

2013 - A Great year in Particle Physics!

Before the Higgs...

But there's a problem

- The Standard Model describes our understanding of the workings of the visible universe to 1 part in a billion
- Except that it predicts that all particles are massless
- This is bad all particles will move at the speed of light, so there is no time for atoms to form and therefore no you.
- The "Higgs mechanism" was proposed to give mass to particles in 1964
- July 4, 2012 the Higgs was observed at CERN

The Higgs Mechanism

Basic Idea: The universe is saturated with a Higgs field and particles interact with excitations of this field in the form of Higgs particles.

The Higgs Mechanism

Basic Idea: The universe is saturated with a Higgs field and particles interact with excitations of this field in the form of Higgs particles.

Fields

 A Field is a physical quantity which has a value at every point in space and time

example: temperature field

Fields

 Fields are the mathematical tools we use to describe reality

Are fields "real"?

Forces

Electricity Magnetism

Keeps nuclei together

Gravity

Forces & Fields

Each force is associated with a field

magnetism is associated with the electromagnetic field

In Quantum Physics, each force is also associated with a particle

For Electromagnetism this is the photon - the particle of light

So every field is associated with a particle. In some sense, "particles" are just locations where the relevant field is more concentrated.

The Higgs Field Idea

- To be "massless" = to travel at the speed of light
- Imagine that the universe is saturated by an energy field.
- Massless particles travel through the field, bouncing back and forth.
- The effect of interacting with the field effectively slows the particle down below light speed – giving the particle a mass.

Light

The Higgs Boson

- A quantum field is associated with a particle
- The Higgs Field is a quantum field
- So there must be a particle
 - the Higgs Particle
- The existence of the Higgs Particle implies the existence of the field.

How do we find it?

- Particle physics tries to understand the fundamental structure and forces in the universe
- We do this by smashing stuff together at near light speed and observing what comes out: E = m c²

Accelerators

Detectors

Analysis

Finding the Higgs

- Most massive particles can decay to lighter ones
- The Standard Model tells us that the Higgs can decay in certain ways

e.g. $H \rightarrow 4$ electrons

- I. Smash protons into other protons to form Higgs particles
- II. Look for events with 4 electrons coming from the same place
- III. Measure mass of decaying particle from energy of the visible particles

How to build an LHC

http://www.hasthelargehadroncolliderdestroyedtheworldyet.com

Tor Disabled

Done

LHC Magnets

LHC Magnets

- > 9,600 superconducting magnets in the LHC ring
- Cooled to about 1.9 degrees Kelvin
- Collides bunches of 100,000,000,000 protons together every 50 ns

Engineering needed: civil, design, magnet, power, safety, systems and control engineers are all needed to build, design and maintain this accelerator

Detector Caverns

Detector Cavern

Detector Caverns

Detectors

The ATLAS Experiment

How it works

1.4 GeV

157m

SCT

Central Tracker

 20,000 36 cm² silicon sensors

 In the ATLAS core around the collision points

Specifying the SCT

- Position of all elements known to 50-100 μm
- Mechanical and Electronic stability across temperature range from -15° to +30°
- \blacksquare Maximum load deformation of support structure less than 20 μm
- Minimum mass
- Radiation Hard
- 20,000 semiconductor detectors with low power dissipation and low noise.
- •Robust there are very opportunities to open up and fix things

Support Barrels

 Carbon fibre skins on a plastic reinforced honeycomb structure

Radiation

- SCT is very close to the beam collision point.
- Accumulated dose about 1,000,000 times that of maximum recommended annual dose for you or me
- Materials and Electronic engineering needed
- Radiation kills detectors
 - "leakage" current increases
 - detector heats up
 - causing leakage current to increase
- thermal management is very important.

Cooling

• Sensors are sensitive to temperature but require power in a constrained, closed environment in the ATLAS core.

Sensors maintained at -7° C

 Lots of simulation work and iteration needed to specify cooling system

Detector Mounting

Must have total coverage of the barrels Also need to get power and cooling in and signals out

Monitoring

Monitoring of SCT in operation is very important

- Module position & shape
- Temperature
- Humidity

Installation

- SCT is installed in ATLAS
- Must integrate with the services that serve the entire detector

Data Catching

- Raw data rate from ATLAS would fill 100,000 DVDs a second.
- Data is filtered through hardware and software "Trigger Farms" to look for interesting things
- Final data rate 3200 Tb/year
- Trigger farms use electronics engineers and programmers to design and build the components that (quickly) decide whether an event is kept or not.

What do we get for all this work?

A new view of the universe

Comments

- •An experiment like ATLAS, and the LHC itself, could not have been built without the expertise of hundreds of engineers and technicians.
- These experiments represent cutting edge physics.
- They also represent cutting edge engineering. There are 10 times more engineers and technicians at CERN than there are research physicists.

How do I get involved?

- Go to university and
 - Get a degree in Engineering or Computing
 - Or Physics + a Masters in Engineering discipline
 - Or a Physics/Eng degree then a CASE PhD
 - Try a work placement at a national lab during the
 - degree
- Or go to a University Technical College
 - Get an Advanced Diploma in Engineering or BTEC
 - Follow up with experience in industry or apply for targeted training schemes

e.g. CERN offers a Technician Training Scheme for talented technicians

Mounting blocks

Even the mounting blocks require specification, design, fabrication and quality assurance tests

The God Particle

The God Particle

A\$VP Cocky

Resolved Question

Show me another »

Athiests: they found the God particle, doesn't that prove God exists!?

look at that, God is proven with your precious little science stuff, checkmate stoopid athiests!

2 months ago

Report Abuse

Nick.

Best Answer - Chosen by Voters

Damnit! You got us... well, pack it up, boys...

Edited 2 months ago

Report Abuse

67% 2 Votes

4 6 0 0

- The Higgs particle has nothing to do with theology
- Unfortunately it's a good sound bite and keeps getting used

Quarks

The Particle Zoo

Leptons