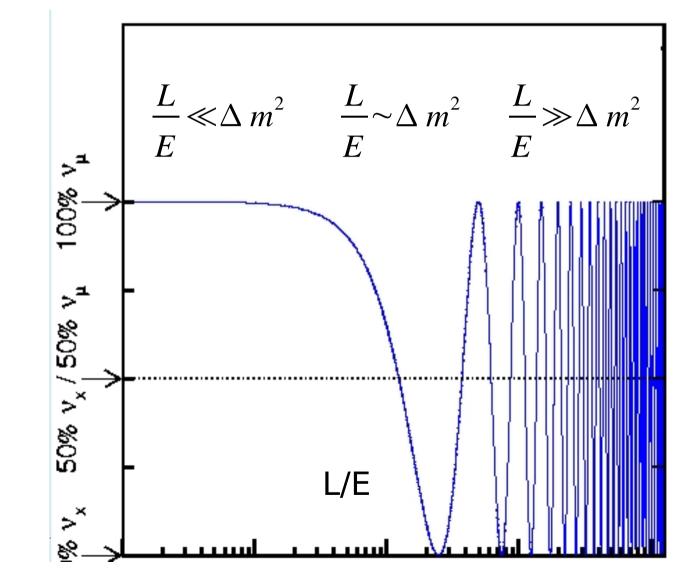


 $P(v_{\alpha}(0) \rightarrow v_{\alpha}(x)) = 1 - \sin^2(2\theta) \sin^2(1.27\Delta m^2 \frac{(L/km)}{(E/GeV)})$ 

Survival Probability

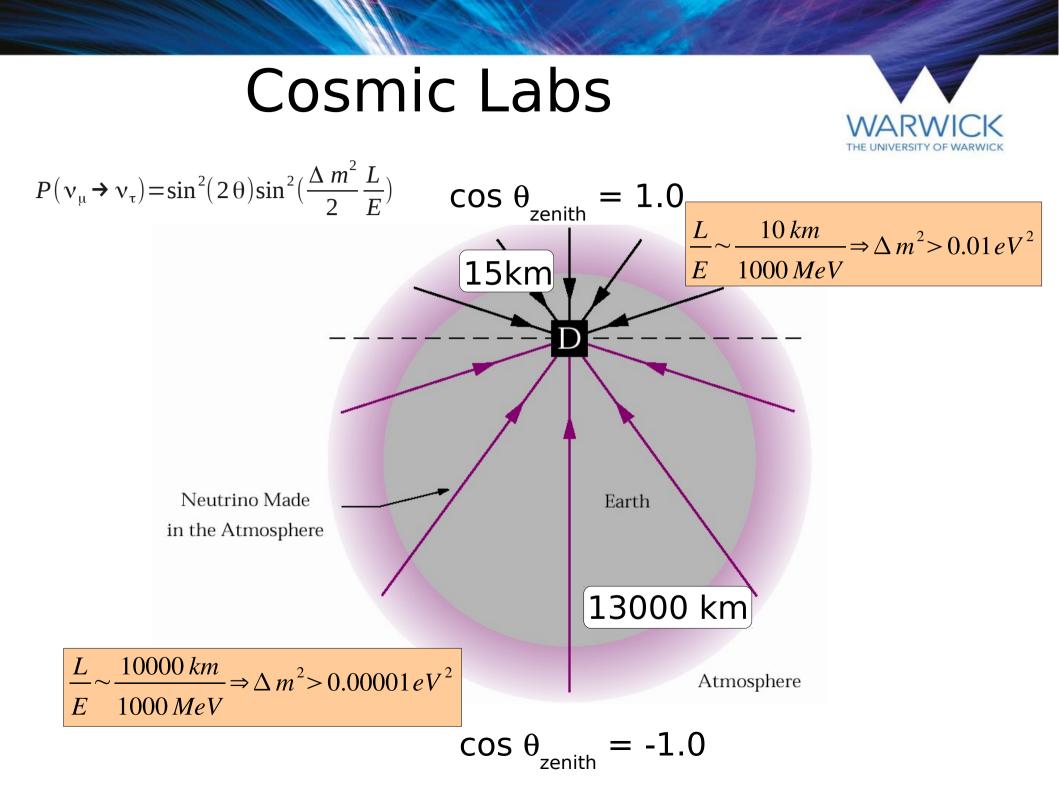




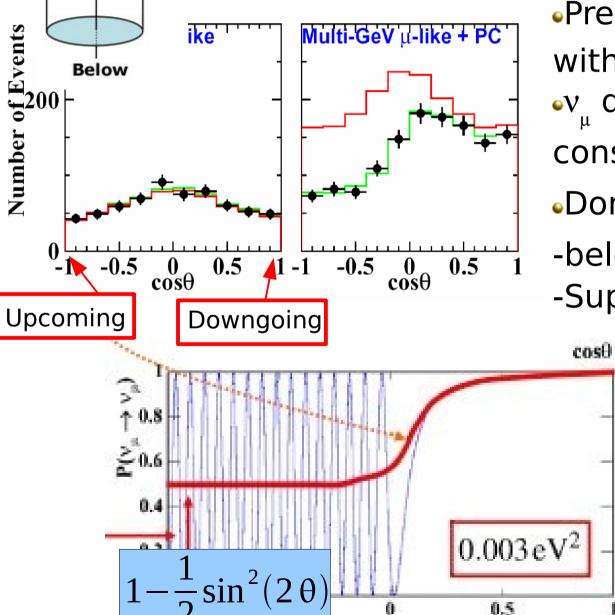
|                                   | $E_{\rm v}$ (MeV) | L (m)           | $\Delta m^2 (eV^2)$ |
|-----------------------------------|-------------------|-----------------|---------------------|
| Supernovae                        | <100              | >1019           | 10-19 - 10-20       |
| Solar (sort of)                   | <14               | 1011            | 10-10               |
| Atmospheric                       | >100              | 104 - 107       | 10-4                |
| Reactor                           | <10               | <106            | 10-5                |
| Accelerator with short baseline   | >100              | 10 <sup>3</sup> | 10-1                |
| Accelerator with<br>long baseline | >100              | <106            | 10-3                |



# Explaining the atmospheric data



# Atmospheric results



Above

•Prediction for  $v_r$  rate agrees

with data.

nnell

 $\mathbf{v}_{\mu}$  disappear at large baseline

consistent with  $v_{\mu} \rightarrow v_{\tau}$ 

•Don't detect  $v_{\tau}$  as

-below  $\tau$  mass threshold -SuperK is awful at  $\tau$  detection

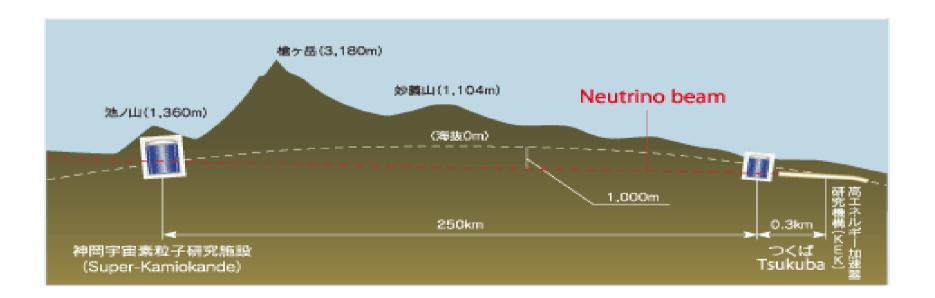
$$\left|\Delta m_{atmos}^2\right| \approx 0.0025 eV^2$$
  
 $\sin^2(2\theta_{atmos}) \approx 1.0$ 

### Accelerator Cross-check



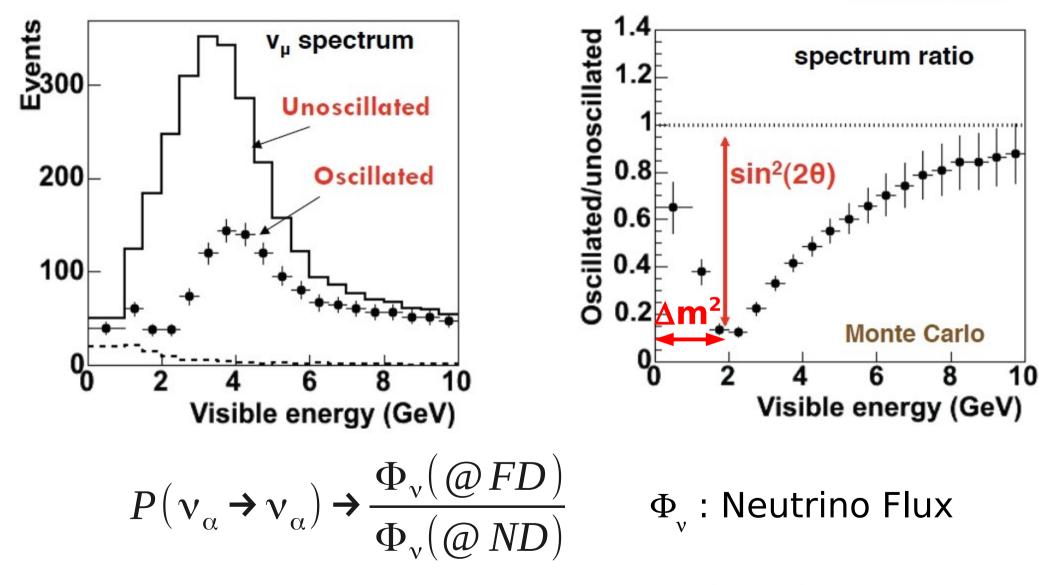
 $\Delta m_{atmos}^2 \approx 3 \times 10^{-3} eV^2 \rightarrow L/E \approx 400 \, km \, GeV^{-1}$ 

 $L=300 \, km \rightarrow E_{v} \approx 0.8 \, GeV$ 



# Beam events tagged using GPS at both near and far detector sites

# Disappearance Experiments



Use Near Detector to measure  $\Phi_{i}$  (@ND)

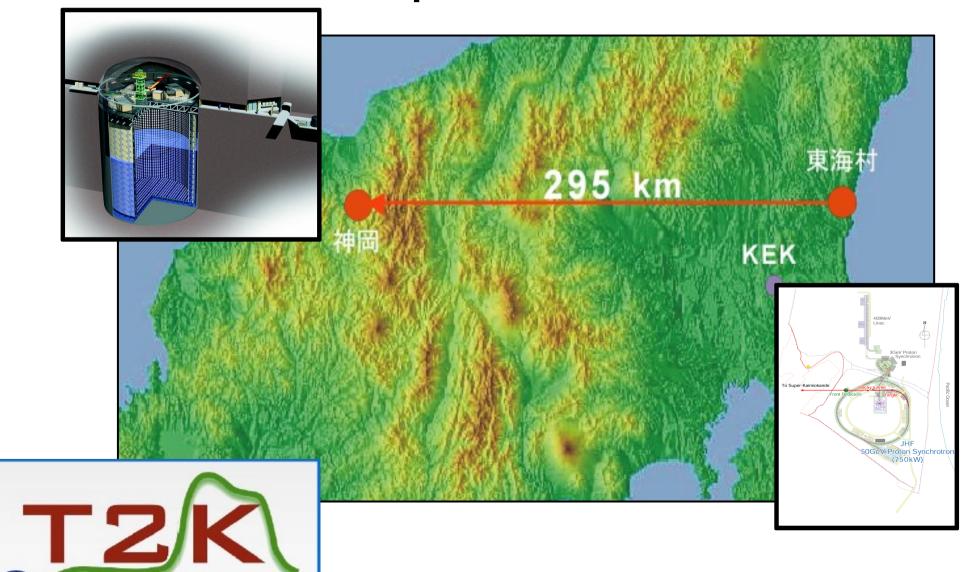


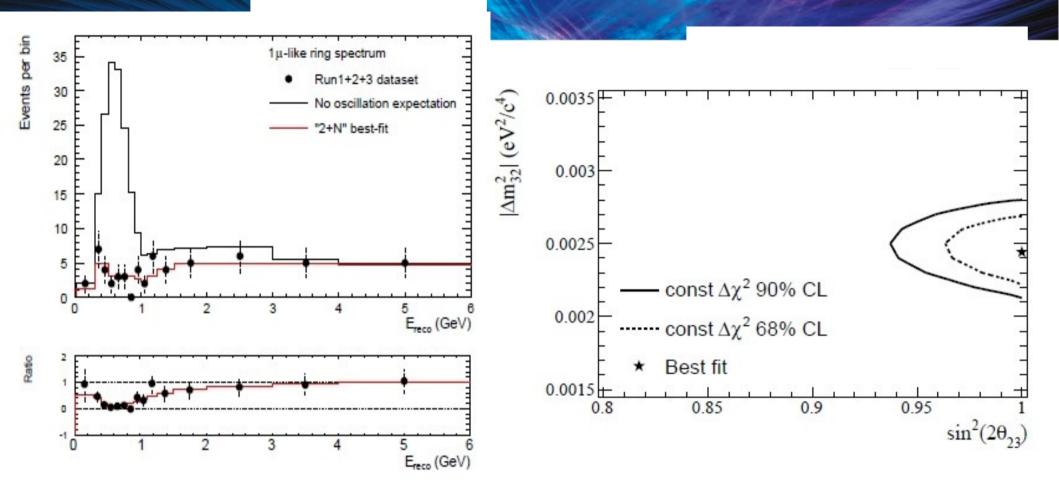
## Appearance Experiments

 $P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta})$ 

• Look for  $v_{\mu}$  appearing in a beam of  $v_{\alpha}$ • Usually one has backgrounds as well e.g. we know that  $v_{e}$  can be generated in a  $v_{\mu}$  beam, which acts as a background to  $v_{\mu} \rightarrow v_{e}$  searches •Estimating these backgrounds is usually the difficult part of the experiment. We use a near detector to estimate the background before oscillations occur.

## The T2K (Tokai-2-Kamioka) Experiment





$$\frac{\# events observed}{\# events expected} = P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^{2}(2\theta) \sin^{2}(\frac{\Delta m^{2}L}{4E})$$

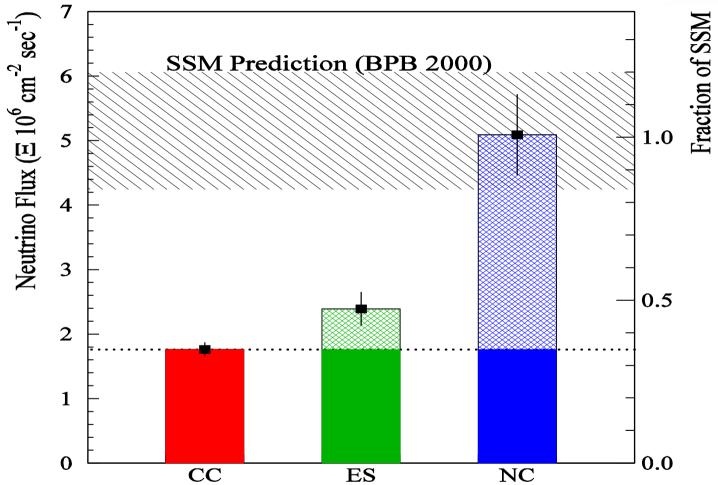
$$\Delta m^2 = 2.44^{+0.32}_{-0.31} \times 10^{-3} eV^2$$
  
sin<sup>2</sup>(20)>0.96(@90 CL)



# Explaining the solar data

#### **SNO** Results





5.3  $\sigma$  appearance of  $v_{\mu\tau}$  in a  $v_e$  beam Roughly 70% of  $v_e$  oscillates away

### Naively...



First instinct is to assume that neutrinos leave the sun as  $\nu_{_{\rm e}}$  and oscillate on their way to the earth. Assuming this

$$L \sim 10^8 \, km$$
,  $E_v < 10 \, MeV \Rightarrow \Delta m^2 \sim 3 \times 10^{-10} \, eV^2$ 

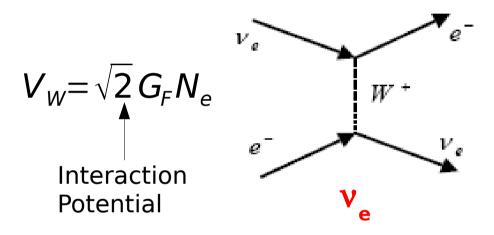
Oscillations come from phase difference between mass states. In a vacuum the phase diff comes from free particle Hamiltonian. In a material there are interaction potentials as well

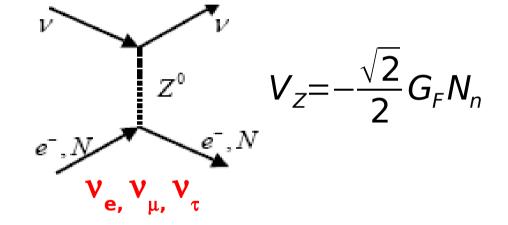
$$-i\hbar\frac{\partial\psi}{\partial t} = E\psi = \frac{-\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} \rightarrow -i\hbar\frac{\partial\psi}{\partial t} = (E+V)\psi = \frac{-\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2}$$
$$E^2 - p^2 = m_{vac}^2 \rightarrow (E+V)^2 - p^2 = m_{mat}^2 \rightarrow m_{mat} \approx \sqrt{m_{vac}^2 + 2EV}$$

c.f. effective mass of an electron in a semiconductor or light in glass

#### **Oscillations in Matter**

Electrons exist in standard matter –  $\mu/\tau$  do not. Electron MCK neutrinos travelling in matter can experience an extra charged current interaction that other flavours cannot.





$$P(v_e \rightarrow v_e) = 1 - \sin^2(2\theta_M) \sin^2(\frac{\Delta m_M^2 L}{4E})$$

Oscillation probability modified by matter effects

$$\Delta m_M^2 = \Delta m_V^2 \sqrt{\sin^2(2\theta) + (\cos 2\theta - \zeta)^2}$$
$$\sin^2 2\theta_M = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - \zeta)^2}$$

$$\zeta = \frac{2\sqrt{2}G_F N_e E}{\Delta m_V^2}$$

$$\frac{\text{Implications}}{\sin^{2}2\theta_{M}} = \frac{\sin^{2}2\theta_{V}}{\sin^{2}2\theta_{V} + (\cos 2\theta_{V} - \zeta)^{2}} \quad \zeta = \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{Vac}^{2}}$$

•At high densities  $\zeta \rightarrow \infty$  :  $\sin^2(2 \theta_M) \rightarrow 0$  for any  $\theta_V$ •At low densities  $\zeta \rightarrow 0$  :  $\sin^2(2 \theta_M) \rightarrow \sin^2(2 \theta_V)$ 

•No effect if  $\theta_v = 0$ 

$$\zeta = \frac{2\sqrt{2}G_F N_e E}{\Delta m^2} = \cos 2\theta_V \implies \sin^2 2\theta_M = 1$$

•Even if the vacuum mixing angle is tiny, there is a density for which the matter mixing is large

Mass heirarchy  

$$\sin^{2}2\theta_{M} = \frac{\sin^{2}2\theta}{\sin^{2}2\theta + (\cos 2\theta - \zeta)^{2}} \qquad \zeta = \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{V}^{2}}$$

$$\sin^2 2\theta_M = \frac{\sin^2 2\theta}{\sin^2 2\theta + (\cos 2\theta - sgn(\Delta m^2)|\zeta|)^2}$$

The matter effect is sensitive to the sign of  $\Delta m^2$ 

This is the only means we have to determine the order of the mass states.

#### In the sun



v<sub>e</sub> born in high density conditions in the solar core
 Density is too high to support oscillations

As they propagate outwards they hit a region of density that supports the resonance condition. They oscillation to  $v_{ij}$  here.

Only some do this – very low energy neutrinos (PP) are too low in energy to oscillate in matter, but will in the vacuum.

Matter enhanced oscillation predominantly affect the Be7 flux.



#### Solar neutrinos

SNO/SuperK/other experimental data show that the solar neutrino oscillations mostly arise from matter effects.

The neutrinos have oscillated by the time they get to the solar surface

Transition is mostly :  $\nu_{_{e}} \rightarrow \nu_{_{\mu}}$ 

$$\theta_{e\mu} = 32.5^{\circ} \pm 2.4^{\circ}$$
  
 $\Delta m_{12}^2 = +7.1 \times 10^{-5} eV^2$ 

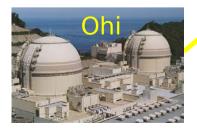
we know the sign of this one

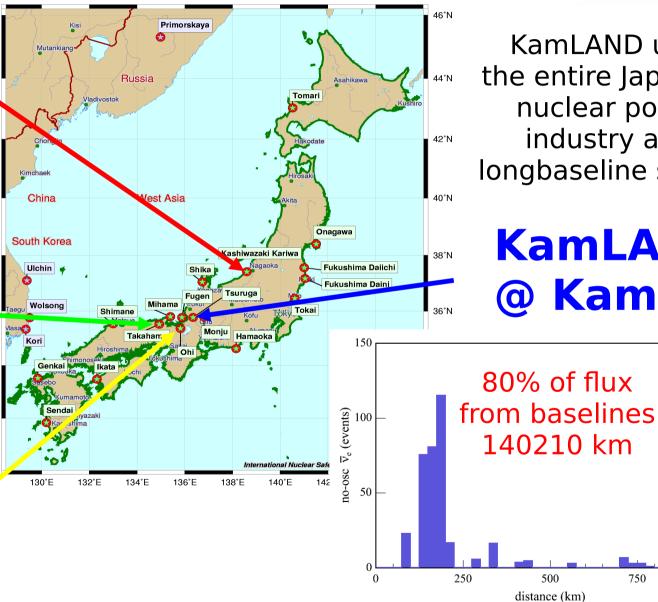
#### **KamLAND**











KamLAND uses the entire Japanese nuclear power industry as a longbaseline source

#### **KamLAND** @ Kamioka

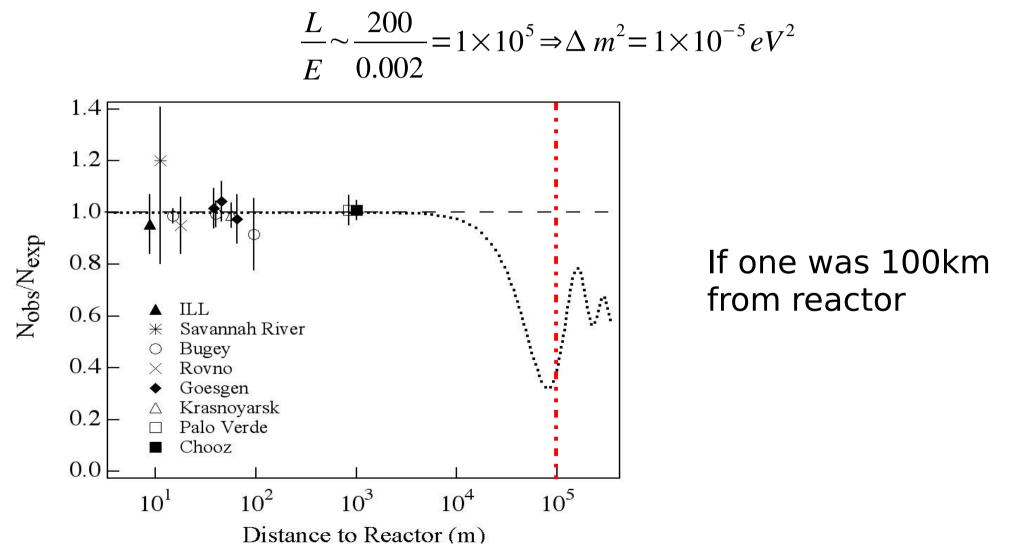
750

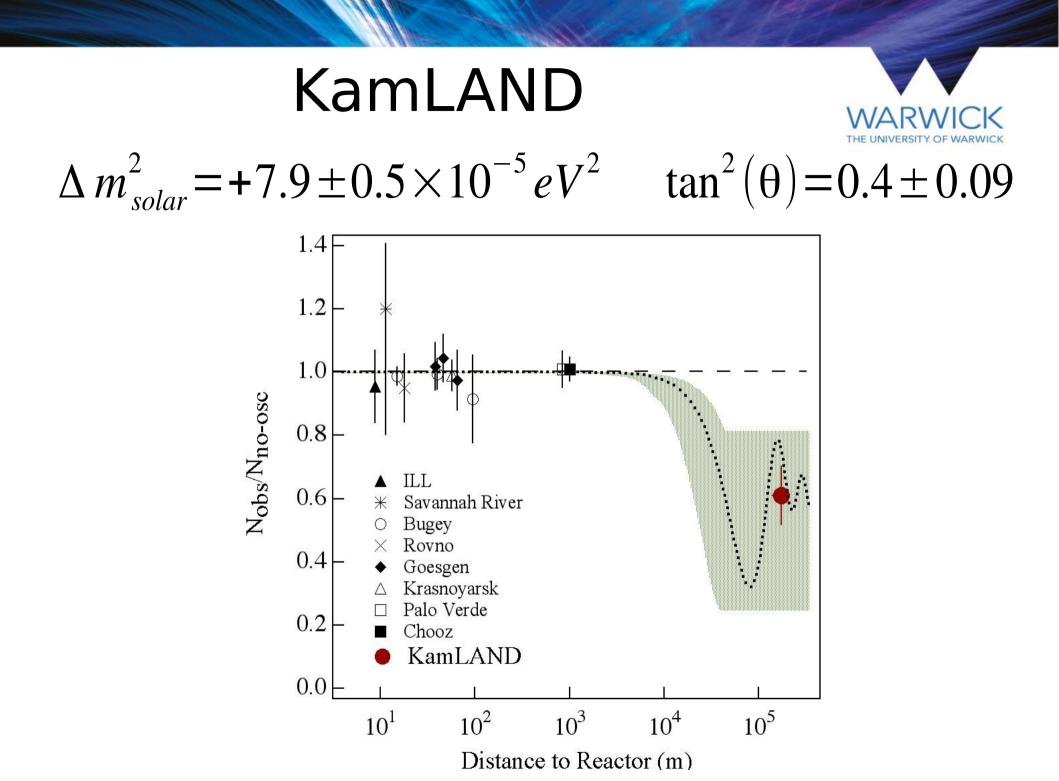
1000

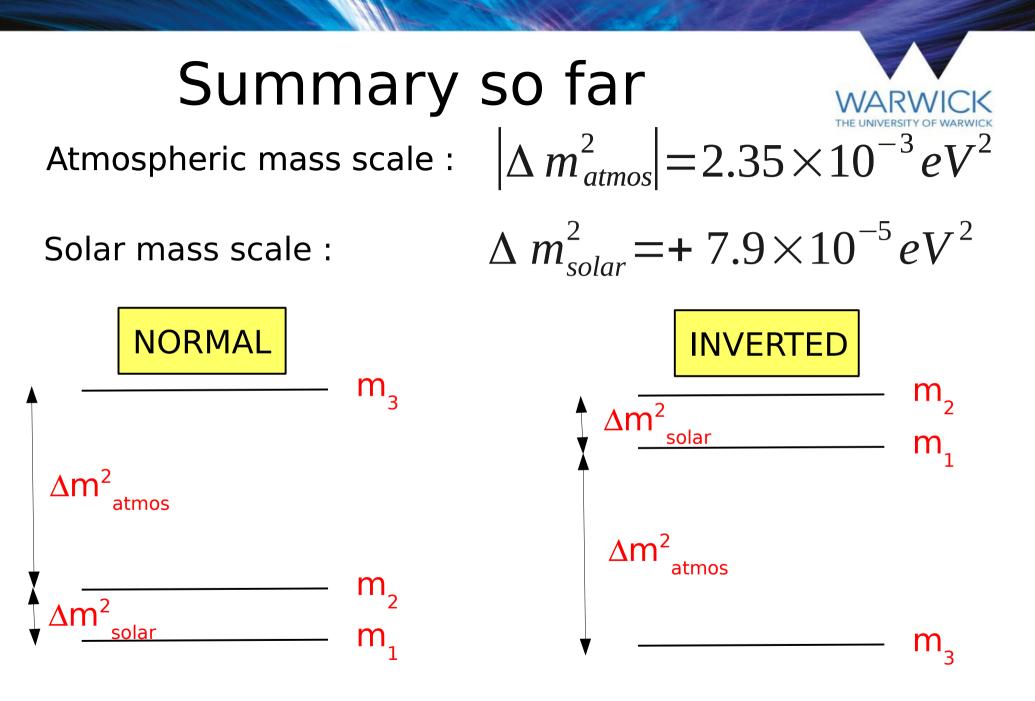
#### KAMLAND



A test of the solar oscillation sector. KAMLAND baseline is too short for matter effects.







 $3 \Delta m^2$  but only two are independent  $\rightarrow 3$  massive neutrinos



#### There are actually 3 neutrinos....