
interactions with emulsion targets.

Fermilab’s Tevatron created a beam of high energy (800 GeV) protons which
impinged on a tungsten beam dump, producing ν̄τ neutrinos primarily through the
strange D meson decay

DS
− → τ− + ν̄τ . (1.2)

Just as earlier experiments required distinctions to be made between the e±

and µ± produced by their respective neutrinos, DONUT required τ± to be reliably
identified. At their beam energies τ± decayed within around 2 mm of production,
mostly into a state with a single visible particle. (−)

ν τ interactions were thus identified
from a vertex at the τ± production point followed by a kink from its decay.

Post selection, DONUT found evidence for 4 ντ interaction candidate events.
Although small, this number was far in excess of the null hypothesis background of
0.34 candidate events and consistent with Standard Model predictions.

1.2 Solar and atmospheric anomalies

Initial discoveries in neutrino physics required man made, high flux sources of neu-
trinos close to a detector. The sun is certainly a huge source of neutrinos but the
observed flux is limited by its great distance from our planet and a lack of funds to
place a large neutrino detector any closer to it.

Another significant neutrino source is the upper atmosphere where interac-
tions of high energy particles produce secondaries decaying into neutrinos.

Both solar and atmospheric neutrinos were the source of controversy in the
latter half of the 20th century which was eventually resolved by the theory of neu-
trino oscillations.

1.2.1 Chlorine as a detector

The concept of using radiochemical means to detect neutrinos was initially suggested
by Bruno Pontecorvo[13] who proposed detecting neutrinos from inverse β decay in
37Cl,
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νe +37 Cl→37 Ar + e−, (1.3)

requiring neutrinos of 814 keV or more.
Raymond Davis, Jr., with his background in radiochemistry, took on the

task of detecting neutrinos with 37Cl. This started in 1955 with vats placed near
nuclear reactors at Brookhaven and Savannah river (the site of the Cowan–Reines
result from subsection 1.1.1). Since these reactors produced ν̄e while the detector
was sensitive only to νe both efforts produced negative results.

Davis was also interested in using his detector to measure solar neutrinos. A
first attempt in 1955 (still before any neutrino had been detected) using a 4000 L
detector buried underground to reduce cosmic µ background found nothing; the
number of neutrinos above the 0.814 MeV threshold was not great enough. Later
efforts at the Baberton limestone mine also failed to detect anything.

1.2.2 The Homestake experiment

Davis contacted John Bahcall in 1962, prompted by the latter’s work calculating
beta decay rates in stellar interiors[14]. Bahcall had an interest in solar neutrinos
stemming from their utility as a test of theory on nuclear reactions in stars[15]. The
two began a lengthy collaborative effort, with Davis’ group running experiments
and Bahcall and collaborators providing theoretical calculations.

Bahcall and his collaborators provided a first calculation of solar neutrino
fluxes in 1963[14], predicting capture in a chlorine detector at a rate of ∼ 5 SNU†.

A much larger volume of 37Cl than had previously been used was clearly
needed. After several years of setbacks and attempts to find funding, work began
on the huge 400000 L detector in the Homestake mine.

Despite the tiny interaction rate and huge number of 37Cl atoms to sift
through, Davis was able to identify and count individual 37Ar atoms at a rate
of a few tens of atoms per week. The tank’s location deep underground in the
Homestake gold mine shielded it from cosmic ray muon background which could
have also produced 37Ar.

Initial observations detected substantially fewer neutrino interactions than
expected, and the gradual accumulation of data and refinement of theory made
the disagreement more stark. By the late 1970s sufficient data had been collected
to report an experimental neutrino interaction rate of (1.8 ± 0.4) SNU, while the

†The small number of expected solar neutrino interactions led to the definition of the Solar
Neutrino Unit (SNU) for convenience, equivalent to 10−36 neutrino interactions per target atom
per second.
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expectation from solar models was around (7.5± 1.5) SNU[17][18]. The experiment
kept collecting data in a stable manner to the 1990s[19] with the large statistical
uncertainties eventually becoming comparable to systematics.

1.2.3 Further solar neutrino experiments

Radiochemical experiments with 71Ga rather than 37Cl have the advantage of a lower
energy threshold[20] giving an large boost to the number of observable neutrinos (see
Figure 1.1 for the solar νe energy spectrum). Comparing 71Ga and 37Cl data can
reveal at which energies the νe deficit appears.

Experiments such as SAGE[21][22] and GALLEX[23] (later GNO[24]) ex-
amined solar neutrinos from the late 1980s onwards utilising 71Ga targets. These
experiments found about half the neutrinos predicted by standard solar models.
Though higher than the number observed by Homestake it was still a substantial
deficit.

A fortuitous contribution to neutrino physics came from the large Čerenkov
detectors initially built to search for proton decay. These detectors look for a cone of

Figure 1.1: Solar neutrino energy spectrum using solar model BS05(OP). pp chain processes
are illustrated by solid black lines whilst CNO processes are illustrated by dashed blue lines.
From Bahcall and Serenelli[16].
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Čerenkov light produced by charged particles moving faster than the local speed of
light, such as those produced by neutrino interactions. Kamiokande and its successor
Super-Kamiokande used neutrino–electron elastic scattering to provide extremely
useful data on solar neutrinos[25][26]. With higher energy thresholds they were only
able to observe the most energetic 8Be neutrinos but their access to kinematic and
temporal information was unprecedented in solar neutrino experiments and allowed
confirmation that ‘solar neutrinos’ were indeed coming from the direction of the sun
(Figure 1.2).

The Sudbury Neutrino Observatory (SNO) provided the ultimate solution
to the solar neutrino problem. The experiment[27] used a D2O Čerenkov detector
to distinguish between charged current, neutral current and elastic interactions,
providing sensitivity to rates of νe and νl (any flavour) interactions separately. As
shown in Figure 1.3 they found rates of charged current (sensitive only to νe) and
elastic (sensitive primarily to νe) interactions consistent with previous experiments,
while neutral current (sensitive to any νl) interactions occurred at the rate predicted
by solar models[28].

All of these results taken together implied neutrino oscillation as a solution
to the anomaly.

1.2.4 The atmospheric anomaly

Atmospheric neutrinos are produced as a result of interactions between high energy
cosmic rays and nuclei in the upper atmosphere. Decays of the resulting secondary
particles produce around twice as many (−)

ν µ as (−)
ν e at low energies or large distances.

The first observations of atmospheric neutrinos came from scintillator arrays
in gold mines in Karnataka state, India[29] and South Africa[30]. Both measured
muons from (−)

ν µ interactions in surrounding rock and removed cosmic ray muon
background by locating the detectors deep in the mines (under 7500 mwe† and
8800 mwe rock respectively) and limiting the angular acceptance to muons travelling
in the horizontal direction. Further measurements made at the two locations[31][32],
at the University of Utah[33] and at the Baksan detector in Russia[34] also observed
atmospheric neutrino induced muons.

Although some of these early experiments measured slightly lower than ex-
pected (−)

ν µ fluxes the atmospheric anomaly became a major issue when it became
possible to measure the ratio of (−)

ν µ to (−)
ν e flux. Due to many uncertainties cancelling

†Meter Water Equivalent (mwe) is a unit expressing in a consistent way the fraction of cosmic
rays reaching an underground facility. A laboratory under 1000 mwe of rock will see the same flux
of cosmic rays as a laboratory under 1000 m of water.
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Figure 1.2: Kamiokande solar neutrino fluxes as a function of angle to the sun showing a
deficit in data relative to prediction. Solid line shows prediction assuming a standard solar
model and no oscillations, dashed lines shows best fit to data. From [26].
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and elastic scattering processes. Diagonal dashed lines show standard solar model prediction
for total flux (as measured by neutral current channel). Results are consistent with standard
solar model predictions if νe are allowed to oscillate into νµ or ντ . From [28].
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out a deviation in this ratio is more suggestive than a simple deficit in observed (−)
ν µ.

Alongside their solar measurements Kamiokande examined this ratio[35] as
did the other Čerenkov nucleon decay experiment IMB[36]. Both found that the
ratio of (νµ + ν̄µ) to (νe + ν̄e) was about half the expectation.

Later experiments Soudan-2[37] (a tracking calorimeter, also co-opted from
the search for nucleon decay) and MACRO[38] (a search for magnetic monopoles)
confirmed this deviation. On the other hand, Fréjus [39] and NUSEX[40] both found
the ratio to be in line with expectation, further confounding the issue.

The breakthrough came when Super-Kamiokande[42], Kamiokande’s neu-
trino oscillation dedicated successor, reported a strongly zenith angle dependent
deficit in atmospheric neutrinos[41]. As shown in Figure 1.4 the huge water Čerenkov
detector observed that (−)

ν e and (high energy) downwards going (−)
ν µ appeared at

roughly the rate expected but upwards going (−)
ν µ appeared at half this rate. In

addition, at lower energies the number of (−)
ν µ was lower than expected over all

angles.
The K2K long baseline accelerator experiment backed up Super-Kamiokande’s

results with indications[43], and eventual 4.3σ confirmation[44], of the disappear-
ance of νµ from an accelerator source at 250 km with neutrino energies ∼ 1.5 GeV.
Accelerators provide νµ in analogous interactions to those in the upper atmosphere
but in a more controlled environment.

0

50

100

150

200

250

0

50

100

150

200

250

0

10

20

30

40

50

0

15

30

45

60

75

-1 -0.6 -0.2 0.2 0.6 1
0

40

80

120

160

200

-1 -0.6 -0.2 0.2 0.6 1
0

60

120

180

240

300

-1 -0.6 -0.2 0.2 0.6 1
0

20

40

60

80

100

e-like
p < 0.4 GeV/c

e-like
p > 0.4 GeV/c

e-like
p < 2.5 GeV/c

e-like
p > 2.5 GeV/c

µ-like
p < 0.4 GeV/c

cosΘ

µ-like
p > 0.4 GeV/c

cosΘ

µ-like

cosΘ

Partially Contained

cosΘ

sub-GeV multi-GeV

-1 -0.6 -0.2 0.2 0.6 1
0

25

50

75

100

125

8

Figure 1.4: Super-Kamiokande results for atmospheric neutrino observations as a function
of zenith angle. Hatched regions show predictions with no oscillations. A deficit in low
energy νµ and a zenith angle dependent deficit in higher energy νµ is visible. From [41].
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These results strongly implied oscillations as a solution. The distance trav-
elled by atmospheric neutrinos coming from above was much less than an oscillation
length whilst those coming from below saw many oscillation lengths — since the
exact number was beyond the resolution of detectors they were essentially washed
out into an average of half (−)

ν µ and half some other flavour.
Because of these anomalies and the experiments resolving them in them

we live in a world where neutrino oscillations are accepted as fact. The physics
of neutrino oscillations are discussed in Chapter 2. In Chapter 3 we come back
to the realm of experimental neutrino physics and discuss contemporary neutrino
experiments.
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Chapter 2

Theoretical Background

Pontecorvo’s plans for a 37Cl based neutrino experiment had been halted by his
defection to the USSR, which lacked suitable sites, but he remained interested[45].
Reports reached him of a positive result from Ray Davis’ reactor experiment with a
37Cl detector (subsection 1.2.1) implying that the reactor’s ν̄e had been detected as
νe. These reports turned out to be false but they provoked an interest in neutrino
oscillations resulting in hypotheses[46] which by the time of the late 1960s had been
refined. Meanwhile Maki, Nakagawa and Sakata extended the idea of neutrino
mixing in 1962[47].

Neutrino mixing and oscillations are delved into in this chapter. We also
discuss the specifics of neutrino interactions on nuclei, which are particularly relevant
for the cross section analysis covered by this thesis.

The theory behind neutrino physics has been covered in for example [48][49][50].
Neutrinos are unique among standard model fermions in that they can only interact
via the weak interaction. As its name suggests this is relatively weak, hence the
extreme unwillingness of neutrinos to interact with other matter.

2.1 Neutrino masses

In the standard model neutrinos are massless. However, for reasons which will soon
become clear, they are required to be massive in order for oscillations to occur. The
additional mass terms can represent a slight extension to the standard model or be
part of a wider theory.
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2.1.1 Mass terms

Mass terms in the Standard Model Lagrangian have the general form

Lmν = mνiνi. (2.1)

A massive neutrino has two components, ν = νR + νL, where νR and νL are
right and left chiral projections respectively (PRν = νR, PLν = νL). If the two are
independent the neutrino is a Dirac particle with mass terms

Lmν = mDνiRνiL + H. c.. (2.2)

On the other hand since the neutrino has no charge the two components
can be conjugates, νR = (νL)c, where the superscript denotes particle–anti particle
conjugation. The general Majorana mass terms are

Lmν = mνLcMMνL + H. c., (2.3)

where MM denotes the symmetric matrix of Majorana masses linking neutrino fields
ν = (ν1 . . . νn). These are not invariant under U(1) and so are only allowed for
particles with no (conserved) charge.

The most general neutrino mass matrix includes both Dirac and Majorana
mass terms as

Lmν = 1
2
(
νL

T νc
L

T
)
C

(
ML MD

MD
T MR

)(
νL

νc
L

)
+ H. c., (2.4)

where MD, ML and MR denote Dirac, left handed Majorana and right handed
Majorana mass matrices respectively C the particle–anti particle conjugation matrix
iγ2γ0 and ν the n dimensional vector of neutrino fields.

The massive neutrino fields can be found by diagonalising this mass matrix.
An interesting consequence of this is the possibility of a ‘see-saw mechanism’, where
the smallness of observed neutrino masses is explained by their suppression by a
large right handed mass terms.

Majorana mass terms also break lepton number, allowing for processes spe-
cific to Majorana neutrinos such as neutrinoless double beta decay.
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2.1.2 Mass terms and hierarchy

The three known generations of neutrino provide three mass states usually denoted
ν1, ν2 and ν3. Current experiments are sensitive to the differences between their
masses but not the absolute ordering.

We know that there exists one smaller mass squared difference, usually iden-
tified with solar oscillations, and one larger difference, usually identified with at-
mospheric oscillations. By convention the ν1–ν2 mass difference is taken to be the
smaller of the two while the ν2–ν3 mass difference (approximately the same as the
ν1–ν3 mass difference) is taken to be the larger. As illustrated in Figure 2.1 this is
compatible with two hierarchies, with ν3 as either the most or least massive state.

2.2 Neutrino oscillation physics

Neutrino oscillations are a consequence of having two sets of neutrino eigenstates,
mass and flavour, which do not coincide with each other. Neutrinos are created

ν1

ν2

ν3

∆m2
21

|∆m2
31|

Normal

ν3

ν1

ν2

|∆m2
31|

∆m2
21

Inverted

νe
νµ

ντ

Figure 2.1: Illustration of normal and inverted mass hierarchies, either of which is compatible
with current data. Assuming oscillation parameters from [51].
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and detected as flavour eigenstates but the mass states in which they propagate are
some mixture of these. Different masses ensure the states propagate at different
rates allowing them to interfere. The ultimate consequence of this is that a neutrino
created as one flavour state has a chance of being detected as another.

2.2.1 Two neutrino case

Oscillations are easiest to understand in the case of two flavours oscillating in a
vacuum. The principles outlined here can be generalised to oscillation between
three or more flavours.

We consider flavour eigenstates, νe and νµ, and mass eigenstates, ν1 and ν2.
These states are not identical but are linked by a unitary mixing matrix as

(
νe

νµ

)
=
(
Ue1 Ue2

Uµ1 Uµ2

)(
v1

v2

)
=
(

cos θ − sin θ
sin θ cos θ

)(
v1

v2

)
. (2.5)

From a practical standpoint it is sufficient to model the neutrino states as
plane waves (though a wave packet treatment is more complete[50]). As neutrinos
propagate through vacuum in mass eigenstates the evolution of a neutrino created
in some flavour eigenstate νa is

|ν(x̃)〉 =
∑
i

e−ip̃i·x̃Uai |νi〉 , (2.6)

where x̃ ≡ (t, ~x) is the four-position of the neutrino relative to its starting point
and p̃i ≡ (Ei, ~pi) the four-momentum of mass state i. The probability of its being
detected in flavour eigenstate νb at some later time t is

P(νa → νb) = |〈νb| ν(x̃)〉|2

=
∑
i

∑
j

Ubi
∗UaiUbjUaj

∗e−i(p̃i−p̃j)·x̃,

(2.7)

where νa, νb denote flavour eigenstates and νi, νj , p̃i, p̃j denote mass eigenstates
and their four-momenta.
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Neutrinos have sufficiently low mass to be relativistic. If we assume the two
mass states to have the same momentum, p = |~p1| = |~p2|, we have

(p̃2 − p̃1) · x̃ = (E2 − E1)t

=

p√1 + m22

p2 − p
√

1 + m12

p2

 t
≈ (m2

2 −m1
2)

2p t,

(2.8)

which, taking L ≈ t as the neutrino’s distance from its source, E ≈ p as the average
energy of the mass states and ∆m2 ≡ m2

2 −m1
2, becomes

∆m2 L

2E . (2.9)

We have

P(νa → νb) =
∑
i

∑
j

Ubi
∗UaiUbjUaj

∗e−i∆m
2 L

2E

= |Ua1Ub1|2

+ |Ua2Ub2|2

+2Ua1Ub1
∗Ua2

∗Ub2e
−i∆m2 L

2E

+2Ua2Ub2
∗Ua1

∗Ub1e
−(−i∆m2 L

2E )

= |Ua1Ub1|2 + |Ua2Ub2|2 + 2Ua1Ub1
∗Ua2

∗Ub2 cos
(

∆m2 L

2E

)
,

(2.10)

and the probability of observing νb clearly oscillates with distance.
Using the parametrisation of Equation 2.5 we obtain

P(νa → νb) = 2 cos2 θ sin2 θ − 2 cos2 θ sin2 θ cos
(

∆m2 L

2E

)
= sin 2θ sin2

(
∆m2 L

4E

)
= sin 2θ sin2

(
1.27∆m2/eV2 L/km

E/GeV

)
,

(2.11)
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providing the oscillation probability in an intuitive form.

2.2.2 Solar neutrinos and the MSW effect

Weak interactions of neutrinos with matter cause oscillations to differ from their
expectation in vacuum. The most significant manifestations of this, for its impact
on solar neutrino observations, is the resonant enhancement of oscillation probability
known as the Mikheyev-Smirnov-Wolfenstein (MSW) effect[52].

Various interactions affect neutrino propagation in matter. The least negligi-
ble (proportional to GF rather than one of its higher powers) is forward scattering.
This is a coherent process somewhat analogous to refraction of light[53] and while
its direct observation is implausible the mean potentials it effects can significantly
alter neutrino oscillations, allowing their probability to exceed the upper limit of
sin2(2θ) in vacuum oscillations.

All active neutrino flavours experience neutral current interactions with lep-
tons and hadrons in matter. Charged current interactions are also possible for
neutrinos of the appropriate flavour. Standard electrically neutral, electron dense
matter allows for charged current interactions with νe. The potentials experienced
by different flavours are

Ve =
√

2GF
(
Ne − 1

2Nn

)
, Vē = −

√
2GF

(
Ne − 1

2Nn

)
,

Vµ =
√

2GF
(

1
2Nn

)
, Vµ̄ = −

√
2GF

(
−1

2Nn

)
,

Vτ =
√

2GF
(

1
2Nn

)
, Vτ̄ = −

√
2GF

(
−1

2Nn

)
.

(2.12)

Once again we consider the two neutrino case (this can be generalised to
further flavours). Propagation of mass eigenstates is given by

i
d

dt

(
ν1

ν2

)
=
(
p+ m12

2E 0
0 p+ m22

2E

)(
v1

v2

)
, (2.13)

and using the mixing matrix described in subsection 2.2.1 we find an evolution of

i
d

dt

(
νe

νµ

)
=
(
p+ m1+m2

4E − ∆m2

4E cos 2θ ∆m2

4E sin 2θ
∆m2

4E sin 2θ p+ m1+m2
4E + ∆m2

4E cos 2θ

)(
ve

vµ

)
,

(2.14)
in the flavour basis.
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Matter effects are incorporated by adding diag (Ve, Vµ) to the flavour Hamil-
tonian. The part of the Hamiltonian proportional to the identity does not affect
oscillations and so can be subtracted out, giving

i
d

dt

(
νe

νµ

)
=
(
−∆m2

4E cos 2θ +
√

2GF ∆m2

4E sin 2θ
∆m2

4E sin 2θ ∆m2

4E cos 2θ

)(
ve

vµ

)
, (2.15)

Propagation eigenstates are produced by diagonalising this effective Hamil-
tonian with

(
νA

νB

)
=
(

cosφ sinφ
− sinφ cosφ

)(
ve

vµ

)
. (2.16)

The mixing angle φ for these propagation states with flavour states is defined
as

tan 2φ =
∆m2

2E sin 2θ
∆m2

2E cos 2θ −
√

2GFNe

. (2.17)

This shows that the actual mixing depends on the electron number density of
the medium being propagated through. The following cases are useful to consider,
visible in Figure 2.2:

•
√

2GFNe � ∆m2

2E cos 2θ: In this case, where density is extremely high, φ be-
comes close to 90◦ and the flavour eigenstates roughly align with the propa-
gation eigenstates.

•
√

2GFNe = ∆m2

2E cos 2θ: In this case mixing is maximum. This is known as the
MSW resonance condition.

•
√

2GFNe = 0: In this case the vacuum mixing angles are clearly recovered.

During the course of their journey from the sun’s core to its surface neutrinos
in the right energy range will pass through all of these regimes. At production the
neutrinos are in a high density environment where propagation eigenstates νA, νB
can almost completely overlap with the flavour eigenstates νe, νµ. These neutrinos
propagate through the resonance until they reach a vacuum, where νA, νB now
almost completely overlap with the mass eigenstates ν1, ν2.

As a result νe produced in the core start out almost entirely aligned with
the νB state. Provided that conditions are right as the neutrino propagates by the
time it reaches the vacuum of space the neutrino will still be in the νB state which
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Figure 2.2: Mixing angles between flavour eigenstates and matter propagation states as a
function of electron number density, showing initally minimal mixing followed by a resonance
and final mixing aligning rougly with vaccuum mixing angles. Using oscillation parameters
from [51].

now corresponds to ν2, with a νe component of − sin θ and a νµ component of cos θ.
Therefore, the transition probability is

P (νe → νµ) = |〈νµ| ν(t)〉|2 = cos2 θ. (2.18)

The necessary condition for this to hold is adiabacity. Stellar density must
change slowly enough for the neutrino state to adjust. A small value of θ can break
this condition. Our current knowledge of the solar mixing angle and mass splitting
suggests that higher energy solar neutrinos experience resonance, with around two
thirds of νe converted to νµ, explaining the deficit detailed in Section 1.2.
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2.2.3 The PMNS mixing matrix

So far we have considered two neutrino oscillations. The three neutrino flavours we
can observe are linked through the unitary mixing matrix

νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



ν1

ν2

ν3

 , (2.19)

known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. This matrix can
also be parametrised as a rotation through three mixing angles; θ12, θ23 and θ13.
There are also up to three CP violating phases of which δCP is relevant to oscillation
experiments. Using the shorthands sij and cij for the respective sines and cosines
of the θij mixing angles,

U =


1 0 0
0 c23 s23

0 −s23 c23




c13 0 s13e
−iδCP

0 1 0
−s13e

−iδCP 0 c13




c12 s12 0
−s12 c12 0

0 0 1

 ,
(2.20)

where CP violating phase δCP is placed with the odd θ13 terms by convention.
In the case of three Majorana neutrinos the remaining two CP violating

phases appear as

UGeneral, Majorana = U × diag(1, eiα, eiβ), (2.21)

where U is the PMNS matrix as defined in Equation 2.20 and α and β are two new
phases, neither of which is observable through oscillation experiments.

Further generalisations to higher dimensions, including heavy or sterile neu-
trinos, are viable but not discussed here.

2.2.4 Three flavour oscillation

The case of three oscillating species of neutrino is analogous to the two neutrino
case discussed in subsection 2.2.1. A greater number of terms are interfering and
the resulting equations are more complex.
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The transition probability in this case is

P
(
νa → νb; LE

)
=

∑
i

∑
j

Uai
∗UbiUajUbj

∗e−i
∆m2

jiL

2E

=
∑
i

|Uai|2 |Ubi|2

+2
∑
i>j

Re (Uai∗UbiUajUbj∗) Re
(
e−i

∆m2
jiL

2E

)

−2
∑
i>j

Im (Uai∗UbiUajUbj∗) Im
(
e−i

∆m2
jiL

2E

)
,

(2.22)

assuming relativistic neutrinos with small mass. Notably the Majorana phases in
Equation 2.21 disappear in the quartic product Uai∗UbiUajUbj∗. This directly shows
that Majorana phases are invisible to neutrino oscillation experiments.

Since U is unitary

∑
i

Uai
∗Ubi = δab∣∣∣∣∣∑

i

Uai
∗Ubi

∣∣∣∣∣
2

=
∑
i

∑
j

Uai
∗UbiUajUbj

∗

=
∑
i

|Uai|2 |Ubi|2 + 2
∑
i>j

Re (Uai∗UbiUajUbj∗)

= δab,

which combines with Equation 2.22 to give

P
(
νa → νb; LE

)
= δab

+2
∑
i>j

Re (Uai∗UbiUajUbj∗)
(

cos
(

∆m2
jiL

2E

)
− 1

)

+2
∑
i>j

Im (Uai∗UbiUajUbj∗)
(

sin
(

∆m2
jiL

2E

))
,

(2.23)
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which can also be written as

P
(
νa → νb; LE

)
= δab

−4
∑
i>j

Re (Uai∗UbiUajUbj∗) sin2
(

∆m2
jiL

4E

)

+2
∑
i>j

Im (Uai∗UbiUajUbj∗) sin
(

∆m2
jiL

2E

)
.

(2.24)

The case with antineutrinos is analogous but with an extra minus sign ac-
quired by the terms derived from imaginary parts as

P
(
ν̄a → ν̄b; LE

)
= δab

+2
∑
i>j

Re (Uai∗UbiUajUbj∗)
(

cos
(

∆m2
jiL

2E

)
− 1

)

−2
∑
i>j

Im (Uai∗UbiUajUbj∗)
(

sin
(

∆m2
jiL

2E

))
.

(2.25)

In searches for neutrino survival (i.e. νa → νa) the Uai∗UbiUajUbj∗ are clearly
real, so

P
(

(−)
ν a →

(−)
ν b; LE

)
= 1 + 2

∑
i>j

Re (Uai∗UbiUajUbj∗)
(

cos
(

∆m2
jiL

2E

)
− 1

)
,

(2.26)

with a symmetry between particle and antiparticle survival rates as required by
CPT invariance.
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In the limit ∆m2
ij
L

2E ≈ 0† the corresponding oscillation terms disappear

2Re (Uai∗UbiUaj∗Ubj)
(

cos
(

∆m2
ijL

2E

)
− 1

)

±2Im (Uai∗UbiUaj∗Ubj)
(

sin
(

∆m2
ijL

2E

))
≈ 0,

(2.27)

and only constant terms are relevant for oscillations. On the other hand if the
detector covers a large number of oscillation lengths‡ the terms average out to

2Re (Uai∗UbiUaj∗Ubj)
〈

cos
(

∆m2
ijL

2E

)
− 1

〉

±2Im (Uai∗UbiUaj∗Ubj)
〈

sin
(

∆m2
ijL

2E

)〉
≈ −2Re (Uai∗UbiUaj∗Ubj) ,

(2.28)

contributing a constant enhancement or deficit in the number of observed neutrinos.

2.2.5 Specific applications

Neutrino oscillation experiments in general are not sensitive to the entire PMNS
matrix. The specific terms which are relevant depend on the experiment’s L

E , the
neutrino flavours being created and detected, and the presence of matter effects.

The survival probability of (−)
ν e is perhaps the least complicated to derive,

particularly at scales where ∆m2
21 can be neglected. This is the case for medium

baseline reactor experiments such as RENO and Daya Bay. From Equation 2.24,
using the PMNS matrix parametrisation of Equation 2.20,

†This is trivially the case at zero distance from the neutrino source. It also approximately
occurs by design in near detectors for long baseline oscillation experiments such as our own ND280.

‡In general this applies where the range of L or E required for an oscillation length is on a
scale smaller than a detector’s length or energy resolution. In atmospheric experiments neutrinos
approaching from very large zenith angles are effectively averaged out since in this region the
detector’s angular resolution gives spatial a resolution larger than the scale of an oscillation length.
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P
(
ν̄e → ν̄e; LE

)
≈ 1− 4

∑
i>j;i,j 6=2,1

Re (Uei∗UeiUejUej∗) sin2
(

∆m2
jiL

4E

)

≈ 1− 4 |Ue1|2 |Ue3|2 sin2
(

∆m2
31L

4E

)

−4 |Ue2|2 |Ue3|2 sin2
(

∆m2
32L

4E

)

≈ 1− sin2 2θ13 sin2
(

∆m2
32L

4E

)
,

(2.29)

where ∆m2
31 ≈ ∆m2

32 given the small value of ∆m2
21. This shows that (−)

ν e →
(−)
ν e

measurements with the relevant baselines (medium baseline reactor experiments)
can unambiguously provide the value of θ13.

From long baseline or accelerator experiments (−)
ν µ →

(−)
ν µ measurements can

improve our knowledge on θ23 and ∆m2
23, while precise (−)

ν µ →
(−)
ν e results from

accelerators can also shed light on the value of θ13. Again assuming negligible
∆m2

21 effects,

P
(

(−)
ν µ →

(−)
ν µ; LE

)
≈ −4Re (Uµ1

∗Uµ1Uµ3Uµ3
∗) sin2

(
∆m2

31L

4E

)

−4Re (Uµ2
∗Uµ2Uµ3Uµ3

∗) sin2
(

∆m2
32L

4E

)
,

(2.30)

and

P
(

(−)
ν µ →

(−)
ν e; LE

)
≈ −4Re (Ue1∗Uµ1Ue3Uµ3

∗) sin2
(

∆m2
31L

4E

)

−4Re (Ue2∗Uµ2Ue3Uµ3
∗) sin2

(
∆m2

32L

4E

)

±2Im (Ue1∗Uµ1Ue3Uµ3
∗) sin

(
∆m2

31L

2E

)

±2Im (Ue2∗Uµ2Ue3Uµ3
∗) sin

(
∆m2

32L

2E

)
.

(2.31)
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These terms are more fiddly than the ν̄e appearance terms of Equation 2.29,
but eventually yield[54][55][56]

P
(

(−)
ν µ →

(−)
ν µ; LE

)
≈ 1− 4 sin2 θ23 cos2 θ13

(
1− sin2 θ23 cos2 θ13

)
sin2

(
∆m2

effL

4E

)
,

(2.32)

for effective mass squared difference

∆m2
eff = ∆m2

32 + ∆m2
21 sin2 θ12 + ∆m2

21 cos δCP sin θ13 tan θ23 sin 2θ12, (2.33)

which simplifies to

P
(

(−)
ν µ →

(−)
ν µ; LE

)
≈ 1− sin2 2θ23 sin2

(
∆m2

effL

4E

)
,

if the deficit is assumed to be due entirely to (−)
ν µ →

(−)
ν τ oscillations.

For (−)
ν e appearance[57] the probability approximates to

P
(

(−)
ν µ →

(−)
ν e; LE

)
≈ sin2 θ23 sin2 2θ13 sin2

(
∆m2

32L

4E

)
,

ignoring subleading terms (which include matter effects and δCP dependence).
Solar neutrino oscillations are dependent on the MSW effect discussed in in

subsection 2.2.2.

2.2.6 Mass hierarchy, CP violation and octant

The three remaining unknowns in neutrino physics are the mass hierarchy, the CP
violating phase δCP and the octant of θ23.

The mass hierarchy has been mentioned in subsection 2.1.2. Its identity
as normal or inverse is given by the sign of ∆m2

31. We currently only know this
parameter’s magnitude.

CP violation in the neutrino sector is of huge theoretical interest. CP viola-
tion is one of the Sakharov conditions needed for baryogenesis in the early universe.
Currently known mechanisms for CP violation are insufficient for baryogenesis in
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the early universe on the scale needed to explain our present abundance of matter.
Non-zero δCP could be determined by confirming a difference between, for example,
oscillations of νµ → νe and ν̄µ → ν̄e.

The remaining unknown, the octant of θ23, emerges since current experiments
mainly measure sin2 2θ23. Through measurements of sin2 2θ23 alone it is impossible
to determine whether θ23 is above or below 45◦.

These unknowns are not independent of each other. Mass hierarchy and θ23

octant depend on the values of δCP and θ13[58].

2.3 Neutrino interactions

An understanding of neutrino interactions is obviously important for neutrino physics.
Since direct measurements of neutrinos’ kinematic properties are impossible exper-
imentalists have to rely on the observable particles produced by their interactions.

At present the most precise data available is at higher energies, above a few
GeV, where both quasi-elastic cross sections and inclusive cross sections (including
the deep inelastic scattering effects which dominate) are measured. Below this range,
in the region where T2K operates, data is relatively sparse.

At very low energies (up to about 10 MeV) interactions such as inverse beta
decay are important. Such interactions have historically been significant (see for
example subsection 1.2.2) and are still useful in searches for low energy neutrinos.

In the intermediate energy range (around 100 MeV to around 20 GeV†) sev-
eral new processes become relevant. The lower portion of this energy range (to
about 1 GeV) is dominated by elastic and quasi-elastic scattering. At intermidate
energies (a few GeV) the most significant processes involve resonant production
of mesons. For higher energies deep inelastic scattering dominates. The dominant
processes for charged current neutrino and anti neutrino interactions in this range
are shown in Figure 2.3 and discussed further in this section.

2.3.1 Elastic scattering

Elastic interactions, as shown in Figure 2.4, leave the identities of the incoming and
outgoing particles unchanged and redistribute their energy and momentum. The
processes which are feasible to observe involve scattering on electrons,

†This range is relevant to contemporary accelerator experiments including T2K and thus our
own analysis.
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Figure 2.3: Total νµ (Figure 2.3a) and ν̄µ (Figure 2.3b) charged current cross sections per
nucleon divided by energy. Quasi-elastic events can be seen to dominate at low energies and
deep inelastic scattering at high energies, with resonance effects in between. Experimental
data is also shown. From [59]
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Figure 2.4: Elastic scattering of (anti) neutrinos on electrons and nucleons, with (−)
ν l denoting

any neutrino flavour and N denoting nucleons.

25



ν + e− → ν + e−

ν̄ + e− → ν̄ + e−,

(2.34)

and nucleons,

ν +N → ν +N

ν̄ +N → ν̄ +N.

(2.35)

Most of these interactions are neutral current (NC), although νe and ν̄e

scattering on electrons as in Equation 2.34 do have charged current channels.

2.3.2 Charged current quasi-elastic interactions

Quasi-elastic (QE) interactions leave the incoming and outgoing particles mostly
unchanged apart from exchanging particles for their weak isospin partners, with
νl ↔ l and p↔ n, as shown in Figure 2.5.

νl l−

n p

W

(a)

ν̄l l+

p n

W

(b)

Figure 2.5: Quasi-elastic scattering of (anti) neutrinos on nucleons, with (−)
ν l denoting any

neutrino flavour and l± its corresponding lepton.
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As with elastic scattering, charged current quasi-elastic interactions (CCQE)
can take place on electrons

νl + e− → νe + l−,

(2.36)

(inverse muon decay in the case of νµ) and nucleons

νl + p→ l+ + n

ν̄l + n→ l− + p.

(2.37)

The CCQE interactions on nucleons of Equation 2.42 are of particular util-
ity in neutrino physics. Assuming no interference from nuclear effects, they allow
neutrino kinematics to be accurately reconstructed from the outgoing lepton. They
occur mainly where neutrino energy is insufficient to probe nuclear structure.

The formalism of Llewellyn Smith[60] presents CCQE cross sections as

dσ

d(Q2) = M2GF cos2 θC
8πEν2 ( A(Q2;M,m, ξ)

+B(Q2;M,m, ξ)s− u
M2

+C(Q2;M, ξ)
(
s− u
M2

)2
) ,

(2.38)

for nucleon mass M , lepton mass m and anomalous magnetic moment ξ. The
A(Q2;M,m, ξ), B(Q2;M,m, ξ)† and C(Q2;M, ξ) can be further parametrised in
terms of form factors F1, F2, F3A , F3V , FA and FP .

The F3A and F3V factors represent G-parity violating terms (second class
currents) which are zero in the standard model. FP can be directly related to FA
given the nucleon and pion mass. The remaining three form factors can be further
reduced with electron scattering data, which provides reliable values for the vector
terms F1 and F2.

†An extra minus sign is acquired by the B(Q2;M,m, ξ) term in the case of anti neutrinos on
nuclei
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This leaves one unknown form factor, FA. Its value at zero is known from
β decay experiments. For the remainder of its domain the function is assumed to
have a dipole form[61] of

FA(Q2) = FA(0)
1 + Q2

MA
2

. (2.39)

The final unknown, MA, is known as the axial mass and can be determined
through neutrino cross section experiments.

The formalism of Smith and Monitz[62] for CCQE interactions in the context
of a relativistic Fermi gas model is often used by generators. A similar model for
neutral current elastic scattering is described by Ahrens et al[63] where the axial
form factor is modified to

FA(Q2) = FA(0)
1 + Q2

MA
2

(1 + η) , (2.40)

where η accounts for (small but non-zero) additional isoscalar contributions to the
cross section.

2.3.3 2p2h

2p2h describes processes where the neutrino interaction involves multiple correlated
nucleons[64], as illustrated in Figure 2.6. This can lead an extra nucleon in the final
state along with the extra contribution to total cross sections. The processes are
also referred to as meson exchange current (MEC), since they are mediated by the

νl l−

N1
N ′1

N2 N ′2

W

(a)

ν̄l l+

N1
N ′1

N2 N ′2

W

(b)

Figure 2.6: Feynman diagram for 2p2h processes in neutrino interactions on nuclei. The N
are correlated nucleons while the (−)

ν l is any (anti) neutrino and l± its corresponding lepton.
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exchange of mesons between nucleons, and can also be generalised to n nucleons
(npnh).

Such processes are of interest because of their impact on physics analyses.
Sometimes it is impossible to detect all final state nucleons due to final state inter-
actions (see subsection 2.3.7) whilst others it is impractical to resolve them. Unless
all final nucleons can be detected multi-nucleon processes are difficult to distinguish
from vanilla quasi-elastic interactions. If CCQE kinematics are assumed in a dataset
which includes these processes then a significant bias in reconstructed neutrino en-
ergy is consequent.

2.3.4 Resonant pion production

At energies of the order a few GeV neutrinos still lack the energy to break up
individual nucleons but are able to raise them to excited states from which they
relax by emitting particles (usually single pions). A number of such interactions
exist, for example

νl + p→ l− + ∆++ → l− + π+ + p,

provides a channel for charged current resonant pion production on protons illus-
trated in Figure 2.7a. Both charged and neutral current processes are allowed pro-
ducing π+, π− and π0. At higher energies resonances producing multiple particles
become accessible.

Rein and Sehgal provided calculations for single pion production from reso-

νl l−

p

π+

p

W

∆++

(a)

(−)
ν l

(−)
ν l

p

π0

p

Z

∆+

(b)

Figure 2.7: Examples of resonant pion production with (anti) neutrinos on nucleons, with (−)
ν l

denoting any neutrino flavour and l± its corresponding lepton. Figure 2.7a shows charged
current single π+ production whilst Figure 2.7b shows neutral current π0 production.
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nances up to 2 GeV including interference terms[65]. This work is implemented in
many currently used neutrino interaction generators.

As with CCQE resonant pion production cross sections can be calculated
by describing the nucleus using form factors. In this case the remaining axial form
factors provide two parameters, C5

A and mA
RES, to be fitted.

2.3.5 Coherent processes

Coherent interactions, where the neutrino interacts coherently with the entire nu-
cleus, are allowed. In these cases the nucleus remains intact and recoils unchanged.
Momentum transfer is low and pions are produced at highly forward going angles
which makes it possible to distinguish such events from resonant production. Rein
and Sehgal have produced a model for coherent interactions[66][67] currently in use
by generators.

2.3.6 Deep inelastic scattering

In deep inelastic scattering (DIS) interactions the neutrino has sufficient energy to
interact directly with individual partons and break up the nucleon, producing a final
state with hadronic showers,

νl +N → νl +X,

ν̄l +N → ν̄l +X,

(2.41)

(neutral current), or

νl +N → l− +X,

ν̄l +N → l+ +X,

(2.42)

(charged current). In both of these cases the X denotes some set of final state
hadrons.

This process implies a large energy transfer to the hadrons from the neutrino.
At higher energies, above ∼ 10 GeV, DIS processes dominate neutrino cross sections.
Between this region and the sub-1 GeV regime where elastic and quasi-elastic scat-
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Figure 2.8: Deep inelastic scattering of (anti) neutrinos on nucleons, with (−)
ν l denoting any

neutrino flavour, l± its corresponding lepton, N any nucleon (of which only the relevant
quark is labelled) and X any hadronic final state.

tering dominates is an intermediate range of energies where other processes such as
resonance become significant.

Deep inelastic scattering can be described with leading order parton distri-
bution functions. The 1998 distributions of Glück, Reya and Vogt (GRV98)[68] are
an example in current use by neutrino interaction generators.

Bodek and Yang used modifications[69][70] to allow for valid descriptions
of inelastic lepton scattering at high and low energies. New scaling variables and
modified PDFs at low Q2 were needed for this purpose.

2.3.7 Final state interactions

Interactions with nuclei are difficult to model and rely on experimental data. One
substantial challenge is the possibility of final state interactions. This describes a
broad range of processes involving outgoing hadrons re-interacting with the nucleus
and can cause the absorption of outgoing particles[71] or the ejection of additional
ones[72].
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Such processes can effect an observable final state with substantially different
topology to the initial neutrino interaction. For example, if the pion produced in
a resonant charged current interaction is reabsorbed the final state will appear to
be that of a CCQE interaction. This is also a concern for 2p2h interactions where
the outgoing protons may be absorbed. In either case, taking an interaction which
produced two or more secondary particles as CCQE creates a bias in reconstructed
neutrino energy.
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Chapter 3

Contemporary Neutrino Physics

Today’s neutrino physics experiments have gone beyond the questions discussed in
Chapter 1 of whether or not neutrinos exist, how many they are and whether they
oscillate. They now quantify the specifics of neutrino oscillations and interaction.

There are many sources of neutrino available to experimenters providing a
range of energies and baselines:

• Nuclear fission produces unstable products decaying to ν̄e of a few MeV.

• Radioactive isotopes also decay, producing νe and some ν̄e below 3.5 MeV.

• Astrophysical sources such as supernovae, active galactic nuclei and gamma
ray bursts can produce huge neutrino fluxes at great distances from us.

• Solar neutrinos are νe produced by fusion reactions in the sun, with some
neutrinos up to 10 MeV and very high fluxes below a 1.9 MeV.

• Atmospheric neutrinos are produced by the decays resulting from cosmic
rays impinging on the upper atmosphere. π± decays dominate until higher
energies and produce mostly (−)

ν µ. Muon decays are also significant, producing
(−)
ν µ and (−)

ν e. Flux is most significant in the GeV range.

• Particle accelerators produce neutrinos in different ways:

– Beam dumps produce neutrinos when high energy protons are abruptly
stopped and are mostly (−)

ν e and (−)
ν µ with energies around 100 GeV.

– Decay at rest produces neutrinos when pions are stopped in a target
and then decay. They are mostly ν̄µ with some νe and νµ but very little
ν̄e background and have energies of 10s of MeV.
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– Decay in flight produces neutrinos from pion decay in flight. These
are mostly νµ or ν̄µ (selection is possible by choosing π± sign) with some
wrong-sign and (−)

ν e background. There are different configurations:

∗ Wide band beams do not selected pions for momentum and provide
a large neutrino flux spanning a wide range of energies.

∗ Narrow band beams selected pions of specific momentum and can
be used for precision measurements over a small range of energies.

∗ Off-axis configurations direct a wide band beam a small angle away
from detectors. The T2K experiment adopts this configuration as
described in detail in subsection 4.1.1.

In this chapter we cover contemporary neutrino oscillation experiments. We
also examine experiments on neutrino interactions with matter, specifically those
like our gas interaction analysis which are dedicated to extracting cross sections. A
range of interesting topics such as neutrino mass, neutrinoless double beta decay
and astrophysical neutrinos are sadly beyond the scope of this thesis.

3.1 Neutrino oscillation experiments

In subsection 1.2.3 and subsection 1.2.4 we discussed the anomalous results leading
to the theory and discovery of neutrino oscillations. We now cover in more detail
the subsequent experiments quantifying neutrino oscillations.

3.1.1 Resolution of solar and atmospheric anomalies

The solar neutrino problem is complicated by the fact that matter, especially the
dense matter of the sun, affects neutrino oscillations (subsection 2.2.2). Later data,
particularly from the KamLAND[73] reactor experiment (which showed a deficit in
reactor ν̄e as shown in Figure 3.1), ruled out all but a large mixing angle solution with
matter resonance effects (MSW) and a mass squared difference between neutrino
mass states of ∆m2 ∼ 7.6 × 10−5 eV2. By the time they reach the Earth a large
fraction of solar νe have oscillated into a mixture of νµ and ντ .

The atmospheric neutrino problem is more straightforward since matter in
the Earth has a much smaller effect on oscillation than that of the sun. As discussed
in subsection 1.2.4 oscillation effects are not significant for neutrinos reaching the
detector from above, over distances ∼ 10s of km. Neutrinos reaching the detector
from below, however, have travelled over 10000 km by which point an average of
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Figure 3.1: KamLAND results compared with results from other reactor experiments, show-
ing expectation assuming oscillation parameters provided by global fit of solar neutrino data.
As shown, other reactor experiments are over baselines which are too short to observe os-
cillation. From [73].

half the νµ have oscillated into other flavours. Atmospheric and accelerator neu-
trino experiments back up the hypothesis of νµ oscillating into mostly ντ with near
maximal mixing and ∆m2 ∼ 2.5× 10−3 eV2.

Atmospheric and solar results demonstrate two distinct regimes for neutrino
oscillations. Two parameters, θ13 and

∣∣∆m2
31
∣∣, have been associated with solar neu-

trino oscillation whilst two, θ23 and ∆m2
32 have been associated with atmospheric

neutrino oscillation. The final mixing angle, θ12, has been measured by reactor ex-
periments and T2K, whilst the sign of ∆m2

31, the octant of θ23 and a possible CP
violating phase, δCP, are as yet unknown.

Quantifying these parameters is a goal of past, current and future experi-
ments using neutrinos from a range of different sources.

3.1.2 Reactor neutrinos

Reactors provide an excellent source of man-made ν̄e for use in oscillation experi-
ments. The long baseline experiment, KamLAND, has been mentioned in subsec-
tion 1.2.3 and provided excellent data relevant to the solar neutrino problem. Other
experiments use shorter baselines of ∼ 1 km[74] or lower. These include searches for
oscillations at much higher ∆m2 and observations of the probability of ν̄e survival
(P (ν̄e → ν̄e)), usually with the inverse beta decay reaction described in Equation 1.1.

Several reactor experiments at short (< 100 m) baselines began publish-
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ing results from the early 1980s onwards. These include experiments at the ILL
reactor[75], the Gösgen nuclear power reactor[76], the Bugey reactor[77][78], the
Savannah River plant[79] and the Rovno nuclear power plant[80].

Of these short baseline results only the first measurements at Bugey[77] re-
ported results inconsistent with no oscillations, and repeated measurements with
improved shielding failed to back even these up[78]. This suggests an oscillation
length above that accessible to reactor energies at very short baselines.

Further experiments on ∼ 1 km baselines were performed in the late 1990s
at the CHOOZ nuclear power station[81] and the Palo Verde Nuclear Generating
Station[82]. These did provide useful information on oscillation parameters, rul-
ing out νµ → νe as a solution to the atmospheric anomaly (subsection 1.2.4) and
constraining the parameter space for ∆m2

32 and θ13.
Until recently short baseline reactor data appeared to agree with the hy-

pothesis of no oscillations. A recent recalculation of reactor flux, though, resulted
in a scaling up of predicted ν̄e which in turn implied a deficit in most previous re-
actor anti neutrino experiments. This has been dubbed the ‘reactor anti neutrino
anomaly’[83] and oscillation with an additional sterile species of neutrino has been
proposed as a possible solution. Future and proposed short baseline reactor exper-
iments such as PROSPECT[84], SoLid[85], NEOS[86], SOX[87] and Stereo[88] aim
to test the oscillation hypothesis as an explanation for this anomaly.

Reactor experiments over medium baselines have recently provided excellent
information on the previously unknown θ13 mixing angle. In April 2012 RENO re-
ported a 4.9σ ν̄e disappearance result[90], followed later that year by a > 5σ result
from Daya Bay[89] (shown in Figure 3.2. These were the first experimental confir-
mation of non-zero θ13

†. RENO and Daya Bay along with Double-CHOOZ[91] are
fairly recent reactor experiments. They all involve shielded detectors containing Gd
doped scintillator for detecting inverse β decay surrounded by undoped scintillator
for catching γs and a buffer of mineral oil. The experiments utilise near and far
detectors, for measuring ν̄e before and after significant oscillation. RENO utilizes
single near far detectors and Daya Bay uses three near and three far detectors po-
sitioned relative to six reactors. The use of identical near and far detectors allows
uncertainties arising from reactor flux to be minimised.

Future and proposed experiments such as JUNO[92][93] and RENO-50[94]
aim to use sharp energy resolution and high statistics to resolve the mass hierarchy
at high significance. They also plan to determine known mixing parameters to higher

†T2K had data consistent with θ13 > 0 at this point in time but had not reached the 5σ level
of significance.
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Figure 3.2: Daya Bay results confirming non-zero δCP at > 5σ. From [89].

than ever accuracy.
Measurements on ν̄e disappearance from reactors have been hugely impor-

tant in solving the solar neutrino problem. More recently they have allowed us to
determine that θ13 is indeed non-zero, a result confirmed by accelerator experiments
such as T2K.

3.1.3 Accelerator neutrinos

Accelerators are the other man-made neutrino source. Their advantages are a larger
degree of experimental control over neutrino energies and the ability to direct the
beam allowing for measurable neutrino flux even at distances of many hundreds of
kilometres. There remains difficulty in knowing precisely the neutrino content and
energy spectrum of a beam and this is one of the larger sources of experimental
uncertainty for accelerator experiments.

Prompt neutrino experiments such as those by CDHSW[95] and CHARM[96],
were performed in the early 1980s. These found ratios of (−)

ν e and (−)
ν µ events and of

νµ and ν̄µ events consistent with lepton universality. Because neutrino energies were
high (above ∼ 20 GeV) and baselines short, such experiments were only sensitive to
oscillations with high ∆m2, which were ruled out.
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Perhaps the best known muon decay at rest experiment was LSND[97]. Us-
ing data taken during the 1990s they reported an apparent ν̄e appearance from a ν̄µ
source. Their short baseline and energies up to 200 MeV implied ∆m2 ∼ 1 eV. By
the time they published their final results solar and atmospheric mixing parameters
of ∆m2 ∼ 1× 10−4 eV2 and ∆m2 ∼ 1× 10−3 eV2 respectively were already known.
If the LSND appearance result was correct it would imply a third mass squared dif-
ference and therefore a fourth (sterile) neutrino species. The phase space suggested
by LSND was restricted but not eliminated by reactor experiments, decay at rest
experiments such as LAMPF[98] and KARMEN[99] and wide angle beams at the
BNL[100][101], NOMAD[102] and CCFR[103], none of which found any evidence for
νµ → νe oscillations. Favoured LSND parameters and restrictions on their phase
space are illustrated in Figure 3.3.

Finally MiniBooNE[105] was set up to search for (−)
ν e appearance in a (−)

ν µ

beam with similar L
E to LSND. Their νµ → νe results found no evidence for oscil-

lation but their ν̄µ → ν̄e results[106] appeared to suggest an excess consistent with
oscillations in the 0.1 eV2 – 1 eV2 range. Furthermore their final results[104] sug-
gested a low energy excess in both modes as shown in Figure 3.4, but only marginally
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Figure 3.3: Favoured oscillation parameters implied by the LSND anomaly, with exclusion
regions from other experiments indicated. From [97].
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compatible with two-neutrino oscillations.
MicroBooNE[107], a new liquid argon TPC neutrino R&D experiment on

the Booster beamline at FNAL, is due to start taking neutrino data soon. The
experiment should be able to tell if the MiniBooNE excess is electron like or photon
like. In doing so it will tell us whether the excess could be from some new oscillations
with sterile neutrinos or simply a previously unmodelled background. It will be
joined by the ICARUS T600[108] and SBND[109] detectors to form a full short
baseline program addressing the LSND and MiniBooNE anomalies[110].

Many decay in flight accelerator experiments throughout the 1980s and 1990s
used short baselines which were insensitive to small values of ∆m2 and thus un-
able to solve the solar and atmospheric neutrino problems. Such experiments
included those the BNL during the 1980s[111][100], decay in flight results from
CHARM[112], BEBC[113] and CDHSW[114] at CERN and CCFR[115] and the
high energy NuTeV[116] at Fermilab. CHORUS[117] at CERN and E531 at[118]
FNAL aimed to find ντ from νµ → ντ oscillations. Unsurprisingly none of these
short baseline accelerator experiments were able to find evidence for oscillations,
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placing instead strong limits on the available parameter space.
When it came to oscillation parameters nature was kinder to long baseline

accelerator experiments. These are more recent efforts which utilise near detectors
to measure unoscillated neutrinos as well as a far detector, vastly reducing sys-
tematic uncertainties relating to neutrino flux in the unoscillated beam. The K2K
experiment, as mentioned in subsection 1.2.4 was one example.

The NuMi beam at Fermilab[119] provides neutrinos for both long baseline
oscillation and short baseline cross section and R&D experiments. MINOS[56] was
one example which supported the Super-Kamiokande atmospheric oscillation results
as seen in Figure 3.5. Its successor MINOS+ [120] is the only currently operating
wide-band on axis oscillation experiment, providing unique physics opportunities.
Both use a near detector 1 km and a far detector 735 km from the source. NOνA
[121] uses the same source but a different off-axis angle (0.8◦ from the beam centre)
giving a narrow band of energies around 2 GeV seen by a far detector 810 km away.
NOνA examines the same parameters as T2K, aiming to measure (−)

ν e appearance
in a (−)

ν µ beam and also precisely measure (−)
ν µ survival.

Other experiments have searched for ντ appearance in a beam of νµ. Both
CHORUS[117] and NOMAD[102] searched unsuccessfully for such oscillations using
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Figure 3.5: MINOS results from atmospheric mixing, also showing the Super-Kamiokande
results. From [56].
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protons produced by CERN’s SPS proton source over a short baseline. The later
OPERA experiment[122] used a much longer baseline and were able to observe ντ
appearance at 5σ[123].

The T2K accelerator experiment uses Super-Kamiokande as a far detector,
like K2K, and a source and near detector at J-PARC in Tōkai-mura . The detectors
and beam providing their neutrinos are discussed in detail in Chapter 4.

Hyper-Kamiokande[124] is a proposed next generation Čerenkov detector
using 1 Mton of ultra pure water. The experiment aims to use an upgraded J-
PARC beam to make high statistics measurements of δCP and sin2 θ23, as well as
continuing the observations of atmospheric, solar and astrophysical neutrinos made
by Super-Kamiokande.

DUNE[125] is another future experiment, using a 40 kton liquid argon time
projection chamber to measure neutrino interactions. The experiment plans to use
a 1300 km baseline with neutrinos from a high intensity beam at Fermilab in Illinois
to the Sanford lab in Lead, South Dakota, to obtain high precision measurements
on δCP.

3.1.4 Solar neutrinos

Modern solar neutrino experiments often aim to observe more than just neutrino
oscillation, using neutrinos to probe nuclear interactions inside the sun and check
stellar models. Even where this is the case, disappearance of ν̄e makes entanglement
with neutrino oscillation theory unavoidable.

Super-Kamiokande has continued observing solar neutrinos[126]. As well as
improving the fit on solar oscillation parameters they have found evidence for non-
zero asymmetry between neutrino flux at day and night at 2.8σ. This results from
matter effects encountered by neutrinos propagating through the Earth, leading to
some regeneration of oscillated νe. The Super-Kamiokande solar neutrino results
also currently give the world’s most precise νe-only measurement of ∆m2

21.
Borexino[127] is a liquid scintillator based experiment designed to observe

sub-MeV neutrinos, specifically mono-energetic 7Be solar neutrinos. They have been
able to detect, at over 5σ, geoneutrinos from the Earth[128] produced by the decay
chains of U, Th and K contributing to low energy ν̄e flux[129]. Borexino’s geoneu-
trino measurements are supported by results from KamLAND[130].

SNO+ [131] is a follow-up to SNO, replacing the deuterium target with
liquid scintillator. This allows neutrinos at much lower energies to be examined.
SNO+ aims to observe neutrinoless double beta decay, low energy solar neutrinos,
geoneutrinos and reactor neutrinos.

41



Hyper-Kamiokande[132] is predicted to observe around 115000 8B neutrinos a
year from elastic scattering and also to have high sensitivity to day–night asymmetry.

3.1.5 Atmospheric neutrinos

Future experiments on atmospheric neutrinos propose to probe the remaining mys-
teries of neutrino oscillation parameters.

One proposed neutrino experiment is India’s INO[133]. A main cavern is
to house the main iron calorimeter (ICAL) detector while surrounding caverns can
provide space for future experiments, such at neutrinoless double beta decay exper-
iments. They aim to use the ICAL to make precision measurements on atmospheric
neutrinos including measurements of matter effects.

ORCA[134] is a study to examine the feasibility of determining mass hier-
archy through two dimensional arrival pattern of νµ in energy and zenith angle.
The detector plans to use a deep sea neutrino telescope developed for KM3NeT and
distinguish between the hierarchies by examining matter induced oscillations.

PINGU[135] is a proposed detector to be located with the IceCube Deep-
Core detectors. It aims to be sensitive to mass hierarchy by observing atmospheric
neutrinos. The detector will closely follow the IceCube design, with optical modules
deposited in the ice.

3.1.6 Global fit to mixing parameters

With the large number of experiments on neutrino oscillation parameters available
some authors have brought data together in a global fit. A recent paper[51] deter-
mined the values shown in table 3.1.

Notably the atmospheric mixing angle, θ23, is consistent at 1σ with the hy-
pothesis of maximal mixing (θ23 = 45◦) for a normal hierarchy, and at 1.3σ in the
case of an inverted hierarchy.

3.2 Neutrino interactions with matter

Because of the challenges inherent in observing neutrinos, experimental information
on neutrino interactions and cross sections is difficult to acquire. The processes
contributing to neutrino cross sections are detailed in Section 2.3. Much of the
information used for predicting and simulating neutrino interactions comes instead
from the much larger supply of electron scattering data.
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Parameter Best fit value +1σ
−1σ

Normal hierarchy

∆m2
21 7.60+0.19

−0.18 × 10−5 eV2∣∣∆m2
31
∣∣ 2.48+0.05

−0.07 × 10−3 eV2

sin2 θ12 3.23+0.16
−0.16 × 10−1

sin2 θ23 5.67+0.32
−1.24 × 10−1

sin2 θ13 2.26+0.12
−0.12 × 10−2

θ12 34.6+1.0
−1.0

◦

θ23 48.9+1.8
−7.2

◦

θ13 8.6+0.3
−0.2

◦

δCP 1.41+0.55
−0.40π

δCP 254+99
−72
◦

Inverted hierarchy

∆m2
21 7.60+0.19

−0.18 × 10−5 eV2∣∣∆m2
31
∣∣ 2.43+0.05

−0.06 × 10−3 eV2

sin2 θ12 3.23+0.16
−0.16 × 10−1

sin2 θ23 5.73+0.25
−0.39 × 10−1

sin2 θ13 2.29+0.12
−0.12 × 10−2

θ12 34.6+1.0
−1.0

◦

θ23 49.2+1.5
−2.3

◦

θ13 8.7+0.2
−0.2

◦

δCP 1.48+0.31
−0.31π

δCP 266+56
−56
◦

Table 3.1: Table showing most recent global fit neutrino oscillation parameters from[51].

The growing use of powerful accelerators to produce high neutrino fluxes
provides many opportunities for experiments examining in detail the interactions of
neutrinos with nuclei. This is a two way exchange, with information on neutrino
cross sections feeding into oscillation experiments. Detectors such as MINERνA
[136] and SciBooNE[137] can examine cross sections relevant to oscillation experi-
ments and T2K’s ND280 near detector itself acts as a useful source of cross section
information.
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3.2.1 MiniBooNE results

Cross section measurements were produced alongside MiniBooNE’s short baseline
oscillation analyses. These covered many types of low energy neutrino interactions
on mineral oil (CH2)[139].

The CCQE results are of particular interest since the extracted value of
the parameter MA (see subsection 2.3.2) were about 30% higher than the global
average from experiments such as NOMAD, albeit when operating at lower energies
than other experiments. This discrepancy is illustrated in Figure 3.6. It prompted
further development of nuclear interaction models to explain the discrepancy and
highlights the need for detailed data on neutrino interactions to feed in to theoretical
predictions.

3.2.2 Argon TPCs

Also of interest are experiments using liquid argon TPC (LArTPC) technology, the
development of which is particularly important in anticipation of the DUNE long
baseline experiment. The short baseline program at Fermilab[110] has also been
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Figure 3.6: νµ and ν̄µ charged current quasi-elastic cross sections for MiniBooNE and NO-
MAD. Note the two experiments use different topologies in defining such events so not all
discrepancies are necessarily physical. From [138].
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mentioned with regards to the LSND and MiniBooNE excesses and should feature
the SBND[109], MicroBooNE[107] and ICARUS T600[108] detectors acting as near,
intermediate and far detectors respectively.

Of particular note is the ArgoNeuT [140] LArTPC. This in conjunction with
the MINOS near detector determined an integrated (−)

ν µ cross section on argon of

σ/Eνµ − (0.66± 0.03± 0.08)× 10−38 cm2

GeV ,

for νµ and

σ/Eν̄µ − (0.28± 0.01± 0.03)× 10−38 cm2

GeV ,

per nucleon for ν̄µ[141]. Other interesting results include the observation of back to
back proton events[142][143] (Figure 3.7) and coherent charged pion production[144],
all in a liquid argon TPC.

Figure 3.7: Two 2D views of a back to back proton event seen by ArgoNeuT, with protons
∼ 500 MeV. Coordinates are the IDs of the collection planes picking up charge (w and v
for collection and induction respectively) and time (t). From [142].
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As an argon TPC with a large amount of data behind it ArgoNeuT invites
comparison with the T2K TPC gas interaction analysis covered in this thesis. There
are, though, substantial differences between the detectors. ArgoNeuT observes neu-
trinos at much higher energies than the ND280, with (−)

ν µ energies averaging 9.6 GeV
(3.6 GeV). This compares with T2K’s average around 600 MeV. ArgoNeuT is also
restricted to a fairly narrow range of muon angles by a requirement for tracks match-
ing the downstream MINOS near detector whereas the ND280 reconstruction for gas
interactions has been designed to be as isotropic as possible. Finally ArgoNeuT uses
liquid argon rather than the ND280 TPC argon gas, raising the threshold for the
detection of low energy protons.
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Chapter 4

The T2K Detectors

The T2K experiment[145] is designed to observe neutrino oscillations over a baseline
of 295 km. Specifically, a beam of either mostly νµ or mostly ν̄µ is produced at the
J-PARC facility in Tōkai-mura on the East coast of Japan by high energy protons
striking a target. The beam is observed at the Super-Kamiokande facility near
the West coast where the detector’s 50 kton volume of water ensures an appreciable
number of neutrino interactions. A near detector facility located 280 m downstream
of the proton beam target target allows the fluxes of νµ, νe, ν̄µ and ν̄e in the beam
to be determined and also allows for measurements of neutrino cross sections. An
overview of the baseline is shown in Figure 4.1.

T2K was designed to measure the mixing angle θ13 through electron neutrino
appearance

(−)
ν µ →

(−)
ν e, (4.1)

and to precisely measure the atmospheric mixing parameters θ23 and ∆m23
2 through

muon neutrino survival

(−)
ν µ →

(−)
ν µ, (4.2)

In 2011 T2K published first indications of νe appearance in a νµ beam, at
2.5σ significance[146]. This was confirmed in 2013 with a significance of 7.3σ[147].
This evidence, along with reactor data from experiments such as RENO[90] and
Daya Bay[89], confirm non-zero θ13 at high significance. Despite being unknown a
few years ago, θ13 is now the most precisely measured mixing angle.
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Figure 4.1: The T2K experiment layout, showing the neutrino beam’s journey across
Honshū, from neutrino production at J-PARC to the near detector 280 m downstream to
the Super-Kamiokande far detector 295 km away.

4.1 Beam

The setup for producing the T2K neutrino beam is illustrated in Figure 4.2. Neutri-
nos are produced at the J-PARC neutrino experiment facility[148] where accelerated
protons from the main ring strike a graphite target. The secondary particles from
these collisions are selected and steered into a decay pipe, where they decay into
neutrinos.

T2K utilises an off-axis neutrino source produced by directing a wide band
beam in a slightly offset direction relative to the detectors. In this case the beam
is aimed 2.5◦ below the direction of the far detector. For a far detector at 295 km,
optimum νe appearance probability occurs when Eν ∼ 600 MeV (see Figure 4.3).
Although aiming the beam 2.5◦ away from the target reduces overall neutrino flux
it actually increases flux at this maximum, giving a sharp peak near 600 MeV as
can be seen in Figure 4.4. Background is also reduced.

4.1.1 Off-axis configuration

T2K spearheaded this off-axis configuration. Its advantages stem simply from the
two body π decay producing the majority of neutrinos. In the decay’s centre of mass
frame, with negligible neutrino mass,

EνCM = mπ

2

(
1− mµ

2

mπ
2

)
, (4.3)

which is boosted to the laboratory frame along the z axis. Assuming a small angle
θ between π and ν direction and that β ∼ 1, we find

Eν =
(

1− mµ
2

mπ
2

)(
Eπmπ

2

mπ
2 + Eπ

2θ2

)
. (4.4)
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Figure 4.2: The T2K setup for neutrino beam production.
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Figure 4.3: Neutrino oscillation probability as a function of energy, for neutrinos starting
as νµ, at 295 km, assuming δCP = 0 and using recent oscillation parameters from [51].
Figure 4.3a shows normal hierarchy and Figure 4.3b inverted.
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Figure 4.4: Effect of off-axis angle on J-PARC fluxes. Neutrino energy as a function of pion
energy at different angles is shown in Figure 4.4a, where the dotted lines give the relationship
between Eν and Eπ at different angles, the solid line gives the 2.5◦ angle used by T2K and
the blue line shows our desired peak energy. Neutrino fluxes at different off-axis angles are
shown in Figure 4.4b, from [149].
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As θ → 0 the left side of this equation becomes directly proportional to Eπ,
and neutrino energy gains the same spread as pion energy. As θ increases, though,
the denominator’s dependence on Eπ increases faster than the numerator’s leading
to its overall suppression for a range of off-axis angles. Since Eπ is the only variable
quantity in Equation 4.4 this greatly reduces the spread of Eν . The effect of θ on
neutrino energy distribution is shown by Figure 4.4a.

This off-axis configuration has since been taken up by experiments such as
NOνA [121]. The Hyper-Kamiokande successor to Super-Kamiokande plans to use
the same off-axis angle as T2K[124].

4.1.2 Accelerator

In order to produce a beam of accelerated protons the J-PARC facility contains
three accelerators; the linear accelerator (LINAC), the rapid cycling synchrotron
(RCS) and the main ring (MR). The direction of our beam and location detectors
relative to this main ring are shown in Figure 4.5.

The LINAC accelerates H− anions before they are converted to H+ by charge
stripping foils. The protons are injected into the RCS where they are accelerated

Figure 4.5: The geographical location of the J-PARC neutrino beam production facility
used by T2K relative to the main ring, from [124].
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to 3 GeV. Most bunches are passed to other facilities but about 5% proceed to the
main ring where they are accelerated in 8 bunches to 30 GeV for use by J-PARC’s
hadron and neutrino facilities.

For the neutrino beam a fast extraction takes all 8 bunches at once to pro-
duce a 30 GeV proton pulse every 2.1 s. These pulses are directed towards the T2K
graphite target via the primary beamline. At this point the beam is directed down-
wards at 3.637◦, providing the experiment’s 2.5◦ off-axis angle relative to the near
and far detectors.

4.1.3 Secondary beamline

The proton target, magnetic horns, decay volume and beam dump are all contained
in an iron vessel filled with 1 atm of He. This reduces production of unwanted 3H
and N2O and slows oxidation of the target.

The core of the target is a 91.4 cm (or ∼ 2 interaction lengths) long, 2.6 cm
diameter graphite rod. Secondary particles, mostly πs with some contamination
from Ks, are produced when the proton pulses impinge on this target.

From these secondary particles, pions of the desired sign are selected and
focussed using three magnetic horns[150]. These horns were designed for a peak
current of 320 A, though in practice a peak of 250 A has been used for most of
the T2K run periods. The horns contain two aluminium conductors in a coaxial
arrangement. The first horn serves to collect the pions, while the second and third
focus them.

For the majority of the T2K run periods π+ have been selected, providing a
beam of νµ. More recently the horn current has been reversed for some run periods
to select π−, providing a ν̄µ beam. The gas interaction analysis described in this
thesis uses the forward horn current configuration and a beam of mostly νµ.

The selected pions are directed to the decay volume. This is a steel tunnel
around 96 m long, surrounded by 6 m thick reinforced concrete. The beam dump at
the end of this volume is a core of graphite 3.174 m long, containing iron plates to
a total thickness of 2.40 m. This large lump of solid material allows only neutrinos
and muons above ∼ 5 GeV to pass and reach the muon pit.

4.1.4 Muon flux

Since muons are primarily produced via two body π decay, measuring those escaping
from the beam dump allows the intensity and direction of the neutrino beam to be
inferred with high accuracy. The T2K neutrino beam direction is assumed to be the
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same as the direction from the target to the centre of the muon flux.
A dedicated muon monitor (MUMON) setup is located just behind the beam

dump featuring arrays of ionization chambers and arrays of silicon photodiodes,
both ∼ 120 m from the target. These arrays can resolve muon beam direction to
∼ 2.5 mrad.

4.2 Super-Kamiokande

The Super-Kamiokande detector’s first data taking period (phase I) ran from 1996
to 2001. Severe damage during upgrade work lead to the next phase (phase II)
running with only half the original PMTs, from 2002 to 2005. A third data taking
period (phase III) ran from 2006 to 2008 with almost the original number of PMTs,
and in 2008 the detector was upgraded to its most recent phase (phase IV) with new
electronics[152]. Its role in in historic neutrino oscillation measurements has been
described in Chapter 1.

Super-Kamiokande acts as the T2K far detector, doing the job of observing
(−)
ν µ →

(−)
ν e appearance and (−)

ν µ →
(−)
ν µ survival in oscillated neutrinos. It is a large

water Čerenkov detector located 1 km deep in a cavern in Mt. Ikeno, as shown in
Figure 4.6, 295 km away from the neutrino source.

Figure 4.6: The Super-Kamiokande detector, showing the huge volume of the water
Čerenkov inner detector, from[151]
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4.2.1 The detector

The detector itself consists of 50 kton of highly purified water, split into the optically
separated inner and outer detectors. The inner detector is surrounded by 11129
PMTs (originally 11146) each 50 cm in diameter, providing 40% coverage of the
inner surface. This provides a high level of spatial resolution for observing the rings
of photons produced by cones of Čerenkov light. The outer detector is a relatively
sparsely instrumented region which serves to muons from cosmic rays. The total
of 1885 PMTs arrayed around it are sufficient for cosmic muon rejection at almost
100% efficiency.

The PMTs are sensitive to magnetic fields, which alter the trajectories of
photoelectrons within them producing an asymmetric reduction in hit collection
efficiency. For this reason coils are arranged around the tank’s inner surface to
neutralise the Earth’s natural magnetic field. The remaining field around the PMT
dynode axis is around 2 µT.

4.2.2 Particle identification

The primary requirement for the detector is an ability to distinguish e produced by
(−)
ν e from µ produced by (−)

ν µ. In Super-Kamiokande this is done by differentiating
between the Čerenkov rings produced by electrons and muons. This setup along
with the lack of magnetic field makes it impossible to distinguish the positive leptons
produced by ν̄ from the negative leptons produced by ν.

Muons are fairly massive in comparison to electrons and resist changes to
their momentum. This produces a sharp, well defined Čerenkov cone leading to a
sharp, well defined ring of PMT hits. Electrons by contrast are subject to scattering,
almost invariably producing EM showers. This leads to a ‘fuzzy’ ring of PMT hits
as separate cones of Čerenkov light from the shower’s constituent e+ and e− overlap.

Unfortunately this leaves the Super-Kamiokande (−)
ν e appearance analyses

sensitive to background from other showering particles. The significant backgrounds
of this kind are π0 from neutral current interactions. These are electrically neutral
and thus invisible until they decay, predominantly into electromagnetically shower-
ing particles (γγ 99% of the time)[149]. From the detector’s point of view the only
difference between these pairs and e signal is that each γ can travel some distance
before showering. The difficulty of distinguishing these decays from (−)

ν e interactions
motivated the construction of the ND280 π0 detector (P0D , subsection 4.4.4) to
get a handle on the background they are expected to contribute.

53



4.3 INGRID

The ND280 facility consists of detectors designed to measure the properties of the
T2K neutrino beam 280 m downstream of the production target, before the neutri-
nos have a chance to significantly oscillate. One detector here is the ND280 off-axis
near detector itself. The other is INGRID[153], the on-axis detector.

INGRID (the interactive neutrino grid) is a cross shaped array of 14 identical
modules centred on the beam axis as illustrated in Figure 4.7, plus one slightly
modified proton module placed in the centre of the INGRID cross, between the
horizontal and vertical modules. The purpose of INGRID is to directly monitor the
direction of the neutrino beam, with heavy iron targets providing a sufficient rate
of neutrino interactions for day by day measurements during normal running. The
module is able to measure the position of the beam centre to better than 0.4 mrad.

Figure 4.7: The INGRID on-axis detector as of the start of T2K running. Note that in
early 2014, the shoulder module on the right was moved to a lower level at a 1.65◦ off-axis
angle to measure Fe cross sections below 1 GeV. The proton module is located between the
horizontal and vertical modules.
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4.3.1 The detector array

The individual modules are illustrated in Figure 4.8a. They consist of 9 iron plate
targets each sandwiched between two scintillator planes for tracking, all surrounded
by veto planes of scintillator. The veto planes and fiducial volume are all enclosed
within dark boxes formed from plastic plates held together in aluminium frames. In
each module the majority (95%) of mass comes from the 7.1 ton of iron target. The
two planes of scintillator in each layer each consist of two arrays of 24 bars; one in
the horizontal and one in the vertical direction.

4.3.2 The proton module

The proton module illustrated in Figure 4.8b has a similar shape is slightly modified
compared to the other modules. It was designed to detect the muons and protons
produced by CCQE interactions with high efficiency. The module is fully active to
allow for better tracking. It contains 34 tracking planes and 6 veto planes. The
tracking planes again alternate between horizontal and vertical array of bars but in
this case there are 32 with the middle 16 bars in the array being half the width and
slightly thicker than the outer bars.

4.4 ND280

The ND280 off-axis near detector is designed to complement Super-Kamiokande
by determining its expected signal and background rates. To accomplish this it
measures neutrino flux, energy spectrum, flavour content and cross sections from
the unoscillated J-PARC neutrino beam.

The obvious background to a (−)
ν e appearance measurement is (−)

ν e contami-

(a)
(b)

Figure 4.8: The INGRID modules, with standard modules shown in Figure 4.8a and the
specialised proton module in Figure 4.8b.
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nation in the beam, so the near detector is equipped to measure this. The beam’s
initial (−)

ν µ content is also measured. Knowing to reasonable precision initial (−)
ν µ

content and (−)
ν e contamination is crucial for T2K’s oscillation analysis.

Another significant background, as raised in subsection 4.2.2, is π0 produced
by neutral current neutrino interactions. Their decays into predominantly electro-
magnetically showering particles are difficult to distinguish from (−)

ν e charged current
interactions producing electrons. In order to calculate the expected backgrounds
from these interactions a dedicated π0 detector as included in the ND280.

Practical considerations and the requirement for many different measure-
ments led to the construction of a near detector which is quite different from the
far detector. The ND280, as shown in Figure 4.9, consists of many sub-detectors
surrounded by a large magnet. The P0D (π0 detector), TPC (time projection cham-
ber), FGD (fine grained detector) and downstream ECal (electromagnetic calorime-
ter) sub-detectors are contained in a metal frame (the basket) surrounded by more

Figure 4.9: The ND280 off-axis near detector.
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ECals (the P0D ECals and barrel ECals respectively), the UA1 magnet and the
SMRD (side muon range detector).

Each sub-detector is specialised to perform a specific job. The P0D is a
large target designed to examine interactions of π0 as discussed. The FGDs provide
dense neutrino interaction targets with the capacity for reconstruction of vertices
and through-going tracks. The TPCs are sparse and designed to provide excellent
tracking, reconstruction and particle identification for tracks originating in the P0D
or FGDs. The ECals surrounding these detectors pick up escaping electromagnetic
particles and also allow for particle identification. Finally, the SMRD detects escap-
ing muons and provides triggers and vetoes for cosmic ray events.

4.4.1 The UA1 magnet

The ND280 dipole magnet was appropriated from the NOMAD experiment which
acquired it from UA1. In order to allow the momentum and sign of charged particles
to be measured it provides a field of 0.2 T. The dipole field is produced by a 2900 A
current passed through aluminium coils. During running they are cooled by water.

The magnet’s flux return yokes consist of low carbon steel plates. The two
yokes are C shaped and enclose the ND280 sub-detectors but can be opened for
access to the detector sub-modules. The SMRD modules are situated within the
gaps of the yokes whilst the other detectors are located between the two symmetric
halves.

The magnetic field effected by the magnet was measured to high precision
during a dedicated mapping procedure in late 2009. The results of this mapping are
utilised for magnetic field related corrections and systematic uncertainties during
reconstruction and analysis.

4.4.2 SMRD

The ND280 side muon range detector[154] was designed for energy measurement of
muons exiting the detector at high angles. It also functions as both a trigger and
an active veto for cosmic rays entering the detector.

It consists of 3–6 layers of plastic scintillator embedded in the UA1 magnet’s
iron yokes. The sheets of scintillator are 875 mm × 167 cm × 7 mm or 875 mm ×
175 mm × 7 mm depending on the gap they are inserted into, and the iron plates
they come between are 4.8 cm. Scintillation light reaches a wavelength shifting
(WLS) fibre embedded in an S-shaped groove in the scintillator and is read out by
a multi-pixel photon counter (MPPC). In total, 440 of these modules are embedded

57



in the innermost gaps of the magnet. Readout is double ended, allowing hit position
along the bar to be estimated by time difference between signal at each end.

4.4.3 ECals

The ND280 electromagnetic calorimeters[155] surround the P0D and the central
tracker region (the TPCs and FGDs). There are 13 modules in total; 6 P0D ECals
and 6 barrel ECals affixed to the magnet yoke surround the P0D and tracker region
respectively and a single downstream ECal is mounted in the basket immediately
downstream of the tracker region.

Each module contains sheets of optically isolated scintillator bars interleaved
with lead target planes. In the tracker and downstream ECals these bars are oriented
in alternating longitudinal and perpendicular layers whilst in the P0D ECals they are
oriented in longitudinal layers only. Each bar has a cross section of 40 mm×10 mm
(width × depth). The scintillator bars have WLS fibres running through them to
transport scintillation light to MPPC photo sensors at their edges. The downstream
ECal bars and z-direction barrel ECal bars are read out at both ends, whilst the
x- and y-direction barrel ECal bars and all P0D ECal bars are read out at one end
only. The single ended bars are all mirrored at the uninstrumented end.

The barrel and downstream ECals both feature 1.75 mm layers of lead in-
terleaved with scintillator layers. In the downstream ECal there are 34 layers with
2000 mm × 2000 mm sheets of scintillator. In all tracker ECals there are 31 layers
of scintillator with dimensions of 3840 mm × 2280 mm for the side modules and
3840× 1520 for the top and bottom modules.

The P0D ECals complement the P0D itself and have a modified design com-
pared to the other ECals. Space constraints lead to the P0D being substantially
shallower than other modules, with a total depth of 155 mm as opposed to 462 mm
in the barrel. To compensate a shorter radiation length is obtained by using thicker
lead layers. Six 4.0 mm thick layers of lead are interleaved with six layers of scin-
tillator. All bars are longitudinal, with scintillator dimensions 2340 mm× 2760 mm
for the side modules and 2340 mm× 1520 mm for the top and bottom modules.

The ECal modules were assembled at a number of institutions throughout
the UK, including substantial involvement from Warwick on the P0D ECals and
MPPC and WLS fibre quality assurance.
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4.4.4 P0D

The π0 detector[156] is primarily designed to measure processes with a π0 in the final
state. It features planes of horizontal and vertical scintillator bars with triangular
cross section interleaved with planes of target material, as shown inFigure 4.10. The
scintillator bars have WLS fibres running through them connected to MPPCs.

In the central region the target consists of brass sheets and fillable water bags.
Either end of this are ECal regions where the targets are lead sheets. These ECal
sections act as veto regions for entering particles, allowing for rejection of external
backgrounds, and improve the P0D ’s containment of electromagnetic particles.

4.4.5 FGDs

The fine grained detectors[157] in the main tracking region of the detector use plastic
scintillator as both a target and a detector. This provides a large target mass for
neutrino interactions as well as measurement of particles emerging from the vertices.
Through-going particles can also be reconstructed.

The detectors feature bars of scintillator in planes of bars oriented in the x

Figure 4.10: The ND280 P0D , showing the triangular layout of scintillator planes and the
lead, brass and water targets.
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or y direction. Wavelength shifting fibres passed through the bars transport light to
MPPCs attached to one end, while the other end is mirrored. The most upstream
FGD (FGD1) uses only plastic scintillator as a target while the downstream FGD
(FGD2) also features six 2.5 cm thick layers of water targets. This allows for cross
sections on water to be extracted by comparing interaction rates in the two FGDs.

4.4.6 TPCs

The time projection chambers[158][159] provide excellent three dimensional imaging
of through-going tracks. The 0.2 T magnetic field applied to the ND280 and detailed
in subsection 4.4.1 causes charged tracks to curve, allowing for their momentum and
sign to be determined. This ensures that event rate as a function of neutrino energy
can be calculated. The TPCs also collect information on energy deposited per
unit length (dEdx ) which allows for particle identity to be determined. Momentum
resolution in the TPCs is around 7%.

Each TPC contains a box of drift gas surrounded by an insulating box of
CO2 as illustrated in Figure 4.11. In the drift gas passing charged particles effect
ionisation electrons. A central cathode creates a ∼ 2.5 kV/m E field in the x

Figure 4.11: An illustration of a ND280 TPC detector, showing the drift volume and detector
pads for one half.
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direction which causes the electrons to drift towards the left or right sides of the
TPCs. Here they pass a ∼ 350 V micromesh before being picked up by micromegas
pads. The location of the pad detecting the electrons provides the y and z position
of the initial ionisation while the x position is determined from the time of the signal.

The total drift volume has dimensions of 897 mm×1800 mm×772 mm, with
the co-ordinates corresponding to drift × height × beam. Each of the three TPCs
has two drift regions separated by the central cathode, giving a total of 6 in the
ND280.

The gas mixture contains 95% Ar. The remaining 5% comes from a CF4

concentration of 3% and an iC4H10 concentration of 2%. This mixture performs
well with the micromegas units, gives fairly low diffusion and high drift speed, has
a long attenuation length and is non-flammable. In total there are 3000 L of gas
mixture per TPC, or 9000 L in total, and about 5 times this volume is cycled through
the TPCs each day with most of the outgoing gas being purified and recycled. The
outer gas volume’s insulating CO2 is kept at a slightly negative pressure relative to
the TPC gas to avoid contaminating it. The gas system maintains the stability of
both volumes and minimises O2 contamination.

The micromegas pads are each 9.8 mm×7.0 mm, largest in the z dimension,
and grouped into modules containing 1728 pads each. The pads are grouped into 2
columns, each containing 6 pads, on each side of the central cathode in each TPC
giving a total of 24 modules per TPC or 72 in total.

As shown in Figure 4.12 the ND280 TPCs allow for the tracks produced by
charged particles to be resolved with high precision. Since their primary goal is as
a tracker rather than a target they are not constrained by the need for very high
density. This means that even short tracks from low energy protons can be resolved.
The trade-off is a small total number of interactions.

Although the TPCs record detailed information on the tracks produced by
ionising particles this information still needs to be processed by reconstruction al-
gorithms. As will be discussed in the next two chapters the default ND280 recon-
struction software was not designed with interactions within the TPCs in mind,
motivating the development of new pattern recognition and reconstruction.
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Figure 4.12: Hits left by a particles from the FGD passing through the TPCs, from [159].
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Chapter 5

T2K Software

The T2K software, particularly ND280 simulation and reconstruction, is mostly
written in C++ and based around the ROOT framework[160]. The Geant4[161] package
for simulating the propagation of particles through matter is used extensively in
Monte Carlo simulation. The related but older GEANT-3 package is used in more
limited cases for beam simulation[162].

In this chapter we cover the steps involved in simulating (in the case of Monte
Carlo), calibrating and reconstructing events. We do not discuss the TREx package
for reconstructing TPC events — this is covered in detail in Chapter 6.

5.1 Simulating neutrino interactions

To simulate neutrino interactions accurate predictions of neutrino flux are required.
Their derivation is discussed in detail in [163]. Hadronic interactions of protons with
the baffle and target are simulated by the FLUKA package[164], tuned with both in
situ measurements of the proton beam and with hadron production data primarily
from the dedicated NA61/SHINE experiment[165].

From here the JNUBEAM package propagates particles through a simulated
baffle and target, horns and magnetic fields, decay volume, beam dump and mon-
itors. This simulation uses GEANT-3 and provides a prediction for the neutrino
beam’s flux, which is passed to neutrino interaction generators. For ND280 anal-
yses we are concerned with fluxes at the ND280 detector and in the surrounding
sand.

The JNUBEAM flux is passed to one of two primary generators for neu-
trino interactions, NEUT and GENIE, from which the rates and outgoing particle
kinematics of neutrino interactions are calculated. Both follow a generally accepted
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three pronged approach:

• Use a model for nucleon kinematics to determine the position and momentum
of the target nucleon.

• Select a channel for the interaction and determine interaction products and
their kinematics.

• Propagate these products out of the nucleus while accounting for final state
interactions.

In theory the two generators are simulating the same processes. In practice
each comes with its own specific models and implementations thereof which lead to
different predictions, particularly in variables and areas of phase space which have
not been precisely measured by experiment.

5.1.1 NEUT

NEUT[166] is one of the two interaction generators used by the T2K experiment. It
was originally written for the Kamiokande experiment mentioned in Chapter 1 and
was subsequently adopted by Super-Kamiokande and the accelerator experiments
for which it served as a far detector. This analysis used data simulated with NEUT
version 5.3.2.

In the present version of NEUT nuclear physics are modelled in one of two
ways depending on the target nucleus. For C, O and Fe the simulation employs
spectral functions as described by Benhar et al[167]. These provide momenta and
removal energies for nucleons. All other targets are represented a relativistic Fermi
gas model. The nominal model takes no account of correlations between nucleons,
though an implementation of the Nieves model[168] for this purpose is available in
the code.

For quasi-elastic and elastic interactions (charged and neutral current) the
Llewellyn Smith model is used with dipole FA(Q2) form as described in subsec-
tion 2.3.2. In its most recent NEUT implementation an axial mass of MA =
1.21 GeV is used.

Resonant interactions are described using the Rein-Sehgal model noted in
subsection 2.3.4 with a resonant axial mass of MA

res = 1.21 GeV. Coherent pion
production is simulated using the (unrelated) Rein-Sehgal model mentioned in sub-
section 2.3.5 with partially conserved axial currents. Deep inelastic scattering chan-
nels use the Bodek and Yang model (subsection 2.3.6) with PYTHIA/JETSET
above 2 GeV and internal NEUT code at lower energies.
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Final state interactions for all channels are simulated using a cascade model
where pion scattering, charge exchange and absorption are considered. In steps
determined by mean free path interaction products are propagated through the
nucleus with the probability of an interaction considered each step. If such an
interaction occurs the resulting particles are also propagated through the nucleus
and their own potential interactions considered. This proceeds until no further
interaction products remain within the nucleus.

5.1.2 GENIE

GENIE[169][170] was developed to be a general generator for neutrino interactions
particularly in the range of a few GeV. This contrasts with NEUT, which was
developed specifically for Kamiokande and updated for later experiments such as
T2K. This analysis uses data simulated with GENIE version 2.8.0.

Nuclear physics are simulated with a relativistic Fermi gas model, with ex-
tensions as described by Bodek and Ritchie[171] to describe short range correlations
between nuclei. The models used for individual interactions are analogous to those
used by NEUT but with differing implementations.

Quasi-elastic scattering once again uses the Llewellyn-Smith model. The
axial mass parameter is lower than NEUT’s, at 0.99 GeV. Elastic scattering uses
the model of Ahrens et al with axial vector form factor as in Equation 2.40.

Resonant production of baryons is represented with the Rein-Sehgal[65] model,
as with NEUT, but with resonant axial mass MA

res = 1.12 GeV. GENIE ignores
interference between resonances and neglects lepton masses in calculating differen-
tial cross section. Coherent scattering is also modelled with the Rein-Sehgal model
used by NEUT[66]. The cross section for deep inelastic scattering is calculated us-
ing an effective leading order model with Bodek and Yang’s modifications[70]. For
hadronisation GENIE used the AGKY model, in which PYTHIA is utilised above
at energies above a few GeV whilst an empirical model is used at lower energies (a
smooth transition is enforced between the two regions).

Final state interactions are simulated with a simplified, empirical model
tuned with experimental data. The total cross section for each rescattering pro-
cess for each particle is calculated as a function of energy and these cross sections
are used to evaluate probabilities of a given final state leading to a given selection
of particles exiting the nucleus.
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5.1.3 Disagreements between generators

As shown in Figure 5.1 these generators do not produce identical kinematics. GENIE
in general predicts interactions to produce a greater number of secondary particles,
each with a lower share of the interaction’s total energy. NEUT on the other hand
favours fewer secondary particles with a higher share of momentum. In addition,
NEUT predicts a sharp drop-off in proton momentum below the Fermi-momentum
at around 250 MeV whilst GENIE’s highest proton momentum increases steadily all
the way down to around 100 MeV.

Disagreement in these distributions is unsurprising since there is a distinct
lack of experimental data on low momentum protons and their multiplicity with
which to tune generators. Our gas TPC, with its capability to measure protons
down to very low energies and resolve vertices in sufficient detail for precise mul-
tiplicity measurements, affords us an excellent opportunity to provide such useful
information.

5.2 Interactions outside the ND280

Cosmic rays are almost universally negligible in analyses as a result of beam tim-
ing cuts. They are used mainly for understanding detector performance and the
computation of systematic errors.

Their simulation begins with the Fortran based CORSIKA package for show-

(a) (b)

Figure 5.1: Differences in highest proton momentum (Figure 5.1a) and proton multiplicity
(Figure 5.1b between GENIE and NEUT. Also marked are the predicted minimum resolvable
energy for our gas TPC and a liquid TPC. From[172].
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ers produced by high energy cosmic particles. This software can provide a flux
specific to the ND280 pit. From here a Geant4 based simulation propagates the
flux, accounting for any interactions between muons and the pit’s concrete walls or
surrounding sand. From the edges of the ND280 detector the general ND280 sim-
ulation described in Section 5.3 takes over. An additional step after this simulates
the responses of cosmic triggers.

Also simulated are sand muons. These result from interactions of neutrinos
in the sand surrounding the ND280 detector. The simulation procedure uses NEUT
as a generator and is identical to generation of interactions inside the detector but
with the addition of an intermediate step for propagating interaction products from
the sand to the ND280 detector. At this point general ND280 simulation takes over.

5.3 ND280 simulation

The Monte Carlo generators simulate interactions for individual neutrinos resulting
in a selection of interaction products and their initial kinematics. For propagating
these products through the ND280 detector Geant4 is used.

This simulation package covers any expected interactions and decays and,
crucially for the ND280, the interactions of charged particles with electric and mag-
netic fields. Our simulated ND280 geometry covers all active detector modules plus
dead regions such as our large surrounding magnets. Positions of individual modules
can be modified in light of new measurements using alignment constants.

During the gas interaction analysis a bug was discovered in the ranges of low
momentum protons. The default photoabsorption ionization model provided signif-
icantly lower than expected energy depositions when enabled for protons. Although
this is fixed in later versions, our analysis requires corrections to the overly high
proton ranges in Monte Carlo.

5.4 ND280 electronics simulation

Our electronics simulation covers the response of detector electronics to through-
going particles. It includes production and transportation of photons in scintillator
bars (for the FGDs, ECals, P0D and SMRD) and the production and drift of ionisa-
tion electrons (for TPCs). Electronics readout is also simulated. The package then
handles electronics chains from readout up to the point of producing digits which
can be calibrated in the same way as real data.

The first iteration of the gas interaction analysis uncovered electronics effects
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in data which are not accounted for by simulation. These involve the creation of
additional unphysical noise hits in channels surrounding large energy depositions.
Because of their appearance the problematic tracks surrounded by such noise were
dubbed ‘hairy tracks’. The way they are handled by TREx reconstruction and result-
ing systematic uncertainties are described in subsection 6.3.4 and subsection 8.6.3.

5.5 ND280 calibration

Calibration is the first step to apply to real data as well as Monte Carlo. It en-
capsulates two jobs. One is unpacking input data and saving it in a form useful
to reconstruction. Both Monte Carlo and real data digits are unpacked. The other
involves applying corrections to data accounting for both detector and electronics
effects. In the case of Monte Carlo most of the individual corrections are irrelevant
and thus skipped.

Tuning for the data calibration is driven by on site measurements includ-
ing cosmic triggers, pedestal (measurements in the absence of signal) and charge
injection data. TPC calibration uses a magnetic field map produced before their
installation. Drift parameters are also regularly checked using measurements from
a laser system which produces photoelectrons at known positions.

5.6 ND280 reconstruction

ND280 reconstruction[173] does the job of converting complicated hit level infor-
mation into objects such as tracks and vertices which are of interest to analysers.
Each module has its own reconstruction algorithms, though most at some stage use
information from TPC level reconstruction.

Much of the reconstruction involves combining and refitting objects within
or between detectors. This is achieved using a Kalman filter† for the following cases:

• Merging a track or seed and new hits or clusters with discrete position.

• Merging two TPC tracks, each with fitted position and momentum.

• Merging a track and a shower object in the P0D or ECal.

The Kalman filter procedure provides a fast way of performing incremental
matching, where a track object is matched with a single hit, refitted using the
Kalman filter, then matched with another hit and so on.

†In general a Kalman filter is a tool for incrementally estimating the value of a quantity by com-
bining previous estimates and new information, both of which have some known uncertainty[174].
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5.6.1 TPC reconstruction

The previous TPC reconstruction used a pattern recognition algorithm which as-
sumed through-going tracks in the forwards (z) direction. Consequently it was com-
pletely unsuitable for gas interaction analyses and performed poorly on topologies
such as backwards curving tracks.

The algorithms have been replaced by TREx . Pattern recognition was com-
pletely replaced and fitting, particle identification (PID) and absolute time (t0 )
determination have undergone general improvements in both structure and con-
tent. As a result of this extensive development TREx is discussed in great detail in
Chapter 6.

5.6.2 FGDs

FGD reconstruction occurs immediately after TPC reconstruction. Hits are either
matched with TPC tracks or reconstructed as isolated FGD tracks. After this PID
and track time are calculated.

TPC matching used a TPC track as the starting point for creating an FGD
object. FGD hits are added and fitted incrementally using a Kalman filter, in order
of matching χ2 with the extrapolated TPC track, until no hits remain with a χ2

below threshold. Matching proceeds sequentially in the order TPC1→ FGD1, TPC2
→ FGD1, TPC2 → FGD2, TPC3 → FGD2.

Stand alone reconstruction produces objects ending in an FGD and not con-
tinuing into a TPC. Previously unmatched hits undergo cellular automaton based
pattern recognition (with the sbcat algorithm†) and are reconstructed within the
FGD.

5.6.3 Tracker

Tracker reconstruction encapsulates both TPC and FGD reconstruction and con-
catenates tracks from separate modules to form tracker objects.

FGD-TPC matching creates tracks spanning a single TPC with hits in one or
more FGD. After this step tracks in different TPCs are matched based on whether
or not their matching χ2 is below a threshold. Each TPC track end is matched to a
maximum of one other track in an adjacent TPC. Once matching is done the tracks
are refitted with a Kalman filter to update their kinematics.

†sbcat is a cellular automaton originally developed for pattern recognition in the SciBar de-
tector used for K2K and SciBooNE. A three dimensional version was subsequently used for TPC
reconstruction before its replacement by TREx .
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5.6.4 P0D

P0D reconstruction involves both a track and a shower reconstruction algorithm, in
that order.

Track reconstruction fits the P0D ’s two two dimensional views (x–z and
y–z) separately and merges the two outputs where possible. Vertexing is performed
after initial tracks have been identified, with vertices identified between each pair
of tracks. The resultant vertices are subsequently merged into a smaller number
of vertices where possible. A PID step separates minimum ionising particles from
electromagnetic showers and tags tracks of awkward length and angle as of indeter-
minate identity.

Shower reconstruction proceeds using the results of track reconstruction.
Vertices are used to construct showers from particles tagged as electromagnetic
or indeterminate identity plus unused hits. The reconstruction assumes that all hits
from a shower lie in a cone as seen by the vertex and adds hits based on this.

5.6.5 ECals

During my time at T2K I worked on ECal software, particularly the EM energy
reconstruction and PID. These two algorithms are thus covered in more detail below.

As with the P0D and FGD ECal hits are divided between two orthogonal
views†. Each two dimensional view is fit separately. A clustering algorithm seeds
clusters from the highest charge hits and tries to add neighbouring hits. This runs
recursively on each added hit until no more can be grouped. Clusters are passed
onto the combining stage where small clusters (two hits) and unmatched hits are
added into larger clusters to which they are spatially close.

Two dimensional clusters are then matched between views to form three
dimensional objects. This matching is likelihood based, with a likelihood constructed
from the ratio of cluster charges and the difference between starting layers. Tracker
objects can be used as seeds for the matching. Since an ECal can contain many
objects only the matches with the best likelihoods (above a threshold) are accepted.
After this stage cluster position is recalculated for all three dimensional objects.

At this point the EM energy measurement described in Section 5.6.5 is made.
Three dimensional clusters are fitted as both tracks and showers. Shower

fitting utilises three dimensional principal component analysis while track fitting
uses a three dimensional linear fit on points derived from combined average hit

†Hits are in x–z and y–z views for the downstream modules, y–z and x–y for top and bottom
modules and x–z and x–y for side modules.
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positions in each layer.
After three dimensional fitting this point the particle identification procedure

covered in Section 5.6.5 is run.

EM energy

Three dimensional clusters are passed to an energy reconstruction algorithm. The
purpose of this is to determine the amount of energy deposited in an ECal assuming
the cluster belongs to an electromagnetic shower. Uncontained minimum ionising
particles have their energy underestimated by the algorithm.

Three variables are fed into an energy fit. They are

• Charge sum; the total charge of the cluster.

• Charge RMS; the spread of the cluster’s charge distribution.

• Charge skew; the skewness of the cluster’s charge distribution.

Of these charge sum is the most correlated with total energy. At a given
energy the PDF for each variable is assumed to follow a Gaussian distribution. The
mean and standard deviation for each variable’s PDF and correlations with other
variables are extracted at each energy. Fitting these with splines provides provides
the PDFs as a continuous function of energy.

The reconstructed cluster’s observed charge sum, RMS and skew variables
used in conjunction with these PDFs to produce a combined likelihood which varies
as a function of energy. The energy providing maximum likelihood is taken to be
the object’s uncorrected EM energy.

An additional tuning is applied both to correct for differences between ECal
submodules and to scale the most probable value returned by the fit to the statistical
mean instead. This is a simple scaling factor which varies as a function of ECal
submodule and uncorrected energy. Final EM energy is the initial, uncorrected
energy multiplied by this factor.

Particle identification

ECal particle identification[175] uses several variables to construct log likelihood
ratios for each cluster between two hypotheses. These are

• MIP-EM; a low value for which favours the minimum ionizing particle hy-
pothesis and a high value the electromagnetic shower hypothesis.
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• MIP-pion; a low value for which favours the minimum ionizing particle hy-
pothesis and a high value the showering pion hypothesis.

• EM-HIP; a low value for which favours the electromagnetic shower hypothesis
and a high value the proton hypothesis.

These discriminators are each built from a number of low level variables.
These are chosen for their systematic consistency between data and simulation and
their low correlation with each other. The variables are

• Circularity; a measure of the extent to which the cluster has a large width
in both views. This is near 1 for track-like objects and small for shower-like
objects.

• Truncated max ratio; a measure of the extent to which the cluster’s highest
charge layers feature much more charge than it’s lowest charge layers. This is
formed by taking the ratio of the highest to lowest charge layer after removing
the top and bottom 20% of layers.

• Charge RMS as used for EM energy; a measure of the spread of the cluster’s
charge distribution. This is higher for showering than non showering particles.

• Front-back ratio; a measure of the extent to which the track features higher
energy deposition at the end of the track. This is substantially higher for
stopping than non stopping particles.

PDFs are produced for each variable for each particle. For reconstructed
object the measured values of these variables are used to compute total likelihoods
for each hypothesis (MIP, EM, pion and HIP), the ratios of which give the log
likelihood discriminators.

5.6.6 SMRD

Reconstruction for the ND280 SMRD takes place after the reconstruction for all
other modules. It involves first evaluating hit position along SMRD bars and then
combining hits to create tracks. There are two algorithms employed. One uses
matching between tracks from other modules and SMRD hits. The other acts only
on isolated SMRD hits.

The first algorithm uses a Kalman filter to match calibrated hits within the
SMRD to objects within the other detector modules so long as matching χ2 is below
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a threshold. Once all SMRD hits which can be matched have been they are fitted
together to form an SMRD track.

The second algorithm is performed on SMRD hits which are not matched
to objects from other modules. A pattern recognition step groups hits depending
on their location, time and position. This is followed by two dimensional linear fits
which are combined to form 3D tracks for global reconstruction.

5.6.7 Global reconstruction

Global reconstruction involves stitching the results of individual reconstruction al-
gorithms into final reconstructed objects. After an initial hit preparation stage the
objects are combined together.

The process begins by matching objects from the tracker to those in adjacent
modules by requiring a matching χ2 below a threshold and small time differences
between objects. Matched objects are combined and refit using a Kalman filter one
pair at a time. This proceeds until no more matches are found. After this initial
matching the process repeats with remaining unmatched P0D objects and finally
with remaining unmatched ECal objects.

5.7 Analysis

The last step in the ND280 software chain is to strip out useful information from
reconstructed events and format them in a lightweight ‘analysis’ format. This re-
sults in files of much smaller size than the outputs of simulation, calibration and
reconstruction which makes large scale processing feasible.

Our analysis, like many others, uses the HighLAND package to run our
selection on these analysis files. This high level framework handles analysis using
reconstructed objects and variables as well as standardising corrections, selections,
and systematic uncertainty propagation.
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Chapter 6

TREx Reconstruction

As mentioned in Chapter 5 the previous reconstruction for ND280 TPCs was insuf-
ficient for studies of interactions inside the gas volume. The old algorithms assumed
forwards going tracks originating upstream of the TPC. There was no concept of a
TPC vertex and the reconstruction had difficulty correctly reproducing backwards
going tracks and other awkward topologies.

TREx was designed primarily with gas interactions in mind but also to over-
come general limitations of the old TPC reconstruction. The underlying TREx phi-
losophy was to produce an algorithm which could

• Identify both vertices (from primary interactions) and secondary interactions
(for example δ-rays branching off from a main track).

• Be as isotropic as possible, producing tracks regardless of the angle at which
they emerged from a vertex.

• Accommodate arbitrary shapes such as spiralling and backwards curving tracks†.

A well known path finding algorithm, the A∗ algorithm[176], forms the foun-
dation of TREx pattern recognition, allowing junctions and track ends to be con-
nected as well as facilitating many other aspects of the algorithm. Given successful
pattern recognition, paths can be fitted to obtain kinematic information and PID
can be evaluated using dE

dx .

6.1 Framework

The basic structure employed by TREx is illustrated in Figure 6.1. Each event is
divided into multiple patterns. These are defined as complete groups of hits which

†These are likely to be produced by low energy electrons
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can be connected through the A∗ path finding described in subsection 6.3.1.
Hits are first fed through hit preparation and then handed to pattern recog-

nition. At this stage in the algorithm only hit pad objects are available. Pattern
recognition breaks the entire event into patterns of hits between which A∗ connec-
tions can be made. Within each pattern it assigns hits to either clusters (as part of
paths) or to junctions.

These path and junction objects are passed through several stages of seeding,
merging, fitting and PID determination. The full scope of TREx is detailed in the
rest of this chapter.

6.1.1 TREx base classes

TREx was designed to be as agnostic as possible to the underlying physics, in contrast
with the previous reconstruction (which assumed a specific topology and worked
from there). For this reason, naming conventions have been chosen which do not
imply assumptions about the true identities of reconstructed objects.

‘Track’-like objects are referred to as paths, reflecting the fact that this may
represent a full true track or just some segment of it. ‘Vertex’-like objects are re-
ferred to as junctions, reflecting uncertainty over whether they are primary vertices,
secondary interactions, or some artefact of an unusual topology (for example the
rare case of two unconnected tracks passing through each other in the TPC).

The connections of TREx data classes to one another are illustrated in Fig-
ure 6.1. The base classes are:

• Hit pads; basic hit objects containing charge collected over a given time
window and information such as the number of peaks and saturated bins.

• HV clusters; clusters of hit pads in the same micromegas row or column (for
horizontal or vertical clusters respectively), arranged in such a way to facilitate
likelihood fitting later in the algorithm.

• Paths; ordered lists of HV clusters, with the possibility of both horizontal
and vertical clusters in the same path.

• Junctions; objects where two or more paths meet containing any hit pads
which cannot reliably be assigned to a single path.

• Patterns; high level objects containing either connected paths and junctions
or a single path.
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Figure 6.1: Data structure used for TREx reconstruction. Objects which are constituents
of others are illustrated (hit pads inside HV clusters inside paths et c.). Arrows indicate
objects which are aware of each other (paths are aware of which junctions they connect to
and vice versa).

6.2 Hit preparation

The basic hit object from calibration described in Section 5.5 are ‘waveforms’ rep-
resenting charge collected as a function of time. Each provides a time window for
a single micromegas pad within which charge above the pedestal threshold was col-
lected. At the hit preparation stage these waveforms are examined and, if possible,
broken into smaller objects.

The procedure for analysing and breaking individual waveforms is illustrated
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in Figure 6.2. They are first examined in order to find peaks by looking for local
maxima in charge. In general a peak is defined as a bin with higher charge than the
one either side, though if charge is low (and thus relative noise high — a 20 ADC
threshold is used for this) five bins of lower charge either side are required. If a
peak consists of multiple bins at the exact same charge it is marked as saturated, in
which case its maximum charge and time are extrapolated from the saturated bins.

Ideally one hit pad object is created per peak. If two or more peaks are
present the algorithm attempts to break the waveform into new hit pads. Peaks
which are too close together are not separated; instead a single hit pad object
uses the peak with highest charge and records the number of inseparable peaks it
contains.

Waveform

(a) (b)

(c)

Hit pad Hit pad

(d)

Figure 6.2: Illustration of TREx hit preparation. Blue and green stars represent separate
peaks. Figure 6.2a shows the input waveform with two peaks, one saturated. Figure 6.2b
demonstrates identification of the two peaks while Figure 6.2c shows bins assigned to each.
Figure 6.2d shows the two output hit pads with time and charge of peaks saved.
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6.3 Pattern recognition

TREx pattern recognition is completely unrelated to previous TPC software. The
basic procedure is outlined in Figure 6.3.

Note that pattern recognition uses custom classes designed for efficiency and
utility and distinct from TREx base classes. In practice there is a large degree of

Prepared TPC hits

Fill pattern recognition cells

Pattern recognition cells

Find candidate path ends

Number of ends

Exit

Connect ends

Find junction objects

Connect junction objects to ends

Path object(s), possible junction object(s), and cells

Associate cells to path objects and junction objects

Break path objects around any kinks

Cluster cells in path objects

Path object(s) with cluster object(s) and possible junction object(s)

Transfer pattern recognition objects to TREx objects

TREx readable objects

< 2

2
> 2

Figure 6.3: Overview of the main TREx pattern recognition steps. A number of more minor
intermediate steps have been skipped for the purpose of this illustration.
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overlap between pattern recognition classes and the TREx base classes discussed in
subsection 6.1.1. This leads to potential for confusion over nomenclature which is
clarified here.

The most basic pattern recognition element is a single unit of TPC volume.
This differs from a TREx hit in that it is a cell at some position in a regular three
dimensional grid. Each represents an area of physical space in x, y and z and may
contain one or more hit pad. For clarity and brevity these voxels are referred to as
cells.

Cluster, path and junction objects are set out similarly to the base classes.
For pattern recognition cluster and junction objects hold cells. Path objects hold
cluster objects. Pattern objects are also analogous to their TREx base class counter-
parts, containing path and junction objects.

In contrast with with TREx base classes each path object contains three ad-
ditional groups of cells. Two represent groups of cells at the path object’s front and
back which serve as junction candidates. The third represents all cells which can
be associated with the path object — it is the set of hits used for building cluster
objects for this particular path object.

To resolve ambiguity in this section the pattern recognition classes will be
referred to as cells, cluster objects, path objects, junction objects and pattern ob-
jects. Their equivalents among TREx base classes will be referred to as TREx hit
pads, TREx HV clusters, TREx paths, TREx junctions and TREx patterns. Distance
in pattern recognition space is measured simply in number of cell lengths, hereafter
referred to as ‘units’ (the distance between adjacent cells is 1 unit).

6.3.1 The A∗ algorithm

A∗ is a path finding algorithm for efficiently finding the minimum cost path through
a graph[176]. This scenario has been covered by Dijkstra’s algorithm[177] but A∗

massively improves efficiency by employing a heuristic term to ensure that those
paths most likely to lead towards the end node† are searched first. The algorithm
terminates once the end node is reached regardless of how many potential paths
remain unchecked.

The TREx specific implementation maintains a list of accessible nodes (the
‘free list’) with connection costs and heuristic costs saved. All nodes are initially
flagged as ‘open’ (unchecked). The connection cost is the actual cost of connecting
from the start node via a chain of intermediate nodes, computed by summing indi-
vidual costs for each individual connection (for example, if the connection A → B

†‘Node’ here is taken to have its simplest graph theory definition.
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has a cost of 1 and B → C a cost of 4 then A → C is possible with a cost of 5).
The heuristic cost is the estimated cost of connecting to the end node. Connection
costs can be updated if more efficient routes are found whereas heuristic costs are
constant for each node.

As well as costs, each node (apart from the first) stores its ‘parent’, or the
node which connected directly to it. This allows the route to be traced back once
the end node has been found, reconstructing the path as an ordered list of nodes.

Path finding is done through the following procedure:

• Ensure the free list is empty and add the start node with 0 connection cost.

• Set all other nodes to an arbitrarily high connection cost with undefined par-
ents and flag them as open.

• Repeat the following steps until the current node is the same as the end node:

– Find the node in the free list with the lowest total cost (connection cost
plus heuristic cost) and set this to be the current node.

– Examine all open nodes connected to current node.

– For each calculate connection cost via the current node (sum the connec-
tion cost of the current node and the cost from the current node to the
new node).

– If this cost is lower than the new node’s previous connection cost:

∗ Set new node’s connection cost to this new cost.
∗ Set the new node’s parent to the current node.
∗ Add the new node to the free list if it isn’t already there.

– Set the current node’s ‘open’ flag to false and remove it from the free
list.

• At this point the end node has been reached.

• Form a new, empty list representing each node along the path.

• Starting with the end node work backwards through each node’s parent, adding
each to the list, until the start node is reached.

In the TREx implementation nodes are only checked once — once connections
from a particular node have been added to the list of accessible nodes the node’s
‘open’ flag is set to false so as not to check it again. This is to save processing time.
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More rigorous A∗ implementations can re-check a node if a lower cost connection to
it is found.

Figure 6.4 illustrates the algorithm in action on a sample event. A∗ is robust
enough to efficiently find paths between start and end nodes through graphs of nodes
with arbitrary shape so long as the heuristic term can be given a meaningful form
which generally gets smaller as the end node is neared.

A∗ is a general algorithm so it is up to TREx to define specifically what is
defined as a node, a valid connection and a connection or heuristic cost. The specifics
of converting TPC hits to pattern recognition cells are described in subsection 6.3.4;
these cells act as nodes.

In theory a connection could be formed between any two cells. In practice
attempting this would result in a punishingly slow reconstruction with the added dis-
advantage, shown in Figure 6.5, of assigning unconnected but spatially close tracks
to the same pattern. The opposite approach would be to only allow connections
between adjacent cells. This is also problematic since valid tracks often feature

(a)

Selected path:
4 + 5 = 9

Alternative path:
4 + 7.8 = 11.8

(b)

Selected path:
4 + 7.8 = 11.8

(c)

Selected path:
  7 + 6.7 = 13.7
Alternative path:
  10 + 6.1 = 16.1 

(d)

Selected path:
  17 + 2.2 = 19.2
Alternative path:
  17 + 1 = 18

(e) (f)

Figure 6.4: Illustration of the A∗ algorithm handling various features in a difficult event,
with connections possible between adjacent elements at cost 1 and diagonal elements at cost
4. The green node represents the start, red the end and grey intermediate cells. Figure 6.4a
shows a start and an end cells and Figure 6.4f the final path between them. Figure 6.4b
demonstrates the algorithm attempting a correction that ends up being dropped due to a
more efficient route in Figure 6.4c. In Figure 6.4d shows the effect of setting the cost of a
diagonal connection 2× as high as two adjacent connections in directing the algorithm away
from cutting corners. Figure 6.4e shows the heuristic term directing the path towards the
end node.
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(a) (b)

Figure 6.5: Illustration of the issues with different connect distances in the TREx implemen-
tation of A∗ . Figure 6.5a demonstrates a connection being missed due to too low a connect
distance whilst Figure 6.5b shows connections being found between unconnected objects due
to too high a connect distance.

small gaps and would thus be broken by this condition, as also shown in Figure 6.5.
TREx finds a middle ground by allowing connections between hits within 2 units of
each other in the y and z directions and 6 units in the x direction. Larger connec-
tion distances are allowed for hits on the edges of horizontal micromegas gaps to
compensate for the extra uninstrumented space between pads.

Connection costs have been defined to encourage connections, where possible,
between adjacent cells before attempting connections over larger distances. Strictly
they are defined by

Cost (A→ B) =

(xA − xB
sx

)2
+
(
yA − yB

sy

)2

+
(
zA − zB

sz

)2
2

, (6.1)

where xi, yi and zi correspond to integer cell position in x, y and z respectively and
sx, sy and sz are characteristic connection distances set to 3, 1 and 1 respectively (sx
is higher to reflect the larger gaps between TPC hits in the x direction). As can be
seen in this equation, position differences are effectively placed to the power of four
which favours several short connections over a smaller number of long connections†.

†If A, B and C are at positions (1, 1, 1), (1, 1, 2), and (1, 1, 3) respectively then A → B → C
will cost 11 + 11 = 2 whilst A → C will cost 24 = 16 and only be chosen in the absence of viable
alternatives. Diagonal connections are similarly penalised though to not as great an extent.
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Heuristic costs are defined by the distance from a given hit to the end node.
They are given by

Cost (A→ end) = fheuristic

√
(xA − xend)2 + (yA − yend)2 + (zA − zend)2, (6.2)

where fheuristic is a weighting given to the heuristic cost relative to connection cost.
Higher weighting reduces the average iterations required for the algorithm to reach
the end point but also reduces the chance of an optimal route being found, partic-
ularly for complicated paths. Lower weighting increases average iterations but also
makes the returning of a suboptimal path less likely. A value of 1.2 was chosen for
TREx .

Path finding forms the basis for TREx pattern recognition so it is important
that it can be performed efficiently and accurately. A∗ accomplishes this.

6.3.2 Cell definition

TREx pattern recognition is fairly agnostic to underlying detector geometry and
physics. It operates on a three dimensional grid of cells based on the positions of
TPC hits. Because of this its first step must be to convert ND280 TPC hits into
pattern recognition cells at discrete positions.

The cell objects contain minimal information needed for pattern recognition
processing. The three dimensional position of a hit is represented by integer indices
of a cell, giving its position in a three dimensional grid. Additional flags are saved
for information used by pattern recognition, for example if the cell represents hit
pads the edge of a micromegas unit. Flags are also set for low charge hits and hits
on highly occupied ASIC units as discussed in subsection 6.3.3. Finally each cell
saves a list of contributing hit pads so that TREx classes can be easily filled and
returned at the end of pattern recognition.

The position indices for each cell are strictly defined in the y and z direc-
tions, corresponding unambiguously to the discrete micromegas pads (see subsec-
tion 4.4.6). The only exception is horizontal pad gaps, which are defined as empty
rows 1 cell wide.

The x dimension comes from hit time. Since this is not a discrete quantity
some binning is required. The width of each time bin corresponds to the distance
between micromegas pads in z divided by TPC drift speed giving roughly equal
spatial resolution between cells in x, y and z. In addition hits are divided into two
sets of bins — one for each readout plane. Charge collected at a given time will
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thus be put into one of two cells depending on which side of the central cathode is
was deposited on.

6.3.3 Charge and occupancy flags

One major issue identified during the gas interaction proto-analysis was the be-
haviour of TPC electronics in the presence of highly ionising particles (see Sec-
tion 5.4). A number of non-physical effects were seen which played havoc with TREx

pattern recognition. To remedy this two flags were developed to alter the behaviour
of pattern recognition in their presence.

The effects take two broad forms, illustrated in Figure 6.6. One involves
a physical track with many surrounding low charge hits. These can form many
structures, for example a shadow reflecting the shape of the main track at delayed
time, or repeating unphysical patterns in y and z. Another form of problem involves
large blocks of hits, usually with a sharp rectangular shape reflecting the underlying

(a) (b)

(c) (d)

Figure 6.6: Illustration of TREx flags for non-physical effects. An event with many spurious
low charge hits is shown in Figure 6.6a and these hits are separated from the others by their
low (< 30 ADC) charge as shown by red cells in Figure 6.6b. Another event with large
blocks of charge is shown in Figure 6.6c. These blocks are identified as shown by purple
cells in Figure 6.6d.
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electronics. Both of these are now addressed by pattern recognition.
Cells identified as being probably non-physical have a flag set to identify

them as either low charge or part of a high occupancy region. Low charge hits are
simply identified as those with charge below 30 ADC whilst hits in areas of high
occupancy are identified by looking for ASIC modules with hits on more than 50
individual pads, or half ASICs with hits on more than 30.

Each of these flags was tuned to avoid rejecting muon tracks. In the case of
the charge cut 30 ADC was identified as the cut value which rejected as many hairy
hits as possible without damaging our efficiency in reconstructing minimum ionis-
ing particles. In the case of the ASIC occupancy cuts minimum ionising particles
trivially pass. The only non-hairy hits which may be flagged are those near high
multiplicity vertices and since neither flag affects vertex reconstruction this does not
damage our efficiency.

6.3.4 Pattern object preparation

The first step in the pattern recognition proper is to place every hit into a pattern.
A TREx pattern is defined as a complete selection of hit pads which can be connected
to one another through the A∗ algorithm. As shown in Figure 6.7 two unconnected
tracks in the same TPC will be grouped into different patterns as will hits in different
TPCs and hits either side of the central cathode or a vertical micromegas gap.

The grouping is performed using an identical criterion to that for forming
A∗ connections. This ensures:

• There exists an A∗ path between any two cells in the same pattern object.

• Any two cells connectable through A∗ are in the same pattern object.

To form the pattern objects a recursive algorithm is employed. A ‘free list’
is produced of all cells in the event. The following steps are iterated through until
the free list is emptied:

• Create a new group and select a random cell from the free list as the current
cell.

– Remove the current cell from the free list.

– Add the current cell to the new group.

– Make a connection list of all cells which are both in the free list and
within A∗ connection distance of the current cell.
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Figure 6.7: Illustration of the formation of pattern objects. Differently coloured groups of
hits represent different patterns whilst red boundaries correspond to edges of horizontal and
vertical pad gaps.

– Repeat these steps, setting each cell in the connection list as the current
cell, until no more connections are found.

• Repeat these steps until the free list is fully depopulated.

This procedure produces a list of groups of connected cells which will eventu-
ally form TREx patterns. From this point onwards the pattern recognition operates
on each of these pattern objects individually, without knowledge of the state of other
pattern objects.

6.3.5 Edge detection

The first step of pattern recognition on a pattern object is to search for edges. These
are essential for pattern recognition as they act as seeds for finding junction objects
and start and end points for forming A∗ paths. Throughout pattern recognition
edges are defined by groups of cells with an average position weighted towards the
side of the pattern object on which they are found.
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The following steps apply only to cells not flagged as containing only low
charge hits (subsection 6.3.3). Low charge hits are ignored for edge detection due
to their appearance as non-physical hits surrounding highly ionising tracks in prob-
lematic events. This can create non-physical edges which are difficult to detect as
false positives and cause problems throughout pattern recognition.

The steps for forming these edge groups are illustrated in Figure 6.8. Cells
are first gathered into six groups representing those in both the highest and lowest 2
layers in x, y and z. Within each of these groups cells are further grouped using the
recursive strategy described in subsection 6.3.4 into candidate edge groups. From
this point on the algorithm seeks to reduce the number of candidate edge groups by
removing redundant or obsolete ones.

3

4

2

4

(a) (b)

(c) (d)

Figure 6.8: Illustration of the finding of edges in a pattern object with red squares indicating
cells on edges and stars the average position of these edges weighted towards the appropriate
edge. Figure 6.8a shows initial determination of these edge hits and Figure 6.8b their average
positions once initial redundant groups have been removed. Figure 6.8c shows one false being
removed leaving only two valid edges as shown in Figure 6.8d.
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Redundant edge groups are those already expressed in other views. For
example an edge group may be found at both maximum z and minimum y (see
Figure 6.8a). To favour the most head on view all but the edge group of smallest
extent in the two transverse directions is discarded in the case of such overlaps.

Many of the edge groups remaining at this point are false edges — they are
actually just points on a path between two other edges. To remove them A∗ paths
are formed between pairs of candidate edge groups. Any other group that lies on
or near one of these paths is assumed to be a false positive and discarded, as shown
in Figure 6.8c. This leaves the algorithm with a complete list of only ‘true’ edge
groups in almost all circumstances.

The above step requires defining when an edge group lies ‘on’ a path. This
is done through A∗ connection distance, since this can be computed quickly and
provides some flexibility. If an edge group’s average cell has a connection distance
of less than 5 from any cell in the path it is considered false.

The existence of the high charge blocks of hits discussed in subsection 6.3.3
presents an additional problem since these can register false edges at large distances
from paths. To counteract this a modifier is applied to A∗ connections searched
for the purposes of removing false edges. This modifier makes connections much
cheaper between cells with an occupancy flag, by a factor of 0.3. In this way false
edges from problematic events are cleared without effecting the reconstruction of
standard events.

One remaining issue arises when considering tracks stopping within the TPC
in a high multiplicity pattern. These do not have edges on extremes in x, y or z
and so will not be picked up by edge detection. Since TREx was designed to find gas
interactions with a goal of reconstructing low momentum protons this is a serious
problem.

The solution is illustrated in Figure 6.9. Using A∗ paths again connections
are made between existing edge groups. Any cells on or near these paths are removed
from consideration. The edge detection process is repeated on any remaining cells,
if there are any, followed by another pass of the clean up for false edges using every
edge group found so far.

If only two edges are found then a simple path between them will suffice. In
the event of three or more edges pattern recognition must seek out junction objects.

6.3.6 Junction object detection

If a pattern object contains more then two edges then paths between them must
connect at one or more locations. Junction object detection pinpoints these loca-
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(a) (b)

(c) (d)

Figure 6.9: Illustration of the second pass finding for extra edges in a pattern object.
Figure 6.9a shows an edge which has been missed in the first pass. In Figure 6.9b a path
is drawn between existing edges and nearby cells removed. Finally standard edge detection
gives the new edges shown in Figure 6.9c and once false or edges have been cleared up we
are left with the true edges shown in Figure 6.9d.

tions.
As shown in Figure 6.10 junction objects are detected by forming A∗ paths

which start at the same edge but end at different edges. The junction object is taken
to be the area within which these paths begin to diverge from each other.

In pattern objects with more than three edge groups a given start edge will
provide multiple choices for pairs of end edges. To ensure the best estimate of true
junction location only the pair most likely to lead to a clear point of divergence is
chosen. This is computed as the pair of end edges that maximises the area of a
triangle between the start and two ends.

Some leeway is requires when choosing the cell where divergence occurs.
Since paths left by charged particles have non-trivial girth two path objects starting
in the same location may separate before reaching a true junction location. To
counter this paths must pass a certain threshold before the point of divergence
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Figure 6.10: Illustration of junction object detection. Green and red boxes represent start
and end edges respectively with green and blue arrows representing two different A∗ paths
between the start and two ends. The pink box represents the junction object at which the
two paths diverge.

registers. Once this threshold is reached the paths are extrapolated backwards
slightly to gain the best estimate of true junction location and the cell at this
location is stored.

The procedure gives one estimate of junction location per edge. The cells at
these estimates are considered together and combined into junction objects using the
same algorithm as pattern formation (subsection 6.3.4). Multiple junctions objects
can thus be formed when their candidate cells are clearly in different locations.

6.3.7 Path object formation

In the case of two edge groups producing path objects is simple. It is formed by
making an A∗ connection between them.

For multiple edge groups with one or more junction objects the picture is
more complex. The simplest case is one junction object and many edges — here
path objects are formed between the junction object and every edge group.

The case of multiple junction objects is more complex still. In this case
preliminary path objects are formed between every junction object junction object
and every edge group and also between every junction object and every other junc-
tion object. Most of these are then eliminated on the grounds that they pass via a
junction to which they’re not supposed to connect (see Figure 6.11b) and are thus
redundant.
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(a) (b)

Figure 6.11: Illustration of path object construction in events with multiple junction ob-
jects. Edge groups are shown in red and junction objects in pink. Figure 6.11a shows the
pattern object with edges and junctions highlighted. Figure 6.11 shows one accepted path
object (green arrow) and one rejected path object (red arrow) where the rejection is due to
proximity with the second junction.

6.3.8 Cell association

So far path objects have been formed providing estimates of the start, end and
intermediate cells for a true path. A∗ does not return all cells belonging to a true
path though, rather it returns a chain of cells representing the most efficient route
from start to end. To form cluster objects the association of surrounding cells with
the path objects is necessary.

In pattern objects containing single path objects this association is fairly
straight forward but for multiple path objects care must be taken to associate cells
with the correct one.

The process is illustrated in Figure 6.12. Using the A∗ connection costs
calculated for path finding, cells are added simultaneously to all path objects.

Briefly, this is done by iteratively checking cells and adding them to the path
with which their A∗ connection cost is lowest (unless the cost is above a threshold
in which case the cells are not used). Through this method cells end up associated
with their optimal path object.

If a cell has equal connection costs to two different path objects it ends up
associated arbitrarily with the first path object — this circumstance arises fairly
rarely.

6.3.9 Kink finding

Peculiar to gas interaction analyses is the need for identifying kinks. So far junctions
have only been detected for pattern objects with three or more edge groups. Since
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Cost ≤0

(b)

Cost ≤1
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Cost ≤2

(d)

Figure 6.12: Illustration of cell association. Figure 6.12a shows a junction (pink) connected
to edge groups (red) via distinct path objects (purple, blue and yellow). Figure 6.12b shows
the association of cells with the path objects they are directly on (again, purple, blue and
yellow). Figure 6.12c and Figure 6.12d demonstrate the addition of cells at greater A∗ costs.

a true vertex with two exiting tracks produces only two edge groups plus a sharp
kink an extra step is needed to find it. This also applies to patterns with more than
two edge groups since an event can have a junction object from a δ-ray and a kink
from a true interaction.

Kink finding algorithms are illustrated in Figure 6.13. The central kink
finding algorithm is the perpendicular distance check (Figure 6.13c and Figure 6.13d)
which separates most path objects with sharp kinks from curving path objects.
Other checks are needed for specific topologies where the central algorithm runs
into difficulties. The local angle check (Figure 6.13a and Figure 6.13b) recovers true
junctions from delta rays at the edges of instrumented regions. The parallel distance
check (Figure 6.13e and Figure 6.13f) is for true junctions featuring one very short
track.

For the perpendicular distance check kinks and curves are separated using
the density of cells as a function of distance from a line between the two edge groups.
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22/37 (59%)
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17/35 (49%)
> threshold
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(e)
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Figure 6.13: Illustration of TREx kink finding. The basic local angle check is illustrated
in Figure 6.13a (curving track) and Figure 6.13b (true kink). Arrows show the points
between which angles are calculated and the pink cell shows the candidate junction location.
Figure 6.13c (curving track) and Figure 6.13d (true kink) show the perpendicular distance
check counting cells above a certain distance (red line) from the line between start and end
edges (blue line). Figure 6.13e and Figure 6.13f show the parallel distance check where
position of the most distant cell from the line between start and end edges (blue line) is
checked or its projected position provided its distance is above threshold (red line).

For true kinks this function is fairly flat but curves give more cells far from the line
than near to it. Practically the procedure for each path is:

• Draw a line between the start and end cells.

• Find the cell at maximum perpendicular distance from this line and store this
distance.
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• Count the number of hits whose perpendicular distance from this line is above
a fraction (0.56) of this maximum.

• If this number is below a fraction (0.52) of the number of cells in the pattern
a kink is established.

The local angle check involves running through every cell in the path object
and finding the angle between it and the two cells 8 units forwards and backwards
from it. If this angle is lower than 80◦ a kink is formed. The conservative cut of 80◦ is
used for two reasons. First this check is sensitive to local fluctuations, increasing false
positives if a less conservative cut is used. Second the specific topology this check
was designed for (activity on the edge of the instrumented region) characteristically
provides kinks of very sharp angle, alleviating the need for a stronger cut.

The parallel distance cut looks for kinks missed because one of the two true
paths had a very small length within the instrumented region. This is done by
searching for kinks which are very close to the start or end of the path. The proce-
dure is similar to the perpendicular distance check but somewhat simpler. For each
path:

• Draw a line between the start and end cells.

• Find the cell at maximum perpendicular distance from this line.

• Make sure this cell is at least 2 units from the line to avoid false positives from
fluctuations.

• Check the parallel distance of this cell along the line.

• If this parallel distance puts the cell less than 0.3 or more then 0.7 of the way
along the line a kink is established.

Where a kink is found a junction object is placed at its location. This is taken
to be the cell of maximum local angle if the local angle check found it or else the cell
furthest from a line between the two edge groups. With the junction object in place
the path object is split in two around it. The old path’s associated cells are divided
between the two new paths using the hit associating algorithm (subsection 6.3.8).

6.3.10 Determining cluster object orientation

We now have path objects containing both an ordered list of cells forming its back-
bone and an unordered list of associated cells to include in its cluster objects. The
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procedure of forming these cluster objects is performed on a path by path basis.
The first step is to go along each cell in the ordered list and determine whether it
corresponds to a horizontal or vertical cluster.

Determining orientation is performed by checking the local angle at each
cell along the path object. This is done using the dichotomy technique illustrated
in Figure 6.16. Angles are found over progressively smaller intervals until local
fluctuations due to detector geometry become more significant than the true shape
of the track. At this point the angle at each cell is found by interpolation between
the established angles.

In the case of a spiralling track, where direction changes often, a preliminary
step inserts breaks for computing angle wherever the path object changes z direction.
From here the check proceeds as normal.

Once local angles have been determined they are used to divide regions of

(a) (b)

(c) (d)

Figure 6.14: Illustration of cluster object angle determination via the dichotomy technique.
Figure 6.14a shows the angle being determined between the edges of a path and the cell in
its middle (blue lines). In Figure 6.14b this division is taken further with angles determined
at points between them middle cell and the edges (solid blue lines). At further divisions as
seen in Figure 6.14c some angles are ignored because they are no longer bigger than those at
the previous step (red lines) while others can proceed further (solid blue lines). Figure 6.14d
shows cells of horizontal (blue line) and vertical (red line) orientations determined from these
angles.
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horizontal and vertical orientation. Wherever the angle is more than 55◦ from the
vertical a horizontal orientation is assigned. Otherwise a vertical orientation is. To
prevent constantly changing cluster orientation in tracks near 55◦ runs of fewer than
8 cells of the same orientation are flipped so orientation matches their neighbours.

At this point in the algorithm each cluster object features a single, seed, cell
and an orientation.

6.3.11 Interpolation and extrapolation

The ordered list of cluster objects within each path object may contain small num-
bers of missed cells in gaps or at the edges (usually because of charge cut procedures
mentioned in subsection 6.3.3 and subsection 6.3.5). To correct for this some ex-
trapolation and interpolation is performed.

This is a simple procedure which involves looking for gaps in or at the edges
the list of cluster objects and filling them with any element from the path object’s
list of associated cells. It is illustrated in Figure 6.15.

Interpolation and extrapolation both use orientation information to deter-
mine direction for projection. Vertically oriented cluster objects give interpolation
and extrapolation in the y direction and horizontally oriented cluster objects give
interpolation and extrapolation in the z direction. New cluster objects are given the
same orientation as the cluster objects they were interpolated or extrapolated from.

(a) (b)

(c) (d)

Figure 6.15: Illustration of path object extrapolation and interpolation. Figure 6.15a shows a
gap (dotted arrow) within a path object (blue arrows) filled in Figure 6.15b by interpolation.
Similarly Figure 6.15c shows missing cells at the end which are recovered in Figure 6.15d
by extrapolation.

96



6.3.12 Horizontal and vertical clustering

Each path object should now feature a complete ordered list of cluster objects,
each with established horizontal or vertical orientation, and an unordered list of
associated cells. At the clustering stage the cluster objects are filled with elements
from the associated cells.

Before clustering proper it is necessary to ensure there are no redundancies.
From the start of the path object to the end any cluster objects in the same layer
(y for vertical clusters and z for horizontal) are candidates for removal. If two in
the same layer are spatially close (within 5 units) one is removed (since the cluster
seed is irrelevant for final output it doesn’t matter which).

Finally associated cells are added to cluster objects. Since redundancies
have been removed all associated cells can be safely attached to their nearest cluster
object in the same layer. After this step all associated cells that can be added to a
path have been.

Tightly curving path objects may lead to small numbers of cells remaining
unused at the transition between horizontal and vertical cluster objects (see Fig-
ure 6.16b). This is a known issue relating to the way A∗ paths tend to follow
the inside of curves and can potentially be resolved in future code by forcing some
extrapolation between horizontal and vertical cluster objects.

6.3.13 Cell association corrections

The algorithm has been tuned to ensure that the maximum number of cells end up
associated with the correct path. Despite this there is some chance of cells from

(a) (b)

Figure 6.16: Illustration of TREx clustering. The initial path object (blue arrow) and asso-
ciated cells (blue cells) are shown in Figure 6.16a. In Figure 6.16b the associated cells are
in horizontal (purple), vertical (red) or a horizontal and a vertical (pink) clusters. A small
number of cells in tightly curving tracks may be unused in either.
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one true path being associated with a different reconstructed path object or cells in
a path object containing charge from multiple particles. To fix this an additional
correction step is employed.

Two broad steps are involved, both illustrated in Figure 6.17. The first check
looks for overlaps between path and junction objects while the second looks for cells
associated with the wrong path object.

The first check considers cells in a path object which are in the same layer
as those from a junction object (at the same y for vertical cluster objects or z
for horizontal cluster objects). If these cells are spatially close (within 2 units in
the other two dimensions) then that cluster object is removed from its path object
and all of its cells are added to the junction object. If this creates a break in the
path object any isolated clusters are also removed from and their cells added to the
junction object.

(a) (b)

(c) (d)

Figure 6.17: Illustration of cell association corrections. Figure 6.17a shows two path objects
(green and blue) and one junction (pink). In Figure 6.17b blue cells adjacent to the junction
object have been added to it. In Figure 6.17c and Figure 6.17d cells confused between
adjacent path objects are added to the junction object and split between the path objects
respectively.
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The second check considers cluster object of the same orientation and the
same layer but in different paths. If such a pair is spatially close together (again
within 2 units) a potential conflict is established. If no spatial gap can be found
between the cells of the cluster objects they are simply removed from both paths
and their cells added to the nearest junction. If a spatial gap can be found all cells
in both cluster objects are split so cells either side of the gap end up in the cluster
object on the same side.

6.3.14 Junction object expansion

There are three remaining issues in the pattern recognition output. Unused hits,
path objects too short to be of use and junction objects connected by them. Junction
object expansion aims to resolve these issues.

The steps used for junction object expansion are illustrated in Figure 6.18.
The procedure essentially involves deleting all junctions and unusable paths and
reforming them from seeds.

Path objects which are connected to junction objects but too short to fit are
simply removed (their cells are now unused). All junction objects at this stage are
temporarily removed (again their cells flagged as unused) but the positions of their
average cells are saved as seeds.

New junction objects are formed by expanding junction seeds into the list of
unused hits using the pattern object formation algorithm (subsection 6.3.4). If two
seeds form the same junction object they are merged into one new junction object.
New junction objects take on the connected paths of any old junction object whose
seeds they contain.

(a) (b) (c)

Figure 6.18: Illustration of junction object expansion. Figure 6.18a shows two junctions
(pink) connected by a short path (green) with other paths around them (blue, yellow,
red and purple) and some unused cells (grey). In Figure 6.18b the short path object and
junctions are removed with only their seeds (pink stars) saved. By Figure 6.18c they and
nearby unused cells are clustered into one junction object.
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This procedure only assimilates unused cells near junction objects. Since the
pattern recognition algorithm ensures that this is the only place were cells are likely
to be unused it effectively eliminates unused hits within patterns themselves (though
patterns too small to form paths or junctions from still have their hits assigned as
unused).

6.3.15 Translation

The final step of TREx pattern recognition is translation between pattern recognition
objects and TREx classes.

Junction objects and cluster objects at the pattern recognition level contain
lists of cells, each of which contains a list of constituent hit pads. When converting
both to TREx junctions and TREx HV clusters every hit pad in every cell is added to
the new TREx object. The TREx HV clusters take on the orientation of their pattern
recognition counterparts.

Path objects map almost directly onto their TREx equivalents. The new TREx

path contains an ordered list of TREx HV clusters formed by translating the cluster
objects within the path object. Their ordering is preserved.

Pattern objects are also simple to convert. Every pattern recognition pattern
corresponds to one new TREx pattern. This contains the translated TREx paths and
TREx junctions formed from the original pattern object’s path and junction objects.
Links between them (which paths connect to which junctions) are preserved.

Once translation is complete the tracking steps of the algorithm can proceed.

6.4 First pass seeding

Seeding is the first step in reconstruction post pattern recognition. Basic track
seeds are used for matching between paths on different sides of TPC micromegas
gaps, determining t0 and as starting points for the fitting from which kinematics are
extracted.

Seeds are formed from the TREx paths returned by pattern recognition. Pro-
vided four or more viable clusters are found an attempt is made to form one. This
is done using one of two methods; a Riemann sphere or a simple three point al-
gorithm. Both are attempted and the seed providing the lowest total discrepancy
between seed trajectory and the y and z positions of clusters is accepted.
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6.5 Matching and merging

Up to this point reconstruction has operated on individual patterns. This separates
hits from the same track on either side of the vertical TPC micromegas gap as well
as any low angle tracks broken around horizontal micromegas gaps. The matching
and merging step joins these broken tracks.

6.5.1 Horizontal gap merge

Horizontal merging is done between paths in vertically adjacent micromegas units
associated with the same TPC and readout plane and on the same side of the
vertical micromegas gap (i.e. within a single column of units). For each path end by
the horizontal micromegas gap the corresponding seed (Section 6.4) is propagated
forwards in search of a matching path or junction in a separate pattern.

A match is established where the residual between the propagated seed and
a target path or junction is sufficiently low (below 30 mm). If multiple matches
are found the one with lowest residual is chosen. In the case of a match the two
patterns containing matching objects are merged into a new single pattern with the
combined constituents of each as illustrated in Figure 6.19.

If the matched object was a path the two paths are concatenated, preserving
cluster ordering and orientation and any connections between the paths and junc-
tions. This produces a new path object which replaces the two originals in the new
pattern. Seeding is then redone for this path.

If the matched object was a junction the propagated path is simply added
to its constituents.

6.5.2 Vertical gap merge

Vertical gap merging proceeds in a similar way to horizontal gap merging. The
main practical differences are the substantially larger gap size and the fact that
TREx pattern recognition avoids connections across the gap by design (for horizontal
gaps connections are possible but may be missed due to the geometry of tracks
crossing at low angles). Recovering connections across the vertical micromegas gap
at the matching and merging level is mandatory.

As in horizontal matching the propagation is done from paths in one pat-
tern to paths and junctions in another. Matches are allowed with larger residuals
(50 mm), reflecting the larger size of the gap.

Again the patterns are merged in the case of a match. The procedure for
this is identical to that in the case of horizontal merging.
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(a) (b)

(c) (d)

Figure 6.19: Illustration of TREx matching and merging, with different colours representing
different paths and patterns. Figure 6.19a and Figure 6.19b demonstrate the state pre-
merging, with two patterns containing a pair of paths which can be propagated onto each
other (arrow in Figure 6.19b). Figure 6.19c and Figure 6.19d show the single merged pattern.

6.6 t0 determination

In the ND280 TPCs y and z position for initial charge depositions comes from the
physical positions of micromegas pads. The x position is calculated from the time at
which ionisation electrons reach the pads. Unless either the central cathode or the
whole volume of a TPC half is traversed absolute time (t0 ) cannot be determined
from the TPC alone. Matching with hits in other detectors is necessary.

6.6.1 Default t0

A default t0 for each pattern is selected based on TPC hits alone. This places the
entire pattern in the centre of the TPC, with equal distance from the first hit to
arrive to the readout plane and the last hit to arrive to the cathode. In lieu of any
other information this provides a fair estimate of hit position and in fact provides
the correct result in cases where the entire x extent of the TPC half is traversed.
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6.6.2 t0 from constituents

t0 is determined on a pattern by pattern basis. This requires a valid result from at
least one of its constituent paths.

The algorithm loops through every path in the pattern from longest to short-
est looking for a t0 . Once one is found the result is assigned to every constituent.
If no t0 result can be found the value is left as the default.

This preferentially selects t0 from modules known to give fewer false positives,
moving on to other modules only if no matches are found. A separate container is
used for hits from each source, passing hits into either the x–z or y–z matching
procedures.

6.6.3 Fitting from x–z hits

Working out t0 from a vertically oriented scintillator bar requires matching the
projected x–z position of the TPC path with the actual x–z position of the bar
without. This is done by assigning the path a temporary t0 from the time of the hit
being examined, as illustrated in Figure 6.21 for the majority of detectors Figure 6.20
for side ECals.

Every hit in the current container is looped through in search of the best
match. Each hit provides a temporary t0 , provided it will not move the pattern
outside the TPC volume. The path, with temporary t0 assigned, is propagated to
the bar’s x–z position in an attempt to find a match. The candidate hit with the
lowest matching χ2 is chosen as t0 source, so long as the χ2 is below a threshold.
Otherwise the search moves on to the next t0 source.

6.6.4 Fitting from y–z hits

The algorithm for determining t0 from y–z hits was largely recycled from the pre-
vious TPC reconstruction and is illustrated in Figure 6.22. Since these bars are
parallel to the x axis matching is agnostic towards the TPC path seed’s x position.

The path seed is propagated towards each hit in the current container in order
to find the best match. As with the x–z matching described in subsection 6.6.3 the
hit providing the lowest matching χ2 is sought . If the resulting χ2 is small enough
this hit is chosen to provide the patten with a t0 . Otherwise the algorithm moves
on to the next t0 source.
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6.6.5 Cathode crossers

Although paths crossing the central cathode are not recombined until later in TREx

reconstruction these also require a t0 . How this cathode t0 is used depends on the
previous t0 values assigned to each path.

The cluster of maximum time is assumed to be on the edge of the cathode,
giving t0 equal to the hit’s time minus time taken for ionisation electrons to drift
across the TPC half’s x extent. How this t0 is used depends on the previous values
assigned to the two input paths:

• No t0 values from input paths: Assign the value from the cathode to both

• One t0 value from input paths: Copy this value to both paths, unless it
differs wildly from the cathode t0 in which case use the cathode value

• Two t0 values from input paths: If the two are close enough take the one
from the longest path, otherwise take the value closest to cathode t0 ; in either
case copy it to both paths.

This ensures that both segments of a path matched across the cathode have
the same final t0 .

For each path the matching searches through possible t0 sources. Hits are
checked in the following order:

• x–z hits

– Hits from FGD bars

– Hits from (non-side) ECal bars

– Hits from P0D bars

• y–z hits

– Hits from FGD bars

– Hits from ECal bars

– Hits from P0D bars

• x–z hits

– Hits from side ECal bars
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(a) (b) (c)

Figure 6.20: Illustration of t0 determination for TPC hits (grey) using x–z hits from an
upstream detector (blue-grey), with x represented by vertical offset. In Figure 6.20a the
TPC path’s t0 is indeterminate. Figure 6.20b shows the path checking an upstream hit
(blue) which provides a temporary t0. In Figure 6.20c the TPC path has been assigned a
permanent t0 from the inspected hit.

(a) (b) (c)

Figure 6.21: Illustration of t0 determination for TPC hits (grey) using hits from side ECal
bars (blue-grey), with x represented by vertical offset. In Figure 6.21a the TPC path has
indeterminate t0 . Figure 6.21b shows the path checking an ECal hit (blue) which provides
a temporary t0 . In Figure 6.21c the TPC path has been assigned a permanent t0 from the
inspected hit.

(a) (b) (c)

Figure 6.22: Illustration of t0 determination for TPC hits (grey) using y–z hits from an
upstream detector (blue-grey), with x represented by vertical offset. In Figure 6.22a the
TPC path has indeterminate t0 . Figure 6.22b shows the path checking an upstream hit
(blue). In Figure 6.22c the TPC path has been assigned a permanent t0 from the inspected
hit.
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6.7 Tracking

A tracking stage computes kinematics on the current path objects (merged across
micromegas gaps with valid seeds and t0 defined). This requires a fit to be run on
every path in every pattern, using the paths’ horizontal and vertical clusters.

6.7.1 Cluster correction

Corrections are applied to cluster positions in data accounting for deviations from
expectation due to the inhomogeneous nature of the TPC ~B and ~E fields (the
nominal field is modelled as uniform). They use nominal field maps for the TPCs.

There is also an alternate pass of the likelihood fit with alternate corrections,
used for calculation of systematic errors. The pass employs an empirical correction
in Monte Carlo. Additionally an ~E field correction is employed in both data and
Monte Carlo.

6.7.2 Likelihood fit

A log likelihood minimiser is used to fit the path. Clusters of acceptable quality
(with sensible extents and no suspicious pads) are used for the fit.

A function for computing the log likelihood is fed into the cluster. Likelihoods
are computed separately in y–z and x, but both cases rely on the residual between
the fitted helix and each hit pad in a given cluster as compared to expectation to
compute a log-likelihood. The total log-likelihood is the sum of y–z and x results.

The likelihood fit searches for the optimal log-likelihood using the MINUIT
minimiser[178]. A full fit in x, y and z is attempted first. If this fails an attempt is
made to perform separate fits for the y–z and x parameters of the helix model. In
this case a final x, y, z fit is attempted once to compute errors.

The full fit is performed once with nominal corrections and again with refit
parameters, in the second case providing a ‘refit momentum’ used in the propagation
of systematic errors at the analysis level (see subsection 8.4.3).

6.8 PID

TPC PID computes dE
dx in order to infer particle identity. This is done by calculating

energy deposited adjacent clusters and comparing it to the distance between them
according to the fitted track.

As shown in Figure 6.23 dE
dx is a function of particle momentum as well

as type. In order to determine which true particle hypothesis most resembles the
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(a) (b)

Figure 6.23: Illustration of dE
dx for negatively charged (Figure 6.23a) and positively charged

(Figure 6.23b) particles produced by neutrino interactions in the ND280 beam, from [158].

reconstructed path the expected dE
dx is computed for electrons, muons, pions, kaons

and protons at the reconstructed particle’s momentum.
These variables for measured and expected dE

dx are saved and subsequently
used at the selection stage to compute likelihoods for each particle type. See Sec-
tion 7.2.1 for a detailed description of their implementation in analysis.

6.9 Likelihood matching

One of the largest backgrounds in the gas interaction analysis comes from through-
going muon tracks which have been broken within the TPC, leading to reconstructed
objects which appear to start within our fiducial volume. The likelihood matching
step at reconstruction is a track–track matching quantifying the extent to which
separate reconstructed tracks appear to correspond to the same true track. This
matching depends on connections between different paths in either the same or
different patterns.

The general procedure, illustrated in Figure 6.24, requires examining pairs
of candidate paths (say path 1 and path 2).

Individual (unmatched) likelihoods are already available from the fits to each
path (L11 and L22) — these can be viewed as the matching likelihood for the path
with itself. The matching likelihoods for each path with the other path (Lij , where i
is the path whose fit is used j the path whose hits are matched with this fit) are also
extracted. This is done by computing the likelihood of path j’s hits corresponding
to path i’s fit.

The total log likelihood of each matching hypothesis (path 1 to path 2 and
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(a)

L11

L22

(b)

L22+L21

(c)

L22+L21

(d)

Figure 6.24: Illustration of TREx likelihood matching. Blue and purple hits belong to sep-
arate paths (1 and 2) separated by a pink junction caused by a δ ray (Figure 6.24a. Fig-
ure 6.24b shows individual likelihoods for each track fit with no extrapolation (L11 and L12).
Figure 6.24c shows the likelihood for path 1 plus the likelihood for path 1 propagated onto
path 2 (L11 + L12) and Figure 6.24d shows the reverse, with path 2 propagated onto path
1 (L22 + L21).

path 2 to path 1) is given by the sums L11 + L12 and L22 + L21 while the likelihood
for each path separately is given by L11 + L22. These sums will eventually be used
for both merging and analysis but for now the raw likelihoods of L12 and L21 are
saved for each pair of candidate paths for later use.

All of these likelihood values are stored inside path objects which in turn
are stored as constituents of the global tracks formed in later stages of the TREx

reconstruction.

6.9.1 Intra-pattern matching

Many background events in the gas interaction analysis are through-going muons
broken by a δ-ray. By design the TREx pattern recognition breaks paths around
sufficiently large δs to avoid the risk of discarding true neutrino interactions, leaving
it to analysers to distinguish the two. Intra-pattern matching provides information
to aid this by looking for matches between paths on either side of the same junction
and saving their matching likelihood.

Each junction within each pattern is examined. All pairs of paths connected
to the junction are compared (say 1 and 2) and for each pair the two likelihoods (1
onto 2 and 2 onto 1) are stored.
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6.9.2 Inter-pattern matching

Another form of gas interaction background comes from through-going tracks with
no δ-ray. Instead, due to either the geometry of pad gaps or missing hits a path is
simply broken into constituents in two separate patterns.

Inter-pattern matching operates between patterns in the same drift volume
(the same side of the central cathode in the same TPC). The procedure is the same
as the intra-pattern case but now pairs of candidate paths are required to be in
different patterns and with their ends not already connected to junctions.

6.10 Likelihood merging

The merging algorithm attempts to merge tracks broken by a junction or gap. Pairs
of tracks are checked using the track–track matching likelihood discussed in Sec-
tion 6.9.

For inter-pattern matching between two paths, 1 and 2, the likelihood of the
two tracks being unmatched (L11 +L22) is compared with the likelihoods for the two
matching hypotheses (L11 + L12 and L22 + L21). A cut on the difference between log
likelihoods is used here.

The intra-pattern matching is slightly more involved but uses the same basic
logic. In this case there are potentially a large number of matching candidates, so
all pairs of matches are checked at the same time and only the highest likelihood
match is used. This prevents one track being matched to a suboptimal candidate
before its true match has been checked.

Once matches have been found matched paths are merged, preserving the
correct order of their clusters. The original paths are stored as constituents in the
larger, merged path. The larger path is passed back through the seeding, tracking
and PID algorithms to have its own PID and kinematics evaluated (seeSection 6.4,
Section 6.8, Section 6.7).

6.11 Cathode merging

At this stage most broken paths have been merged. The one remaining task is to
recombine tracks broken by crossing the central cathode.

The track–track likelihood matching discussed in Section 6.9 and Section 6.10
is inadequate for this job since it doesn’t take account energy loss and scattering as
a particle crosses the 13 mm thick cathode. Instead a track–cluster χ2 matching is
used.
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The matching involves projecting paths directly onto clusters on the opposite
side of the cathode. This matching does not use path x co-ordinate since t0 may
not be correctly assigned for one or more candidate path. If a match is found then
the output is in identical format to that described in Section 6.10, with a Kalman
filter fit between two track segments (see Section 5.6).

6.12 Tracker and global reconstruction

An extra step is needed to convert TPC patterns to lists of TPC tracks which can
be passed to tracker reconstruction in the same manner as in the old reconstruc-
tion. Beyond this both tracker and global reconstruction proceeds identically to
as they were for previous TPC reconstruction, discussed in subsection 5.6.3 and
subsection 5.6.7.

6.13 Validation

Simple scans of gas interaction Monte Carlo illustrate huge improvements in TREx as
compared to the previous reconstruction. Some of these are shown in Figure 6.25. In

(a) (b)

(c) (d)

Figure 6.25: Illustration of TREx performance compared to old TPC reconstruction on gas
interaction Monte Carlo. Old TPC reconstruction and TREx are illustrated for a two track
event in Figure 6.25a and Figure 6.25b respectively and a four track event in Figure 6.25c
and Figure 6.25d respectively.
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general the performance of TREx compares very favourably with the inability of the
old reconstruction to recognise vertices in a useful way. Even on non-gas interaction
events performance is as good as (for most events) or better than (for topologies
such as backwards curving tracks) the previous reconstruction.

Performance has also been evaluated through extensive comparisons between
TREx and old TPC reconstruction on data. Two instructive variables, efficiency and
purity, are shown in Figure 6.26. Purity represents the fraction of hits in a given
reconstructed track which actually come from the corresponding particle, and this
has seen a great improvement in TREx as hits from δ-rays and nearby particles are
effectively filtered out of tracks. Efficiency represents the fraction of hits with charge
from a given true track which end up associated with its corresponding reconstructed
track. A slight increase in tracks with just below 100% efficiency is seen. This is
expected since hits near junctions, for example δ-rays, are now being assigned to
junction objects rather than paths.

It is unfeasible to compare vertex reconstruction performance since old TPC
reconstruction had no concept of a vertex and was completely unsuited for detecting
them. TREx performance for vertex reconstruction is shown in Figure 6.27. The
x position of vertices is recorded with high accuracy, mostly accurate to within
10 mm. For y–z position resolution there is a hard limit of around 10 mm given by
micromegas pad size†. Most vertices have their position reconstructed accurately to
within one or two pads. A tail in this distribution is contributed by highly collinear
tracks and higher multiplicity events, both of which make precise vertex position
difficult to reconstruct.

Vertex track multiplicity is also checked, as shown in Figure 6.28. In general
there is a diagonal trend with events showing n particles in truth most likely to
be reconstructed with n particles. Underestimates of multiplicity by reconstruction
mostly stem from tracks whose length within the TPC is too short to measure,
either because the vertex itself is near an edge or the path is particularly short.
A lower efficiency for reconstructing tracks as above 100 MeV (Figure 6.28b indi-
cates that tracks are often found but lack sufficient hits for a reliable extraction of
kinematics. Improving reconstruction for short tracks is a priority for future TREx

development. We can also underestimate multiplicity where there are pairs of highly
collinear tracks sharing hits. It is rare for reconstructed multiplicity to overshoot
true multiplicity.

The distributions of general kinematic and PID variables are largely un-
†This could be overcome in future versions of the TREx code by fitting vertex position along

with track kinematics. At the moment vertex position is simply given by the weighted average of
the positions of all hits in a junction.
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(a) (b)
Figure 6.26: Illustration of TREx efficiency (Figure 6.26a) and purity (Figure 6.26b) com-
pared to old TPC reconstruction on beam Monte Carlo. Efficiency for the old reconstruction
version (v3r41p3) is in red while TREx software version used for analysis (v4r17p3) is in
black.
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Figure 6.27: Illustration of TREx vertex position accuracy, showing the difference between
reconstructed and true vertex using NEUT gas interaction Monte Carlo for events within
the TPC instrumented region. Difference in x position (Figure 6.27a), which comes from
t, and y–z position (Figure 6.27b), which come from micromegas pad position, are shown
separately.
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Figure 6.28: Illustration of TREx vertex multiplicity, showing reconstructed against true
multiplicity for all particles (Figure 6.28a) and for particles reconstructed with over 100 MeV
momentum against true particles with over 100 MeV momentum (Figure 6.28b) within the
TPC instrumented region using NEUT gas interaction Monte Carlo.
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changed in value since the old TPC reconstruction. This is also expected since
the algorithms producing these variables have not been extensively redeveloped for
TREx . Differences in momentum resolution are shown in Figure 6.29 and agree well
between the two.

All of this demonstrates that the greatly improved flexibility of TREx with
regards to handling interactions in the TPC and other awkward topologies has
not come at a cost to general reconstruction performance. This combined with
comparable processing times between TREx and the old reconstruction have led to
TREx being adopted as the official TPC reconstruction for future data processing at
T2K.
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Figure 6.29: Momentum residual distributions for old reconstruction and TREx covering both
momentum Figure 6.29a and inverse momentum Figure 6.29b.
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Chapter 7

Selection

The gas interaction proto-analysis[172] successfully recovered many instances of neu-
trino interactions on argon gas in real data.

This analysis goes a step further. Its purpose is two-fold; to establish a
reliable cross section for neutrino interactions on argon in our energy range and
to gain understanding of their kinematics and the systematic uncertainties thereof
so that future generations of the analysis can produce essential inputs for neutrino
interaction models.

These goals require a more reliable selection than previously used. The
selection itself is discussed here and systematic uncertainties involved in Chapter 8.
The results are presented and discussed in Chapter 9.

7.1 Proto-analysis

A brief overview description of the proto-analysis is helpful for the purposes of
understanding decisions made while developing the present analysis. Many of our
decisions were informed by difficulties encountered over its course.

7.1.1 Preselection

Until recently TREx was not a part of general ND280 reconstruction. To properly
reconstruct interactions in the TPC gas, events had to be processed locally. Doing
this with the full ND280 dataset was impractical, so a preselection (or ‘stage one
selection’) was employed to reduce the number of events to a manageable level. This
used only hit-level information (prior to reconstruction). It demanded

• activity in at least one TPC
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• a lack of activity upstream of the TPC in question

and thus cut down the number of events to reprocess by a factor of around twenty.
After the preselection, events were processed with TREx and passed to the

main analysis.

7.1.2 Main selection

The main selection (or ‘stage two selection’), for charged current νµ interactions on
argon in our fiducial volume, used the following cuts:

1. Data quality cuts requiring no problems with data taking during the time
of the event (applied to real data only).

2. Stage one selection cut requiring the TPC being checked to correspond to
the TPC which passed the preselection.

3. Bunch timing cuts requiring the t0 of the pattern being checked to fall within
a window of 60 ns of central beam bunch time.

4. Muon identification cuts requiring good TPC muon PID for the path being
checked.

5. Fiducial volume cuts requiring the path being checked to start well within
the TPC instrumented region.

6. Various δ veto cuts to remove background caused by delta-rays on a through-
going path.

7. Various broken track veto cuts to remove background caused by reconstruc-
tion failures on through-going tracks.

Of these cuts item 6 and item 7 proved highly sensitive to the physics we
were trying to observe, but at the time they were needed to achieve good purity.

7.1.3 Issues raised

The proto-analysis successfully identified a substantial number of interactions on
argon gas in data. It achieved a purity of 77% with an efficiency of 17% on NEUT
Monte Carlo events. However, substantial uncertainty over the true efficiency in
data made a reliable cross section impossible to derive.

Much of the analysis, particularly the preselection and the delta-ray and bro-
ken track vetoes, were determined to be highly sensitive to the physics we were trying
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to measure and caused substantial disagreement between Monte Carlo generators
and data over our actual selection efficiency and purity.

In addition our ‘hairy events’ were identified for the first time. These have
been discussed in Section 5.4 and also subsection 6.3.3 and caused unexpected dif-
ferences between data and simulation.

7.1.4 Improvements since the proto-analysis

A huge practical difference is the availability of large amounts of TREx processed
data. We currently have access to all ND280 data in this form can and run the
analysis directly on it. This eliminates the need for a preselection and not only
reduces our uncertainties but also allows for an almost 4π analysis rather than one
restricted to forwards going tracks.

Improvements to reconstruction have also been implemented. Hairy tracks
are now handled at the reconstruction level (see subsection 6.3.3) and have associated
systematic uncertainties evaluated. t0 determination has been greatly improved
particularly for tracks entering from side ECals, greatly reducing our single track
background.

Many of these reconstruction changes have fed into improvements at the
analysis level. Likelihood matching information between tracks is available which
allows much background from broken tracks and delta-rays to be removed. TREx

is now fully integrated into global reconstruction allowing both TPC pattern level
information and global tracks to be used in the analysis. Significantly, all of these
changes allow us to replace any physics sensitive cuts without severely limiting our
selection purity.

7.2 This analysis

The current analysis has been developed completely from scratch and without any
cuts thought to bias physics results. There is no preselection and the cuts are
designed to be as agnostic as practical to the precise kinematics of interactions in
our fiducial volume.

7.2.1 Cut flow

The cuts we employ are:

1. Event quality cuts, requiring the standard data quality flags to be passed.
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2. Total multiplicity cuts, requiring at least one TREx path.

3. Track fiducial volume cut, requiring the global track being checked to start
in the fiducial volume.

4. Track muon PID cut, requiring the global track being checked to have muon
PID.

5. Track negative charge cut, requiring the global track being checked to have
negative charge.

6. Track momentum cut, requiring the global track being checked to have
momentum over 100 MeV.

7. x-angle cut, requiring the global track being checked to have x-angle such
that |cos θx| < 0.9.

8. Vertex fiducial volume cuts, requiring the projected positions of vertex
candidates to lie within a strict fiducial volume.

9. t0 quality cut, requiring a sensible t0 source for the path being checked if
necessary.

10. Likelihood matching cuts, removing backgrounds from delta-rays and bro-
ken through-going tracks.

11. TPC cleanliness cuts, removing backgrounds from misreconstructed through-
going tracks in TPCs with large amounts of activity.

Since we’re searching for any νµ interaction within our fiducial volume we
may have a large number of tracks per event flagged as lepton candidates. This
is particularly true at earlier stages in the cut flow. The selection maintains a list
of potential muons starting in the fiducial volume which is updated at each cut.
For the purposes of systematic error propagation and event categorisation the muon
candidate is considered to be the highest momentum track in this list. The event
as a whole is considered to fail a cut when no candidate tracks remain.

Event quality

Event quality cuts are standard for ND280 analyses. They apply only to data (bad
quality Monte Carlo events are not simulated) and simply rely on flags for good
data quality and good beam quality for the data taking period in question.

These flags are set manually by the ND280 data quality and T2K beam
groups based on diagnostic studies.
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Total multiplicity

This is another low level cut used to verify that an event is worth considering before
moving on to more intensive checks. The event is examined to make sure it contains
at least one track with a TPC component.

If this cut is passed a list of all global muon candidates is formed which
initially contains any global reconstructed track with a segment in the instrumented
region of any TPC.

Track volume

The general track volume is defined as the instrumented region of any TPC. This
corresponds to six cuboids; one for each half of each TPC. Later in the selection the
strict fiducial volume cuts will use harsher criteria.

Every global muon candidate is checked to make sure they meet the fiducial
volume criteria. The exact condition is that one or the other but not both of the
global track’s ends is within the fiducial volume. In addition tracks which end but
do not start in the fiducial volume have their direction flipped so that all candidate
tracks are defined as starting in the fiducial volume from this point on.

Any global track which does not meet this fiducial volume condition is re-
moved from the list of muon candidates.

Track muon PID

Particle identification is a powerful cut for ensuring that a given track corresponds
to a muon rather than some other particle. The dE

dx variables discussed in Section 6.8
are used to compute pulls as

δi =

(
dE
dx

)measured
−
(
dE
dx

)expected

i

σexpected
i

, (7.1)

where i is the particle hypothesis and
(
dE
dx

)expected

i
and σexpected

i the mean and
standard deviation of expected dE

dx for that hypothesis at the particle’s reconstructed
momentum.

Each surviving candidate global track is checked for PID. To be counted as
a muon candidate the track needs either a segment in the SMRD or for its longest
well reconstructed TPC segment to pass the PID cut.

The PID cut uses probabilities defined from the pulls described in Equa-
tion 7.1:
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These are normalised into likelihoods for each particle type:

Li = Pi∑
j Pj

, (7.2)

which are used to evaluate whether or not the path meets the following PID condi-
tions:

• Muon likelihood Lµ > 0.05

• One of the following:

– Momentum p > 500 MeV

– MIP likelihood over proton unlikelihood (Lµ + Lπ) / (1− Lp) > 0.8

Any candidate global track failing these cuts is removed from the list of muon
candidates.

The effects of these cuts on our sample at this stage in the cut flow are
illustrated in Figure 7.1 and Figure 7.2. Whilst our large background of out of
fiducial volume muons remains the PID cuts remove a large number of non-muon
background which isn’t handled anywhere else.

Pi ≡ e
−
(
δi

2
2

)
. (7.3)

Track negative charge

So far our cuts have been designed to pick out muons starting in the TPC fiducial
volume with no distinction between µ− and µ+. The negative charge cut is designed
to discard any µ+ which have made it this far. The list of global muon candidate
tracks is filtered for charge with any tracks of positive charge removed.

Track momentum

Although we have ensured that our selection includes as little kinematic information
as possible there are some unavoidable practical constraints. PID is generally not
reliable for low momentum particles. This track momentum cut is necessary to
account for this.

Global muon candidate tracks are checked and any where momentum p <

100 MeV are removed. Since our true muons are expected to have momenta around
500 MeV with relatively few below 100 MeV this cut has limited effect on our signal.
The effect of this cut at this stage in cut flow is shown in Figure 7.3.
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Figure 7.1: Muon PID cut in selection showing cut value and distribution of signal and
background muon likelihood (Figure 7.1a) and the same distribution with binning to better
illustrate signal survival (Figure 7.1b).
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Figure 7.2: MIP PID cut in selection showing cut value and distribution of signal and
background MIP likelihood values (Figure 7.2a) and the same distribution with binning to
better illustrate signal survival (Figure 7.2b).

x-angle

Our other kinematic cut is motivated by detector geometry. We cut on candidate
muon x-angle. This is motivated by our detector geometry; we are unable to reliably
reconstruct tracks at high angle in x since they cross few micromegas pads for their
length. The cut removes such tracks.

The cut removes tracks where cos θx > 0.9, where cos θx is the x component
of the unit vector giving the track’s starting direction.

This cut is shown in Figure 7.4 at the current stage in cut flow. As with
the momentum cut the region removed does feature lower signal to background
ratios than shallower angles but our main motivation for the cut is based on the
performance of our reconstruction.
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Figure 7.3: Momentum cut in selection showing cut values.
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Figure 7.4: x-angle cut in selection showing cut values.
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Vertex fiducial volume

Our previous fiducial volume cut didn’t account for expected vertex position. Nor
did it consider pad gaps or for the difficulties in reconstructing tracks at the edge
of an instrumented region. The stricter vertex fiducial volume cut accounts for all
of these factors.

Projected vertex position for each candidate track takes account of the other
tracks in its pattern. For single track candidates this position is simply the can-
didate’s starting position. For multiple track events the position is based on ex-
trapolating back from the junction’s two highest momentum tracks as shown in
Figure 7.5.

Reconstruction difficulties at the edge of a micromegas pad are solved by
requiring projected vertex position to be at least 10 cm away from the edge of an
instrumented region in x, y or z. Vertex positions are also required to be at least
3 cm away from a vertical micromegas gap since tracks near this gap are highly
prone to reconstruction failures. Any global tracks whose projected vertex positions
fail either of these conditions are removed.

t0 quality

Tracks with bad t0 are a large source of single track background. If a track enters
from a side ECal but has faulty t0 it can appear to be starting within our fiducial
volume.

A sanity check removes much of this background. The requirement is rele-
vant to tracks where the candidate vertex position is on the x edge of the pattern

(a) (b)

Figure 7.5: Projected vertex position calculation, with tracks illustrated by blue lines and
vertex position by a pink star. Default vertex position is shown in Figure 7.5a and projected
position is shown in Figure 7.5b.

122



containing them furthest from the cathode. The pattern’s t0 source must correspond
to a detector through which one of the pattern’s paths passes.

Likelihood matching

Likelihood matching cuts are designed to remove backgrounds from reconstruction
failures or delta rays. These can cause a through-going track to appear broken at
some point along its length. The track’s two halves can be matched to verify that
they come from the same particle and remove the background.

The calculation of likelihood values is described in detail in ??. These are
used at the analysis level to apply a stringent cut on backgrounds. If the path at
the start of a candidate global track can be matched to some other path in the same
TPC with a log likelihood difference of less than 1000 then the track is discarded.
The log likelihood difference is defined between the one- and two-track hypotheses.

This effect of this cut at this point in the cut flow is illustrated in Figure 7.6.
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Figure 7.6: Likelihood matching cut in selection showing cut values and signal and back-
ground log likelihood difference values. The final bin contains all overflow and accounts
for many orders of magnitude in difference between the likelihoods of most signal and the
removed background.
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TPC cleanliness

TPCs containing multiple nearby tracks from outside the TPC can create phantom
vertices which are difficult to resolve through likelihood matching. To remove this
background, tracks which pass by the vertex candidate are considered. These tracks
are required to

• contain hits in the same TPC as the vertex

• have momentum of at least 100 MeV

• ‘pass’ the vertex (the vertex must lie between planes defined by the track’s
start and end positions and directions)

in order to reject a candidate vertex from the selection.
Figure 7.7 illustrates the cut, showing the regions in which potential vertices

are excluded for being alongside another track. These regions covers planes between
the second track’s start and end, less some safety margin.

(a) (b)

Figure 7.7: Illustration of passing by tracks in the selection. Figure 7.7a shows a phantom
vertex candidate produced by two collinear tracks, with the misreconstructed tracks attached
to the junction shown in blue and another passing by track in red. Figure 7.7b shows the
area excluded for being alongside the second track.
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7.3 Selection performance
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Figure 7.8: Efficiency and purity of selection cuts.

The performance of our current selection on GENIE Monte Carlo is shown
in Figure 7.8. It is worth noting several points of signal loss:

• Both fiducial volume cuts and the ‘tracks exist’ cut remove signal. Since a
large amount of the TPC gas volume is either uninstrumented or at the edge
of a module, where vertices cannot be reliably reconstructed, such signal loss
is inevitable and largely irrecoverable.

• The momentum and cos θx cuts remove some signal in kinematic regions where
our reconstruction is known to be unreliable.

• A true signal event may still be poorly reconstructed and hence removed due
to failing PID cuts, the charge cut or the t0 sanity check.

Overall we achieve an efficiency of (43.4 ± 0.8)% and a purity of (46.7 ±
0.8)%, before corrections and systematic uncertainties are applied, for νµ charged
current interactions within the TPC fiducial volume. The huge amount of out of
fiducial volume background makes a higher purity impossible without either further
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development on the reconstruction algorithm† or cuts risky cuts for which efficiency
and purity on data cannot be reliably predicted. To reach our current purity we
have removed about 4999 out of every 5000 background events.

In the following chapters we examine the systematic uncertainties associated
with these numbers and the results which can be derived from examining data.

†The results of our current analysis and particularly an analysis of surviving background events
in data can be used to inform which specific aspects of reconstruction need further improvement.
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Chapter 8

Systematic uncertainties

Systematic uncertainties used in the gas interaction analysis fall into three broad
categories:

• Those which are taken to be unchanged since pre-TREx analyses

• Those which are in principle unchanged but require recomputation

• Those which are completely new for the gas interaction analysis

In the first case some cross checks are employed to verify the validity of the
old values for uncertainties. In the other cases the values are computed anew for
the gas interaction analysis.

In addition to the propagation of systematic uncertainties several corrections
are employed which shift the values of analysis level variables. For convenience these
are also discussed in this chapter.

8.1 Corrections

Before systematic uncertainties are propagated there are several corrections applied
to either data or Monte Carlo to account for known and understood differences
between real data and simulation. The gas Monte Carlo and proton range corrections
are newly developed for this analysis. All other corrections are implemented in other
ND280 tracker analyses[179] and are unchanged in implementation.

8.1.1 Gas Monte Carlo correction

During the course of the gas interaction analysis a bug in the simulation of the gas
mixture was discovered causing incorrect relative proportions of argon, isobutane
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and tetrafluoroethane leading to incorrectly simulated total target masses in the
TPC gas volume. To correct this each simulated event with an interaction in the
TPC gas volume is given a weight according to the true identity of the target nucleus
in simulation.

Nucleus Correction
Ar 0.9555
H 1.4450
C 1.5787
F 2.1133

Table 8.1: Weights applied as corrections for relative masses of gasses in the TPC gas
mixture.

The corrections are shown in Table 8.1. There are substantial corrections
to the relative masses of hydrogen, carbon and fluorine and a 5% reduction in the
simulated mass of argon.

8.1.2 Proton range correction

As discussed in Section 5.3 a bug in the default photoabsorption ionization model
causes low momentum protons to deposit energy much slower in Monte Carlo than
in reality. A correction is applied to proton ranges at the analysis level to resolve
this.

The correction requires reducing the physical length of tracks by moving
their end points closer to their starts, reducing the number of clusters the tracks
are recorded as containing and correcting for the lower reconstruction efficiency for
short tracks compared to long tracks.

Figure 8.1 shows the differences between simulated and measured ranges for
low energy protons in argon. Also presented are the corrections which result from
them.

8.1.3 PID corrections

Since PID determination is mostly unchanged from its pre-TREx implementation the
dE
dx corrections used for previous TPC reconstruction are still necessary. These are
standard corrections implemented in general T2K analyses and stem from the need
to correct for well understood limitations in the hardware, software and reconstruc-
tion.
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Figure 8.1: Proton ranges in data and Geant4 simulation (Figure 8.1a) and the corrections
which result from them (Figure 8.1b), derived by taking the ratio between version 4.9
simulation with the photoionisation absorption model (PAI) and Stopping Range of Ions in
Matter program (SRIM)[180] data and enforcing no correction at 0 MeV or above 100 MeV.

PID corrections are as follows:

• Slight corrections for data (no more than a few percent) are applied to the
measured dE

dx in each TPC. These depend on the specific run and subrun range.

• Monte Carlo corrections of around 1% are applied to electrons. This is to
account for a known overestimate of electron energy loss in simulation.

• Finally the expected dE
dx values used to calculate pulls are corrected to account

for unresolved inaccuracies introduced at the reconstruction stage.

8.1.4 Momentum resolution corrections

As with the dE
dx corrections the momentum resolution corrections used with previous

TPC reconstruction are still used in this analysis.
This correction is quite large, providing an almost 40% smearing in inverse

transverse momentum. It accounts for known differences in resolution between data
and Monte Carlo[181].

8.2 Propagation of systematic uncertainties

All systematic uncertainties are uniquely implemented in the analysis. The general
procedure for doing so is outlined here and covers the two broad classes: variations
and weights (of which efficiency-like uncertainties merit special mention).
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Uncertainties based on weights only require the selection to be run once. A
set of random weights within the systematic error in question is then calculated.
Variation based uncertainties require multiple passes of the selection with the anal-
ysis level variable in question varied many times within its systematic error. The
variation in the final number of signal and background events in a given bin post-
selection gives our total systematic uncertainty for that bin.

Unless otherwise stated all sources of uncertainty are assumed to be gaussian.

8.2.1 Variations

Variation uncertainties account for uncertainty in some variable v, for example track
momentum or dE

dx . The selection is repeated multiple times with this variable mod-
ified as

v = v0(1 + δ · σv), (8.1)

where v0 is the uncorrected value and σv · δ gives a random variation from the
uncertainty on the systematic source in question†.

8.2.2 Weights

Uncertainties such as target mass affect the weight for the final event but not the
selection. These and efficiency systematic uncertainties are propagated by simply
adding a final weight to the event,

w = 1 + δ · σw, (8.2)

where σw · δ gives a random variation from the uncertainty on the systematic source
in question‡.

8.2.3 Efficiencies

Many uncertainties, such as in the probability of reconstructing a true particle,
correspond to a chance for a particular event to be either completely accepted or
completely rejected. These contribute a total weight to each Monte Carlo event
depending on whether reconstruction is successful (efficiency) or not (inefficiency)
and are a special case of weight based systematic uncertainties.

†σv is the specific value of our uncertainty on the variable as a result of this systematic error
and δ is a random number taken from a gaussian distribution of mean 0 and width 1.

‡σw is the specific value of our uncertainty on the weight as a result of this systematic error
and once again δ is a random number taken from a gaussian distribution of mean 0 and width 1.
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In either case the weight is computed from the predicted value in data εvar
data

and the analysis sample’s Monte Carlo efficiency εMC. For efficiencies it is given by

w = εvar
data
εMC

, (8.3)

while for inefficiencies it is given by

w = 1− εvar
data

1− εMC
. (8.4)

Specifically εvar
data corresponds to the mean prediction for data plus a random

value thrown from within our uncertainty on the systematic source in question which
is varied between toy experiments.

The uncertainty is ideally given by the difference between efficiency (or inef-
ficiency) in data and Monte Carlo in well understood control samples. For some gas
interaction specific systematic uncertainties control samples are unavailable and we
have used comparisons between nominal and modified Monte Carlo instead, where
the modified Monte Carlo is set up so that true data performance in the relevant
aspect of reconstruction will lie between the two.

8.3 Event level systematic uncertainties

8.3.1 Sand and cosmic muon background

At this time it is not feasible to perform a robust evaluation of sand and cosmic
muon background due to practical constraints of time and data availability. To get
an idea of expected cosmic background we look to previous tracker analyses while
for sand muons we use study our selection’s performance on a limited sample of
simulated events.

Previous tracker analyses[182] predicted total cosmic ray contamination far
below 0.1%, with a total out of fiducial volume background around 5%. If we
conservatively† assume that the fraction of out of fiducial volume background from
cosmic rays is the same as other analyses’, contamination is well below 1% and is
thus neglected.

For sand muons we do not have a full set of simulated data corresponding
to 10× real data (as with other Monte Carlo). Instead we pass the simulated sand
events we have, corresponding to 8.9× 1020 PoT (about 50% higher than real data

†Relative to other tracker analyses our out of fiducial volume background is much more likely
to come from interactions near a TPC, where multiple particles can be produced and thus confuse
pattern recognition.
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PoT), through our selection. We find 12 ± 3.5 selected sand events which scales
to a predicted 7.7 ± 2.4 in real data. Systematic uncertainty on sand muon flux is
around 10%. These selected sand events and their associated error are added to our
background predictions in both NEUT and GENIE.

8.3.2 Flux related systematic uncertainties

Flux related uncertainties are a broad category accounting for effects from hadron
production rates to the alignment of our beams and magnetic fields. For the gas
interaction analysis we use the same flux uncertainties and implementation thereof
as general ND280 analyses (see for example [183]).

As shown in Figure 8.2 hadron production is the dominant contributor to
our systematic uncertainty. This is constrained with data from NA61/SHINE as
mentioned in Section 5.1. Other sources of error are uncertainties over the precise
profile and alignment of our proton beam, the magnetic field and physical alignment
of our horns and the alignment of our target. These errors are evaluated indepen-
dently by varying the relevant quantity in simulation and determining its final effect
on flux. All errors are ultimately combined into a covariance matrix binned in neu-
trino energy and type. At around 10% flux uncertainties represent the largest single
source of systematic error in the gas interaction analysis.

(GeV)νE
-110 1 10

F
ra

ct
io

na
l E

rr
or

0

0.1

0.2

0.3
µ

Hadron Interactions

Proton Beam Profile & Off-axis Angle

Horn Current & Field

Horn & Target Alignment

Material Modeling

Proton Number

13av1 Error

νFractional flux error at ND280 for

Figure 8.2: T2K fractional flux uncertainties for νµ[184]. 13av1 is the flux tuning used for
this analysis — its total fractional uncertainty is shown by the dashed line.
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8.4 Standard TPC variation uncertainties

There is a large degree of overlap between the variation based uncertainties used by
our gas interaction analysis and those common to ND280 tracker analyses.

It was considered acceptable to reuse existing values for these uncertainties.
This is justified by the close matching of kinematic distributions between TREx and
our old reconstruction (see for example Figure 6.29) and the fact that the underlying
procedures for fitting and PID were not changed for TREx .

8.4.1 Momentum scale

Uncertainties in absolute momentum scale ultimately come from uncertainties in
the measurement and calibration of the ND280 B field[185]. We use the same values
as pre-TREx analyses. All together our uncertainty on momentum scale is 0.57%.

The scale uncertainty is implemented as a simple variation in absolute mo-
mentum for both global and local tracks. It covers all charged tracks reconstructed
in the TPC.

8.4.2 Momentum resolution

This corresponds to our uncertainty on the variation of momentum around a mean
value. In practice it is the resolution of inverse momentum transverse to B field
direction (1/pt) for which we propagate the systematic[181].

The specific uncertainty depends on track x but generally involves a variation
of 10%.

Momentum resolution uncertainty is implemented as a variation in the differ-
ence 1/pt − 1/pttrue between reconstructed and true inverse transverse momentum.
For each toy experiment each track has its momentum translated to inverse trans-
verse momentum, smeared by 10% of the difference with true inverse transverse
momentum, then translated back.

8.4.3 B field distortion

The final momentum variation applied comes from our imperfect knowledge of dis-
tortions in the ND280 magnetic field[186] which ultimately stems from our uncer-
tainty over magnetic yoke properties. Unlike the momentum scale error, which
accounts for uncertainty on the mean field, this handles our uncertainty over devia-
tions from this mean field and as such its computation and implementation is more
involved.
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The main correction to B field distortions comes from the map produced
by direct measurements in the ND280 basket. Additional empirical corrections are
produced from measurements from the TPC laser system. The difference between
nominal track momentum and that produced by evaluating these corrections (‘refit
momentum’) provides the B field distortion systematic.

As with momentum scale this uncertainty is implemented as a variation in
absolute momentum of a global track and its constituents. Here the variation comes
from the difference between nominal track momentum and refit momentum. This is
different from track to track, even for tracks which otherwise have similar kinematics.

8.4.4 PID

Our PID uncertainties come from our uncertainty in the dE
dx measurements used

to evaluate particle identity. We reuse the values from an earlier study[187] where
this is evaluated by evaluating the data–Monte Carlo difference in dE

dx between well
understood control samples of electrons, protons and minimum ionizing particles
(muons and pions) as a function of momentum.

This uncertainty is implemented as a variation in the dE
dx value for each TPC

segment of each charged track reconstructed in our TPCs. The exact variation is
decided based on the true particle’s identity and momentum. Electrons, protons and
minimum ionizing particles use separate variations but the method is the same in
each case. dE

dx is varied based on both its mean value and the difference between mean
and expected values. Pulls are recomputed after this variation (see Section 6.8).

8.5 Standard TPC efficiency uncertainties

As with variations there is a large degree of overlap between efficiency uncertain-
ties required for the gas interaction analyses and those required for general ND280
tracker analyses. In most of these cases the overall systematic uncertainty is small,
and similar performance between TREx and previous reconstruction justifies our re-
cycling of values from pre-TREx analyses. Only track reconstruction efficiency is
recomputed, due to its sensitivity to changes in pattern recognition.

8.5.1 Track efficiency

This covers our uncertainty over the chance for a charged particle which passes
through the TPC’s instrumented region to be successfully reconstructed as a track.
Track efficiency encapsulates both pattern recognition and likelihood fitting efficien-
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cies. The methodology for computing and propagating this systematic is unchanged
since pre-TREx analyses[188]. Specific values have, however, been recomputed for
this analysis.

The efficiencies are tabulated in Table 8.2 and shown in Figure 8.3. Both
data and Monte Carlo show high levels of efficiency which are equivalent within
statistical error.

TPC Data efficiency Monte Carlo efficiency
TPC1 (99.6± 1.0) % (98.9± 1.6) %
TPC2 (99.4± 0.6) % (99.3± 0.7) %
TPC3 (99.1± 2.0) % (99.0± 1.0) %

Table 8.2: TPC track finding efficiencies for data and Monte Carlo.
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Figure 8.3: TPC efficiency as a function of momentum for TPC1 (Figure 8.3a), TPC2
(Figure 8.3b) and TPC3 (Figure 8.3c). The average for each TPC is shown by the horizontal
black line (Monte Carlo) and red line (data).
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An efficiency weight is applied based on the event’s main true track (a true
muon passing through the TPC). If this true track corresponds to a reconstructed
track the weight is applied as an efficiency; otherwise it is applied as an inefficiency
(see subsection 8.2.3). These weights are are around 1%.

8.5.2 Cluster efficiency

Cluster efficiency uncertainty comes from our uncertainty over the probability of
missing one or more horizontal or vertical clusters in an otherwise reconstructed
track.

The values used for this systematic uncertainty come from work done prior
to the introduction of TREx[189]. In this study efficiency was compared between
data and Monte Carlo for well understood samples of through-going muons in the
horizontal and vertical directions.

cos θ Extra Monte Carlo efficiency
0–0.5735 (0.11± 0.02) %
0.5735–1 (0.07± 0.01) %

Table 8.3: TPC cluster finding efficiency systematic as a function of angle in the y–z plane.
Extra Monte Carlo efficiency corresponds to (εMC − εdata) /εMC where εMC is Monte Carlo
efficiency and εdata data.

Results from this study are shown in Table 8.3. They represent our uncer-
tainty over the chance of a single cluster being successfully reconstructed. Depending
on the length of our track the loss or gain of a single cluster may not impact the
analysis. For our selection it is assumed to be relevant only to the TPC quality cut,
which requires 18 or more clusters. Other effects of missing a cluster, such as shifting
track position or kinematics, are accounted for by other systematic uncertainties.
This means that the uncertainty applies only to tracks with near 18 clusters — for
the gas interaction analysis it is entirely negligible.

Only muon candidate tracks with 17 or 18 clusters are considered. For each
of these the weight on a single cluster being accepted or rejected is given. This
is placed to the power of the number of clusters to compute the weight from the
chance of any one being lost and multiplied by the extra Monte Carlo inefficiency
to account for the chance of any extra cluster being gained.
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8.5.3 Charge ID efficiency

Charge ID uncertainties account for uncertainty on the chance of a muon being
misidentified as its antiparticle due to incorrectly reconstructed charge. This stems
from both local mis-ID (a track segment being assigned the wrong charge) and global
mis-ID (a global track being assigned different charge to its best local segment).

The uncertainty is correlated strongly with the fitting error on track momen-
tum. It also depends on the number of TPC segments in a track and their relative
charge sign. Tracks with one, two and three segments require different errors as do
tracks where charge sign disagrees between segments.

The efficiency is derived from a relatively complex parametrisation in mo-
mentum fitting error[190]. Since the momentum fit is in principle unchanged in TREx

we reuse the values and propagation methodology used in previous tracker analyses.
In spite of their relative complexity these systematic uncertainties contribute a final
uncertainty in the gas interaction analysis of less than 1%.

Our charge ID uncertainty is propagated as an efficiency based on the muon
candidate track. The precise amount by which our weights are varied depends on
the muon candidate track’s momentum fit error, the number of TPC segments and
their charges relative to each other and relative to the global track’s charge.

8.6 Gas interaction specific uncertainties

Many of the uncertainties inherent in a gas interaction analysis have not been com-
puted before either because they are only relevant to vertices within the TPC or
because they didn’t have a significant effect in other analyses. We evaluate these
from scratch.

Due to a lack of control samples for gas interactions many rely on Monte
Carlo only studies. Since these cannot be relied on to precisely replicate data they
provide conservative upper limits on our uncertainty.

8.6.1 Vertex uncertainties

These address our uncertainty over the probability of correctly identifying vertices
and their properties within the TPC.

Since reconstruction differs substantially when it comes to identifying vertices
in one-, two- and multi-track events the parameters for this uncertainty are binned
in charged particle multiplicity. For two-track interactions vertices are identified
through kink finding and in the case of multiple tracks they are identified through
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the junction finding algorithm, both of which are discussed extensively in Chapter 6.
The one-track case is ignored since our uncertainty for this is covered by the track
efficiency uncertainty.

Due to lack of a viable control sample in data and Monte Carlo, a Monte
Carlo only study was used. Nominal simulation was compared with a ‘noisy’ sample
in which the variation in simulated pedestal noise was doubled and zero suppression
halved to create extra noise hits. As illustrated in Figure 8.4 even such a large
change in simulation results only in a slight broadening of tracks but the difference
between the two can be taken to cover extra performance of data.

Three values were checked for the purposes of quantifying our uncertainty;
muon efficiency, vertex resolution and secondary charged particle multiplicity.

The muon efficiency uncertainty is on the chance of reconstructing a true
muon originating within the TPC’s instrumented region. It was computed using
the difference in reconstruction efficiency between nominal and noisy Monte Carlo
samples. Results from computing this uncertainty are shown in Figure 8.5.

(a) (b) (c)

Figure 8.4: Normal (Figure 8.4a) and sub-optimal (Figure 8.4b) version of the same gas
interaction event. Also shown is a composite with new noisy hits generated by the sub-
optimal sample highlighted in orange (Figure 8.4c).
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Figure 8.5: Vertex efficiency systematic uncertainties for two- (Figure 8.5a) and multi-track
(Figure 8.5b) events.
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The muon resolution uncertainty is our uncertainty over the resolution with
which a vertex’s position can be correctly identified. The difference between true
and reconstructed vertex positions in each of the three dimensions was recovered
and fitted with a gaussian. The difference in width of these distributions was taken
between our nominal and noisy Monte Carlo samples. The results are illustrated in
Figure 8.6.

The vertex multiplicity uncertainty represents our uncertainty on the chance
of reconstructing the correct number of secondary charged particles emerging from a
vertex. This is heavily dependent on the length of each proton track, which requires
a correction at the analysis level. As a result of this it was decided that the best way
to model the uncertainty would be to evaluate our uncertainty on secondary particle
reconstruction efficiency as a function of true trajectory length and propagate it
based on the event’s corrected trajectory lengths. These uncertainties are illustrated
in Figure 8.7. They are dominated by statistical uncertainties in evaluating them.

Table 8.4 summarises our vertex systematic uncertainties. For the purposes
of our analysis the most significant effects are muon efficiency, for which uncertainty
is of the order 1%–2%.

Muon efficiency uncertainty is propagated analogously to TPC track effi-
ciency uncertainty. The only difference is the binning in track multiplicity. Uncer-
tainty in resolution is accounted for simply by varying the positions of our vertices
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Figure 8.6: Vertex resolution systematic uncertainties for two- (Figure 8.6a, Figure 8.6b,
Figure 8.6c) and multi-track (Figure 8.6d, Figure 8.6e, Figure 8.6f) events in the x, y and z
directions.
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Figure 8.7: Secondary particle reconstruction efficiency uncertainties for true trajectory
length up to 50 mm (Figure 8.7a), 50 mm – 100 mm (Figure 8.7b), 100 mm – 200 mm
(Figure 8.7c), 200 mm – 500 mm (Figure 8.7d), 500 mm – 1000 mm (Figure 8.7e) and
1000 mm upwards (Figure 8.7f).

Systematic Difference

Muon efficiency
Two-track (1.08± 1.05)%

Multi-track (0.38± 1.18)%

Muon resolution
Two-track (x) (4.00± 0.12) mm
Two-track (y) (0.99± 0.07) mm
Two-track (z) (1.25± 0.06) mm

Multi-track (x) (2.24± 0.18) mm
Multi-track (y) (0.79± 0.11) mm
Multi-track (z) (1.45± 0.17) mm

Secondary particle efficiency
0 mm – 50 mm tracks (0.87± 2.42)%

50 mm – 100 mm (2.75± 3.85)%
100 mm – 200 mm (0.16± 3.34)%
200 mm – 500 mm (0.91± 1.40)%
500 mm – 1000 mm (0.19± 1.02)%
1000 mm or more (0.20± 1.08)%

Table 8.4: Summary of vertex related uncertainties.

140



and track starts in our toy experiments based on the uncertainties calculated.
Our secondary particle multiplicity uncertainty doesn’t affect the main selec-

tion but is relevant when plotting proton multiplicity. It is propagated by randomly
deleting secondary particles in each toy experiment. This is done by calculating a
varied efficiency weight, εvar

data, for each toy. A random number δ is thrown between
0 and 1. Protons where δ < εvar

data are then removed.

8.6.2 t0 determination

The efficiency uncertainty for t0 determination represents uncertainty over the prob-
ability of a t0 being found from a source (P0D , FGD or tracker ECal) through which
the track in question passes. For more detail on the t0 algorithm see Section 6.6.
The uncertainty is computed by comparing efficiency for each source in data and
Monte Carlo.

‘Clean’ events are sought. These are events where a unique single track
pattern in a given TPC covers its entire length in x, y or z depending on the
detector being checked. Hits are also required in nearest layers to the TPC of the
two detectors either side. For z tracks these are either the P0D and FGD1, FGD1
and FGD2 or FGD2 and the downstream ECal. For x and y tracks they are the
two side ECals and the top and bottom ECals respectively. Categorisation of these
candidate events is illustrated in Figure 8.8.

The comparison between expected t0 determination and actual t0 determina-
tion shown in Figure 8.9 provides an efficiency for each detector. These are compared
between data and Monte Carlo to extract uncertainties on t0 efficiency.

Our computed t0 efficiency uncertainties are shown in Table 8.5. Those for
top and bottom and side ECals are notably higher than those from other sources.
This is thought to be a result of the methodology used for evaluating the uncertainty
overestimating candidate t0 sources in data for these detectors. A more robust study
could produce lower values but on our current time scale these conservative values
are considered acceptable.

(a) (b) (c)

Figure 8.8: t0 candidates in x (Figure 8.8a), y (Figure 8.8b) and z (Figure 8.8c). The red
pattern shown in Figure 8.8c is not a candidate since it is not a unique single track pattern.
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Figure 8.9: t0 for tracker detectors, i.e. the P0D (Figure 8.9a), FGD1 (Figure 8.9b), FGD2
(Figure 8.9c) and downstream (Figure 8.9d), top and bottom (Figure 8.9e) and side (Fig-
ure 8.9f) ECal, using beam data and Monte Carlo.

t0 source Efficiency difference
P0D (1.23± 3.64) %

FGD1 (1.59± 2.62) %
FGD2 (1.31± 2.64) %

Downstream ECal (0.78± 3.62) %
Top and bottom ECals (1.8± 23.0) %

Side ECals (18.8± 14.7) %

Table 8.5: t0 efficiency difference between data and Monte Carlo for different sources based
on comparing data and Monte Carlo for samples of through-going tracks.

An efficiency uncertainty is applied to any event where the main track may
have been rejected due to failing the t0 cut. This includes any pattern where the
main track’s starting x position may have been moved out of the fiducial volume
but excludes patterns where all possible vertex x positions are within the fiducial
volume.

A candidate t0 source is selected by choosing the t0 source used by the track.
If no valid source is found then the first detector through which the true track
passes is used. Once a source is established an efficiency weight is applied to the
event based on the systematic uncertainty from this source.
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8.6.3 Hairy track systematic uncertainties

One of the major issues identified by the proto-analysis was the existence of ‘hairy
tracks’, or low momentum proton tracks with large amounts of noise surrounding
them. These are discussed in detail in Section 5.4 and subsection 6.3.3. Although
reconstruction procedures were implemented to resolve them the demonstrable dif-
ferences in event appearance between data and Monte Carlo necessitate a large
systematic.

No viable control samples are available for these event. Some proton samples
were used while improving and testing reconstruction hairy tracks but these are low
in statistics and do not allow us to check tracks starting inside the TPC, which are
expected to be highly sensitive to the presence of hairy tracks. For these reasons a
Monte Carlo only study was used.

As seen in Figure 8.10 our current reconstruction handles hairy topologies
fairly well We can in most of the worst cases reconstruct a hairy particle’s trajectory
with good accuracy.

To compute our uncertainty the approach taken was to compare reconstruc-
tion efficiency and resolution between a nominal Monte Carlo sample and an artifi-
cially hairy sample created by filling every electronics unit which the lowest energy
proton track passed through with low charge hits.

As seen in Figure 8.11 this sample produces far worse reconstruction perfor-
mance than any hairy event witnessed in data (compare with Figure 8.10). Since
our goal here was to produce a conservative, ‘worst case scenario’ uncertainty cov-
ering any unexpected drop in performance of TREx in the presence of hairy gas
interactions this was considered appropriate.

As with vertex efficiency, this provides the uncertainty regarding the chance

(a) (b)

Figure 8.10: Two hairy events; a ‘chainsaw’ event (Figure 8.10a) and a ‘low charge shadow’
event (Figure 8.10b. In each case green and red blocks represent used and unused hits
respectively and blue lines represent reconstructed tracks (the single blue line in Figure 8.10a
is partially obscured by unused hits).
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of reconstructing a muon. In this case there are two prerequisites:

• The existence of a muon starting in the TPC.

• The existence of a hairy proton from the same vertex.

Results are shown in Figure 8.12. They demonstrate a surprisingly good
muon reconstruction efficiency for our artificially hairy sample, with only 7% of
muons being lost on the presence of a highly hairy proton track.

The hairy track vertex resolution systematic is analogous to the vertex res-
olution systematic. Our results, shown in Figure 8.13, show expected smearing of
vertex position in the hairy sample. This effect is of around 10 mm or roughly the
size of a single micromegas pad on average.

Hairy muon systematic uncertainties are summarised in Table 8.6. The most
significant effect for our analysis is the muon efficiency uncertainty resulting from
hairy tracks.

Muon efficiency and resolution for hairy tracks were propagated analogously
to their analogues for general vertex systematic uncertainties. The difference is that
they are only implemented for vertices featuring at least one proton below 500 MeV.
This cut-off was established because we know to a reasonable level of certainty that
reconstruction well handles protons above this energy in data.

Further restrictions on events for which hairy systematic uncertainties are
considered may be applied in future iterations of the analyses, since we know from
experience that most protons below 500 MeV are not hairy. For the time being a
conservative uncertainty is used which, though our biggest source of detector related
uncertainty, is still much smaller than flux related uncertainties.

(a) (b)

Figure 8.11: Normal (Figure 8.11a) and artificially hairy (Figure 8.11b) version of the same
gas interaction event.
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Figure 8.12: Hairy track muon efficiency for nominal and hairy Monte Carlo, with the
resulting systematic shown.
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Figure 8.13: Vertex resolution systematic uncertainties for hairy track events (Figure 8.13a,
Figure 8.13b, Figure 8.13c) in the x, y and z directions.

Systematic Difference

Muon efficiency All tracks (6.75± 0.73)%

Muon resolution
x (0.64± 5.25) mm
y (0.79± 9.21) mm
z (2.55± 11.40) mm

Table 8.6: Summary of hairy track related uncertainties.
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8.7 Out of fiducial volume uncertainties

Background in the gas interaction analysis comes almost exclusively from tracks
entering the TPC from other detectors. The uncertainty in this background is split
into two sources:

• A rate uncertainty on the total number of tracks entering from outside the
TPC

• A reconstruction uncertainty on the probability for a track entering from out-
side the TPC to be reconstructed as a vertex within the TPC

Rate uncertainties come from uncertainties in the number of neutrino inter-
actions in the detector material surrounding our TPCs. Reconstruction uncertain-
ties can come from uncertainty on either the chance for a side-entering track to be
shifted into the fiducial volume by bad t0 or the chance for a through-going track
to be broken.

8.7.1 Rate uncertainties

All of the rate uncertainties we use have been evaluated for other ND280 tracker
analyses. They reflect our incomplete knowledge of the mass and neutrino interac-
tion cross sections of target material surrounding the TPCs. We reuse the numbers
acquired for previous tracker analyses[179] for these uncertainties.

8.7.2 Bad t0 uncertainties

Tracks entering the TPCs through the sides can be shifted into the fiducial volume
by a bad t0 value. For these uncertainties the side ECal t0 uncertainty discussed in
subsection 8.6.2 is used. This accounts for uncertainty on the chance for a particle
entering the TPC via a side ECal to have its t0 correctly assigned. Since such tracks
will often also be able to establish t0 from other detectors this gives a somewhat
conservative uncertainty.

This applies to tracks where the reconstructed vertex is on the pattern edge
nearest to a TPC and where a true track passes into the TPC through the same
side. It is propagated as an efficiency.

8.7.3 Broken track uncertainties

Broken track uncertainties come from our uncertainties in the chance for a through-
going TPC track to be reconstructed with a vertex in the fiducial volume. To
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compute these, a study was performed using the same sample of through-going
muons as the track efficiency systematic (subsection 8.5.1).

Through-going tracks were checked in both data and Monte Carlo for the
presence of reconstructed junctions. These could stem from, for example, delta rays
in the TPC. The number of tracks with at least one reconstructed junction was
compared between data and Monte Carlo. As can be seen in Figure 8.14 there
is a high amount of agreement between data and Monte Carlo on the number of
reconstructed junctions. The overall broken track uncertainty is 0.4%.

These uncertainties are applied to all out of fiducial volume tracks for which
the bad t0 uncertainty (subsection 8.7.2) does not apply. For each of these tracks a
constant 0.4% efficiency uncertainty systematic is applied.
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Figure 8.14: Broken track uncertainties comparing data and Monte Carlo.
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Chapter 9

Argon Cross Section

This analysis was performed blind, with both selection and systematic uncertainties
decided before data was observed. The results are presented here.

9.1 Single bin analysis

The main goal of this first iteration of a gas interaction analysis is to determine the
charged current cross section for νµ interactions on argon, integrated over the T2K
flux.

9.1.1 Methodology

Our cross section is given by

σ
40Ar
νµCC = N

εexpφT
, (9.1)

where N is our number of signal events in data, εexp the expected selection efficiency,
φ the integrated T2K νµ flux at the ND280 and T the number of target nucleons.

We cannot directly measure N since our real data contains some unknown
level of background contamination. In order to derive it we have opted for a purity
correction method using

N = NmeasN
exp
signal
N exp , (9.2)

where Nmeas is our total measured number of surviving events and N exp
signal and

N exp our expected signal events and total expected measured events respectively,
as derived from our Monte Carlo.
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The expected efficiency εexp corresponds to the fraction of actual signal inter-
actions (that is, charged current νµ interactions on argon) picked up by our sample.
This is also evaluated through our Monte Carlo.

The integrated flux φ is calculated by integrating the total flux at the ND280
over all of the spills we used. Flux values for each run are provided by the T2K
beam group. For the total of 5.73× 1021 protons on target used by our analysis the
integrated value is

φ = 1.04× 1018 m−2. (9.3)

Finally T is the number of target nucleons in our fiducial volume. The
definition for ‘fiducial volume’ is identical to that used to evaluate expected efficiency
and purity. It corresponds to a total area of 6.53 m3. Given an 40Ar density in our
TPC of (1.58± 0.04) kg m−3 we have a total of

T = (1.55± 0.24)× 1026, (9.4)

target nucleons.

9.1.2 Predictions from Monte Carlo

GENIE simulations corrected for sand muons predict 318 ± 44 events surviving all
selection cuts. Taking systematic uncertainties and corrections into account, for
the selection of charged current νµ interactions on argon it gives an efficiency of
(43.4 ± 6.2)% and purity of (45.6 ± 6.5)% taking both statistical and systematic
uncertainties into account.

NEUT obtains similar results but with fewer background events. 303 ± 42
events were spotted in Monte Carlo with a predicted efficiency of (42.4± 6.1)% and
a purity of (49.5± 7.1)%.

In data we have 258 events surviving our selection. Monte Carlo predictions
are compared with this number of measured events in Figure 9.1. Whilst the number
of events in both NEUT and GENIE overshoots data their values differ by around
1σ (taking both statistical and systematic uncertainties into account).

149



Energy / MeV
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Ev
en

ts
 s

ca
le

d 
to

 d
at

a 
Po

T

0

50

100

150

200

250

300

350

400

450

Po
T

21
/ 5

0 
M

eV
 / 

10
2

Fl
ux

 / 
cm

200

400

600

800

1000

1200

1400

1600

910×
Real data
Neut MC
Genie MC

Events passing selection

Figure 9.1: Selected events in real data, GENIE and NEUT. Errors on data are statistical
only whilst those on Monte Carlo are mostly systematic. Also shown is the T2K flux.

9.1.3 Cross section calculation

Using our 258 measured data events expected purity corrections and efficiency from
GENIE Monte Carlo we have a final cross section value of

σ
40Ar
νµCC = (4.19± 0.70(stat)± 1.04(sys))× 10−39 cm2, (9.5)

for charged current νµ interactions on argon integrated over the T2K flux.
NEUT’s predicted efficiency and purity provide a similar result of

σ
40Ar
νµCC = (4.61± 0.78(stat)± 0.94(sys))× 10−39 cm2. (9.6)

We can näıvely extrapolate the ArgoNeuT cross section (Equation 3.1) to
T2K energies by multiplying their σ/Eνµ = (0.66±0.09)×10−38 cm2

GeV measurement[141]
by T2K’s 0.6 GeV and weighting the result by the relative charged current cross sec-
tions at T2K and ArgoNeuT energies shown in Figure 2.3a. This gives us a loose
prediction for a charged current inclusive νµ cross section of (4.7±0.6)×10−39 cm2,
consistent with our results.
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9.2 Distributions in other variables

As well as a single bin cross section measurement we examined distributions in
other variables between data and Monte Carlo. Systematic uncertainties are less
thoroughly evaluated for these than for the single bin analysis so the data should
be interpreted with care. Nonetheless these distributions are useful for two reasons:

• Differences between generators can be resolved by determining which best
matches data. In this case the results presented should be taken as strictly
preliminary and to be refined in future generations of gas interaction analysis.

• Areas where there are notable differences between generators highlight targets
for future development. We have already identified improved reconstruction
of low energy protons as a target for next generation TREx software for this
reason.

9.2.1 Muon kinematics

The kinematic properties of our muon candidate were evaluated. We expect these
measurements to be somewhat reliable given our reliable simulation of muons and
propagation of systematic uncertainties relating to muon momentum.

Muon momentum is shown in Figure 9.2. When both statistical or systematic
uncertainty are taken into account most of the bins agree within 1σ.

The angles of our muons relative to the forward beam direction are also
shown (Figure 9.3). Again most of our bins agree within 1σ between real data and
simulation. There does appear to be a slight but consistent deficit in muons in the
highly forwards direction. This could hint at a higher ratio of out of fiducial volume
background relative to true signal events in data compared with Monte Carlo†.
Nonetheless these differences are not hugely significant when taking statistical and
systematic uncertainties into account.

9.2.2 Secondary particle kinematics

Little development has so far been done with the specific goal of accurately recon-
structing secondary particle kinematics in real data, nor on the systematic uncer-
tainties of such measurements in simulation. This is a long term goal for the gas
interaction analysis. The raw distributions presented here give an indication of what
we are aiming to precisely quantify in the future.

†Signal events are expected to produce predominantly forwards going muons whilst background
features many muons entering from the sides of the TPC.
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Figure 9.2: Selected muon momentum in real data and Monte Carlo.
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Figure 9.3: Selected muon angle relative to the beam axis in real data and Monte Carlo.
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These quantities are particularly interesting because our gas TPC allows for
a comparison between generators over variables which have not yet been precisely
measured in experiment. In particular there is no experimentally verified model
for MEC final states, and precise measurements of secondary particles and their
kinematics present a chance to rectify this. GENIE generally favours events with
a larger number of protons than NEUT, each carrying a lower proportion of the
event’s total momentum. GENIE also predicts a much larger number of protons
with energy between 50 MeV and the Fermi momentum at 250 MeV whilst NEUT
predicts a sharp drop off in energies below around 250 MeV. Presently no data
exists for tuning the generators in this low proton energy region.

We restrict ourselves to measuring particles of 100 MeV momentum or more,
corresponding to ranges starting at around 30 cm. This is due primarily to our
currently inability to trust PID algorithms at low energies. It also cuts out short
tracks for which systematic uncertainties are presently still uncertain.

We checked the overall number of paths emerging from each candidate vertex
(Figure 9.5). In doing this we found notably fewer high multiplicity events in real
data. A possible non-physics cause for this is additional noise obscuring the true
number of tracks emerging from a vertex. Despite our handling of hairy events it can
still be very difficult to both accurately reconstruct the number of tracks emerging
from a messy vertex and provide the successful fit needed to evaluate the track’s
momentum. This is something which will require further study while developing
TREx for future analyses.

As shown in Figure 9.5 we also checked the number of selected paths with
proton PID (defined in both real data and Monte Carlo as a proton likelihood Lp >
0.9; see Section 7.2.1). Results here are similar to the case of total path multiplicity,
with substantially fewer particles identified in data than in Monte Carlo. This
supports the hypothesis that unsimulated effects of messy topologies are causing us
to lose candidate secondary particles. If a vertex is difficult enough that we cannot
reliably reconstruct a track as having over 100 MeV momentum it also makes sense
that we cannot reliably assign it a good PID value.

Finally we checked the highest momentum of our candidate protons. This
is illustrated in Figure 9.6. The normalisation is much smaller for real data than
Monte Carlo simply because so many fewer events were identified as containing even
one proton.
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Figure 9.4: Selected vertex multiplicity, counting paths of 100 MeV or more, in real data
and Monte Carlo.
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Figure 9.5: Selected vertex multiplicity, counting paths of 100 MeV or more which also have
proton PID, in real data and Monte Carlo.
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9.3 Hand scan

A hand scan was performed on data events. This was primarily to identify interesting
signal events but also functioned as a cross check for our purity prediction as well
as providing indicators of the biggest sources of real background.

9.3.1 Methodology

Events were categorised as ‘signal’, ‘background’ or ‘undetermined’ with additional
notes made on background topology and visible multiplicity. The hand scan was
primarily done using hit level information although reconstructed tracks were also
used while determining why some background events were accepted.

Events categorised as ‘signal’ featured correctly reconstructed tracks of muon
PID clearly starting within the TPC gas volume. No attempt was made to distin-
guish between events where the muon started and stopped within the TPC. ‘Back-
ground’ events constituted any interactions clearly starting outside the TPC. In
addition many events were seen where it was not clear whether the signal or back-
ground category was appropriate, generally because it was unclear whether the
interaction occurred in a TPC or in the solid material of the cathode or detector
frame. These were marked as ‘undetermined’.

Some examples of undetermined events are shown in Figure 9.7. Mostly these
are cases where tracks appear to start within the TPC at first glance but are close
enough to the edge of our fiducial volume that they have a substantial chance of
originating outside.

(a) (b)

Figure 9.7: Event displays for undetermined events. Figure 9.7a shows an event at the
far upstream end of a TPC whilst Figure 9.7b shows an event directly next to the central
cathode.
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9.3.2 Results

Category Proportion of events Number of events
Signal 36.4% 94

Background 57.4% 148
Undetermined 6.2% 16

Total 258

Table 9.1: Signal and background events found by hand scan.

The results of our hand scan are shown in Table 9.1. If we assume a system-
atic uncertainty provided by the number of ‘undetermined’ events then we have a
real data purity of

Nmeas
signal

Nmeas = (39± 5)%. (9.7)

Taking all of our computed errors into account the purity is within 0.8σ of
the GENIE predicted purity and 1.2σ of the NEUT predicted purity, slightly below
both estimates.

For signal events we also quantified the visible multiplicity of charged sec-
ondary particles. Results of this check for multiplicity are shown in Figure 9.8. As
expected, the majority of events appear to have two charged tracks — one muon
and one secondary track — with a notable tail extending to higher multiplicities.
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Figure 9.8: Multiplicity of charged secondary particles from our hand scan. Error bars are
statistical only.
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The difficulties inherent in counting particle multiplicity are illustrated by
Figure 9.9. Very short tracks (some only around 30 mm) can be seen at clean vertices
but are completely lost where multiplicity or noise around the vertex is high. For
this hand scan we counted any vertex which seemed obvious to the scanner, an
admittedly subjective criterion.

Two track events can generally be counted reliably but this becomes less
true as multiplicity increases. As such the values shown in Figure 9.8 should be
interpreted with care.

9.3.3 Background analysis

As part of our hand scan we aimed to categorise our background events. Our findings
are presented here.

Some background still remains due to t0 issues. In these cases a track is
shifted so that it starts in the fiducial volume due to a bad x position from wrong
t0. However these events appear to be a much smaller source of background than
in the proto-analysis, where they made it necessary to disregard single track events.
This is in consistent with our background predictions from Monte Carlo.

Two ‘signal’ events were seen where the lepton appeared to be travelling in
a backwards direction (Figure 9.10). These were almost certainly cases of muon
decay within the TPC fiducial volume. Since we make no attempt to exclude such
interactions for the purposes of the hand scan they are counted towards our signal
total.

The largest single source of background is tracks broken by delta-rays (see
Figure 9.11). Most of these cases occur with a delta on the edges of micromegas
gaps which makes matching the two track halves more difficult. Highly messy deltas
can also cross and re-cross a track, leading to a difficult to reconstruct event which
again complicates matching.

One interesting background source is collinear tracks (Figure 9.12). These
are cases where tracks formed upstream of a TPC move apart from each other inside
the fiducial volume. Since pattern recognition searches for the points at which paths
diverge to form junctions this creates a fake vertex inside the TPC.

A less common but still interesting background topology is overlapping tracks
(Figure 9.13). In these cases two tracks come close enough to each other to form
a fake vertex. These are rare in isolation but can occur more frequently in the
presence of messy out of fiducial volume events.

A big source of our misreconstruction background is high multiplicity events
(probably deep inelastic scattering) occurring outside the TPCs (Figure 9.21). In
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cases like this misreconstruction due to collinear or overlapping tracks becomes very
likely. It is hard to determine the precise cause of the reconstruction failure in events
such as this but fake vertices are most likely to emerge where large numbers of tracks
are in close proximity with each other.

The last major source of misreconstruction background is missing hits near
one end of a through-going track (Figure 9.15). This appears in tracks where hits
are spread out, making connections between them at the pattern recognition stage
difficult. It seems to be mostly associated either with tracks travelling in the x

direction or with pairs of tracks sharing the same micromegas pads but at different
x positions. Delta-rays in tracks with a large x component can exacerbate the
problem.

There are also edge cases, two of which are shown in Figure 9.16. Interestingly
background from hairy tracks as illustrated in Figure 9.16b was not prevalent in
the sample, indicating that our reconstruction modifications to handle them were
successful.

These hand scan results are intended to present an overview rather than
a completely quantitative picture of background sources. It is often difficult to
determine the precise source of a background event. A fake signal track may have
bad t0 because of a delta ray, or result from missing hits near the start of a through
going track in a high multiplicity event.

Another take away message from these events is the wide variety of failures
which can produce background events. We do not have a single dominant back-
ground topology. At our current level of purity remaining background comes from
many different edge cases which are able to slip through our reconstruction and
analysis. General improvements in the reconstruction can further reduce this back-
ground but it is important to take care that general reconstruction is not adversely
affected while attempting to remove a very specific subset of our gas interaction
background.
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(a) (b)

Figure 9.9: Hand scan events of difficult to determine multiplicity. Figure 9.9a was counted
as having two secondary particles and Figure 9.9b was counted as four secondary particles.

(a) (b)

Figure 9.10: Hand scan events with backwards going products. In Figure 9.10a the secondary
particle is an electron whilst in Figure 9.10b it has proton PID.

(a) (b)

Figure 9.11: Hand scan background events with delta-rays.
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(a) (b)

Figure 9.12: Hand scan events of collinear track background.

Figure 9.13: Hand scan background events with overlapping tracks.

(a) (b)

Figure 9.14: Hand scan background events with messy out of fiducial volume interactions.
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(a) (b)

Figure 9.15: Hand scan background events with unassociated hits. In both Figure 9.15a
and Figure 9.15b green lines represent reconstructed tracks.

(a) (b)

Figure 9.16: Miscellaneous hand scan background events. Figure 9.16a shows a delta ray
which has somehow acquired muon PID and Figure 9.16b shows an out of fiducial volume
track where start position is obscured by hairiness.
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9.3.4 Overview of signal

Here we present a qualitative overview of some of our selected signal events. The real
power of our gas interaction analysis is the ability to resolve features inaccessible to
denser detectors so the precise details of these events are highly interesting. In the
future the T2K gas interaction analysis will be able to provide a more quantitative
description of these topologies.

Our largest single source of signal is two track events (Figure 9.17). In
the majority of these cases tracks both the primary and secondary particle were
travelling in the forwards (downstream) direction.

An interesting subset of two track events is a number of events where muon
and secondary particle were travelling almost back-to-back (Figure 9.18). Cases
where the particles travel at even shallower angles may have been lost at the recon-
struction level due to unavoidable limitations in our kink finding algorithms.

A small number of events were observed which seemed to match up with the
‘hammer’ topology observed by ArgoNeuT[142][143] with two back to back proton
tracks (Figure 9.19).

One event was seen where a secondary interaction appeared to be taking
place immediately downstream of the vertex Figure 9.20. The muon was associated
with the primary vertex and passed through the detector whilst none of the products
of the secondary interaction made it through the ECals.

A handful of events with fairly high multiplicity were seen Figure 9.21. In
these cases it is difficult to be sure of the true number of charged secondary particles
as short tracks may become lost or obscured.

Many of these events featured what appeared to be hairy features Figure 9.23.
These features are much more common in signal than background, supporting the
hypothesis that they are a result of low momentum protons (which would generally
not feature in out of fiducial volume background) depositing large amounts of charge
in the TPC electronics. Finally a large number of our signal events feature what can
be considered ‘high vertex activity’. Large amounts of charge was deposited at the
vertex, possibly indicating the presence of additional short tracks, but these were
only counted if a track was clearly resolvable.

During the course of this hand scan we identified many interesting topolo-
gies. We also encountered events where properties of the vertex were obscured by
hairiness. Overcoming these difficulties to quantifying the features of our signal
events constitutes an exciting challenge for future gas interaction analysers.
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(a) (b)

Figure 9.17: Hand scan signal events with two tracks.

(a) (b)

Figure 9.18: Hand scan signal events with back to back tracks.

(a) (b)

Figure 9.19: Hand scan signal events with hammer-like topology. In both cases the muon
is not part of the back-to-back pair.
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Figure 9.20: Hand scan signal event with a secondary interaction close to the vertex.

(a) (b)

Figure 9.21: Hand scan signal events with high multiplicity.

(a) (b)

Figure 9.22: Hand scan signal events with hairy appearance.
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(a) (b)

Figure 9.23: Hand scan signal events with high vertex activity. Figure 9.23a was counted
as having one secondary particle and Figure 9.23b as two.

165



Chapter 10

Conclusions

This thesis has covered two areas relating to interactions in an argon gas TPC:

• Developing TREx reconstruction algorithms to identify candidate vertices
and fit their paths.

• Writing a gas interaction analysis to extract cross section information and
other useful information.

Reconstruction development has been a huge success. The TREx pattern
recognition algorithms written over the course of my PhD have allowed us to identify
candidate vertices and their paths in our TPC for the first time and present them in
a fittable format. These algorithms are now being applied to event reconstruction
in high pressure TPC designs that may form part of the near detector systems for
future long baseline experiments such as DUNE and Hyper-Kamiokande.

The analysis was also a success. Our primary goal — a measurement of
the cross section for νµ charged current interactions on argon — was attained. This
represents the first time such a measurement has been reliably performed in the T2K
flux. Our hand scan of signal events also revealed interesting topological features
and showed us in incredible resolution activity near the vertex.

More importantly reaching this first milestone of an inclusive cross section
measurements brings us closer to our final goal of precise measurements of the mul-
tiplicity and kinematics of secondary particles at neutrino interaction vertices. As
discussed earlier a lack of experimental data causes uncertainty over the correct
physics models for neutrino interactions, particularly MEC and FSI effects, as ev-
idenced by the disagreements between GENIE and NEUT over such variables as
proton multiplicity and momentum. A precise measurement of these variables, par-
ticularly at the low energies our TPC is capable of resolving, will provide crucial
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information for such models. We briefly go over some potential improvements to
the software and analysis in moving towards this goal.

Software and reconstruction

Modelling ‘hairy’ events even to a limited degree will greatly improve the predictive
power of our Monte Carlo when it comes to evaluating proton multiplicity and
kinematics. It will also help in the further development of reconstruction algorithms
for handling them, an effort which has already seen much success.

TREx pattern recognition is highly effective at identifying tracks and vertices
but potential improvements exist which could make TREx2.0 even better. Voxelisa-
tion (subsection 6.3.4) is not actually an essential part of the algorithm and could
be phased out to increase our flexibility, particularly in reconstructing tracks with
a large x component. Junction formation also needs some improvements to ade-
quately handle the sort of hairy and high activity vertices seen in data; so long as
we can accurately associate hits with junctions the rest of pattern recognition can
proceed smoothly with minimum changes to the code. As seen in the analysis delta-
rays still represent a particular reconstruction challenge so specialised procedures
for ensuring their hits are not associated with genuine paths should be a priority.

More sophisticated approaches to tracking is an obvious area for improve-
ment. A logical extension to our current method would be the implementation of
a multi-pass approach. This would involve preliminary tracking results seeding a
second pass of pattern recognition. This could allow extra hits to be recovered by
paths, very short tracks to be detected near junctions and delta rays to be isolated
so as not to interfere with second pass fitting. Another very interesting improvement
would be simultaneous fitting of tracks around each vertex. This would allow both
more accurate kinematics for interaction products, particularly short tracks, and a
reliable vertex position established at the reconstruction level.

In our gas interaction analysis one thing we have repeatedly seen is that
reconstruction is a fundamental part of the analysis. The next big improvement
in TREx2.0 could quite conceivably take us to the point where our analysis can
accurately quantify complex properties of vertices.

Analysis

Once we have a greater understanding of our background contamination a back-
ground subtraction method can be used to calculate cross sections, insulating our
measurements from dependencies on our generators.
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In order to measure detailed properties of vertices such as proton momentum
and multiplicity some sort of unfolding may be required. This requires an accurate
understanding of our selection efficiency and purity. As seen in our results there is
potentially slight tension between purity in real data and simulation although this
conclusion results from a somewhat unreliable hand scan. We also need a robust
evaluation of systematic uncertainties on proton multiplicity and momentum which
so far have not undergone a full study.

Final thoughts

We have developed a full reconstruction algorithm for a gas TPC which has been
corroborated by a reliable cross section measurement. TREx now forms T2K’s official
TPC reconstruction and I hope for it to inspire future algorithms.

The gas interaction analysis is well positioned for further development. It
is important to remember the unusual position of the T2K TPCs as relatively low
density and high resolution and thus able to observe neutrino interaction vertices in
uniquely fine detail. We are the only experiment able to resolve and count very low
energy protons emerging from vertices and a quantitative result taking advantage
of this fact will be very helpful developing the theory and simulation of neutrino
interactions. Here we have taken a first big stride towards that goal.
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