

Preparation for the test-beam and status of the ToF detector construction

C.Betancourt, A.Korzenev*, P.Mermod

HPTPC-ToF meeting May 3, 2018

ToF and trigger

- Channels of the ToF DAQ system are self-triggered
- Does TPC require a trigger?
- If yes, which counters will form the trigger?

Which counters form the trigger?

Decoupling of trigger and ToF-DAQ systems

DAQ system of ToF

- Waveform digitizers: WaveCatcher vs SAMPIC
- Data analysis: upstream counter as an example

PS user schedule for 2018

▶ sFGD : 25 June - 11 July / ⊤9

TPC: 22 August - 5 September / T9

HPTPC : 2 August - 5 September / T10

SHiP combined: 3 Oct – 16 Oct / T10

SHiP combined: 15 Oct – 21 Oct / T9

DAQ system based on analog memory SCA

- 16ch SAMPIC chip. AMS CMOS 0.18 μm. All channels independent/self-triggered
- Sampling frequency 0.8 10.2 GS/s
- Up to 150 kHz signal rate
- Sampling depth is 64 samples
- Dynamic range 1 V
- Module with 48 ch will be used in the test-beam of HPTPC
- Proposed for the readout of TD SHIP and ToF ND280 upgrade.

- 2ch SAMLONG chip. AMS CMOS $0.35 \mu m$.
- Sampling frequency 0.4 3.2 GS/s
- Up to 1 kHz signal rate
- Sampling depth is 1024 samples
- Dynamic range 2.5 V
- Module with 16+2 ch will be used for sFGD and atmTPC test-beams
- Very suitable for test-beams

Waveform recorded by SAMPIC and WAVECATCHER

 $64 \times 313 \text{ ps } (1/3.2 \text{ GHz}) = 20 \text{ ns}$

 $64 \times 625 \text{ ps } (1/1.6 \text{ GHz}) = 40 \text{ ns}$

Upstream ToF counter

Side view

Front view

Has been assembled (in b. 595) and calibrated

Plastic scintillator: EJ-228 (BC-418)

Rise time = 0.5 ns, decay time = 1.4 ns Max emision in 391nm, $N_{_{\gamma}}$ per 1 MeV e- = 10k

PMT: 1" R4998, H6533 MOD

10-stages, rise time = 0.7 ns, TTS = 0.16 ns Transit time = 10 ns, $Gain = 5.7 \times 10^6$

Analysis of the 90Sr data

- 90Sr β-source have been used to calibrate the response of PMTs
- Amplitudes are equalized
- Dynamic range of SAMPIC is 1V

- Event rate falls exponentially with Δt
- There are no events at first 2 μ s => deadtime of the SAMPIC readout

DAQ program of **SAMPIC**

Time resolution of the 4-PMT counter

- Digital CFD technique to determine time
- Energy deposition in PVT: 2 MeV/cm
 - Only a fraction of e⁻ can go through
 - Non-gaussian tails
- Time resolution can be measured by looking at the relative time of PMTs

$$t_{trig} = \frac{t_1 + t_2 + t_3 + t_4}{4} \rightarrow \delta t_{trig} = \sigma(\frac{(t_1 + t_2) - (t_3 + t_4)}{4})$$

Status of the downstream ToF construction

- Goal is to assemble the detector by the 1-st week of July
- All t0's to be calibrated with the light pulser system in the lab in July
- To be fully operational by August 1-st (test-beam of HPTPC)

Timing detector prototype with 20 bars

- Goal is to assemble the prototype by the 1-st week of July
 - SiPMs (320 pcs) will arrive by June 18
 - Prototype of FE (MUSIC board) has been tested. Possibly 1-2 weeks delay for the 40 PCBs

The bar fixation method

MUSIC board and laser input

- ASIC: Multiple Use SiPM Integrated Circuit (MUSIC)
- ASIC provides analog outputs of 8 individual SiPMs and also the sum
- Tunable pole-zero cancellation for the SiPM recovery time
- Individual offsets and overall gain can be configured

- Communication to MUSIC either directly (SPI connector) or via micro-controller
- Micro-controller can talk to PC via UART interface (USB) and can store all settings and calibration values for SiPMs
- 3 options for the analog output

sections fixed to the basket **Prototype Summer 2018** 1.7 m ND280 upgrade 2020 sections fixed to the magnet year 2024 10 m The technology will be applied (proposed) for the following protects

Summary & remarks

- Trigger system to be defined
- 20 bar prototype to be assembled by July (SHIP+ND280 projects)
 - To be tested and calibrated in July
 - To be used for tof in August
- I will be alone available from the ToF team in August
 - HPTPC shifters have to know how to start/stop a ToF run and copy files
 - Will you analyze the ToF data? I can provide the raw data decoding code and Sr data for the upstream counter

backup

- Two independent DAQ systems: WaveCatcher & BabyMIND (sFGD)
 - Synchronized via trigger signal from WaveCatcher
 - Data to be merged offline
- WaveCatcher system:
 - Coincidence between beam scintillator counters
 - PID via ToF + 2 signals from Cherenkov counters
 - Assurance for a single particle within 320 ns time window
- BabyMIND system: detector under study
 - Self-triggering system. WaveCatcher signal goes to one of channels

Trigger: WaveCatcher
S1 and S2 and S3 (8ch)
S1 and S2 and S3 and S4 (10ch)

ToF and trigger system for the SuperFGD test-beam in June 2017

of SuprFGD

SiPM-array and connectors

Beam composition at T9 (with electron enriched target)

- ToF cannot distinguish between $(e,\mu,\pi) \leftrightarrow K \leftrightarrow p$ up to 6 GeV/c
- Cherenkov detector: e[±] ↔ all_the_rest
- Efficiency (≠100%) and purity (≠100%) of identification can be calculated by looking at the mass spectrum of ToF and Cherenkov