

Neutrinos and the Case of the Missing Antimatter

Steve Boyd, University of Warwick

Where is all the antimatter?

Anti-Matter

$E = mc^2$

Anti-Matter

The reverse reaction should also happen with the same probability

Equal amounts of matter and antimatter

Big Bang

Accelerating Galaxies

Affrergiow light pattern

Recombination

Dark ages

First stars

First galaxies

Galaxy development

1 atom of matter to 0.000000001 atoms of antimatter

Neutrinos

The smallest, most insignificant (yet most common) particle in the cosmos may just hold the reason!

This particle is called the neutrino

So what is a neutrino?

Neutrinos are the second most common particle in the universe. They are produced whenever something radioactively decays

x 150

Electron Neutrino, v_e

Muon Neutrino, v_{μ}

Tau Neutrino, v_{τ}

3 neutrino <u>Flavours</u>

Electron Antineutrino, $\overline{v_e}$

Muon Antineutrino, $\overline{v_{\mu}}$

Tau Antineutrino, $\overline{\nu_{\mu}}$

The sun generates about 2x10³⁸ neutrinos/s as byproducts of the fusion processes that make the star shine.

So why don't we notice?

v are almost ghosts. They interact extremely weakly with matter.

To a neutrino a planet is mostly empty space.

500,000,000,000,000 neutrinos from the sun just went through each and every one of you

"The chances of a neutrino actually hitting something as it travels through all this howling emptiness are roughly comparable to that of dropping a ball bearing at random from a cruising 747 and hitting, say, an egg sandwich."

Douglas Adams - Mostly Harmless

Probability $\approx 1 \times 10^{-13}$

Egg Sandwich

Manuna Januar

00

Probability $\approx 5 \times 10^{-13}$

How do we use neutrinos to study the matter/anti-matter asymmetry?

Electron Neutrino, v_{e}

Muon Neutrino, v_{μ}

Tau Neutrino, $v_{_{\tau}}$

3 neutrino <u>Flavours</u>

Electron Antineutrino, $\overline{v_e}$

Muon Antineutrino, $\overline{v_{\mu}}$

Tau Antineutrino, $\overline{\nu_{\mu}}$

Neutrino Flavour Oscillations

How do we use this?

$$Prob(v_{\mu} \rightarrow v_{e}) \neq Prob(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$$

Then neutrinos behave differently from anti-neutrinos

An idea floating around suggests that, if this happens, then the same thing will happen to matter and anti-matter T2K Experiment

Image © 2008 TerraMetrics Image NASA Image © 2008 Digital Earth Technology

ointer 37°18'07.37" N

138°10 10.80' E

Streaming |||||||

295 km

100%

Eye alt 155.07 m

The case of the missing antimatter

• For some reason the laws of physics behave differently when applied to matter than when applied to antimatter. This is the reason why there is stuff around at all.

• We don't know why (yet)

 The neutrino – the lightest and most numerous (but hardest to study) particle in the universe may just hold the key to understanding why we are here at all.

The case of the missing a

atter

0

For some reason the law
differently when application
applied to antime
there is stuff

• We

• Th (but may ju are her all.

دest and most numerous (الالالي) particle in the universe . e key to understanding why we . all.

The case of the missing a

For some reason the law differently when application applied to antime there is stuff

atter

0

• We 1

• Th (but ____y may ju ____e key are her __all.

e key to u So far.... There *is* a difference between the physics of matter and antimatter. It's name is *CP Violation*

The LHC will study this by looking differences between particles called B^0 and \overline{B}^0 mesons

1 kilogram of matter + 1 kilogram of antimatter

Neutrino Oscillations

THE most important discovery about neutrinos in the last 20 years

A typical neutrino experiment

Neutrino Oscillations

A typical neutrino experiment

cal neutrino experi

It's Quantum.....

 $|v_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i} |v_{i}\rangle$ where $U_{\alpha i}$ is a unitary matrix

 $|\mathbf{v}_{k}(t,x)\rangle = e^{i(E_{k}t-p_{k}x)}|\mathbf{v}_{k}(0,0)\rangle \Rightarrow P(\mathbf{v}_{\alpha}(0,0)\Rightarrow\mathbf{v}_{\beta}(t,x)) = |\langle\mathbf{v}_{\beta}(t,x)|\mathbf{v}_{\alpha}(0,0)\rangle|^{2}$ $|\langle\mathbf{v}_{\beta}(t,x)|\mathbf{v}_{\alpha}(0,0)\rangle|^{2} = \sum_{k}\sum_{j}U_{\alpha k}U_{\alpha j}^{*}U_{\beta k}U_{\beta j}^{*}e^{i((E_{j}-E_{k})t-(p_{j}-p_{k})x)}$

$$(E_{j}-E_{i})t - (p_{j}-p_{i})x = (\sqrt{p_{j}^{2}+m_{j}^{2}} - \sqrt{p_{i}^{2}+m_{i}^{2}})x - (p_{j}-p_{i})x =$$

$$(p_j(1+\frac{1}{2}\frac{m_j^2}{p_j})-p_i(1+\frac{1}{2}\frac{m_i^2}{p_i}))\approx \frac{\Delta m_{ij}^2}{4E}$$

 $U = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \longrightarrow P(\nu_{\alpha}(0,0) \Rightarrow \nu_{\beta}(t,x)) = \sin^{2}(2\theta)\sin^{2}(\frac{\Delta m_{12}^{2}L}{4E})$

Positron Emission Tomography (PET)

