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® Plan

= Kaon physics and SM construction (bit of history)
= Establishing SM experimentally
= | ooking for breakdown of SM

m | have here more material than can be covered in four lectures,
feel free to stop me if I'm explaining obvious



Outline — Chapter 1 WARWICK

m \What is flavour physics and what is not

m Kaon physics — understand its importance for development of
standard model of particle physics

= \Weak decays — quark mixing

= FCNC kaon decays — GIM mechanism
= Neutral kaon mixing

= CP violation in neutral kaons

= How to accommodate CP violation to model
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Content of standard model
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Parameters of standard model WARWICK

m 3 gauge couplings
m 2 Higgs parameters

m 6 quark masses

m 3 quark mixing angles + 1 phase

Flavour parameters
m 3 (+3) lepton masses P

m (3 lepton mixing angles + 1 phase)

m Why 3 generations (are we sure about it)?

m Why hierarchy in mass?

m Why hierarchy in mixing?

m Why do we have only matter in current Universe?
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What is not flavour physics WARWICK

m QCD: Strong interactions

= Any details of QCD including studies of different “exciting” states
m Electroweak physics

= There is some relation, but questions do not overlap
= Energy frontier

= Search for new particles in production (on-shell)
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Going to history
But explaining lot of things




Kaon discovery WA]LW/ICK

m 1947, G. D. Rochester and C. C. Butler
m Using “fancy” detector called cloud chamber Ky o+

KO 1
m Produced in strong interaction
m Decay rather slow, lifetime of 10® - 101°s
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Quark mixing - Cabibbo WAMICK

® Quark content of kaon is us (K*) and ds (K°)
m Main decays are

= K+—>p+v“, Kf'—mle*v_, KO—-trm

= \Weak interaction has to allow transition s—u

m There are good reasons why W (weak interaction) couples only to
left-handed doublets

= How to construct doublets to allow s—u and d—u?

m Cabibbo provided solution in terms of quark mixing
® Doublet of weak interaction is (u,d')=(u,d*cos(8)+s*sin(0))
®m O is quark mixing angle, which was determined experimentally

m Actually solved difference in G between nuclear and muon
decay
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GIM WARWICK
m Next piece of puzzle comes from FCNC kaon decays

m Cabibbo fixed one issue (s—u transition), but introduced
another one

® |f doublet of weak interaction is (u,d'), than also Z° can couple
to d'd'

= What does it mean in terms of original quarks?
uil + dd cos® 0 + s5sin” 0 + (sd + 5d) sin 0 cos @

m First three terms are fine, but last part causes problem

® |t would allow flavour changing neutral current decays at tree-
level

= K*—m*e*e” would be approximately 5% of K¥—mle*v_
= But in experiment it was known to be < 10
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GIM WARWICK
m |s Cabibbo wrong, or can we find some way to fix it?
®m Not quite with three quarks known at the time, but

m In 1970 Glashow, lliopoulos, Maiani suggested way

m To existing doublet (u,d')=(u,d*cos(0)+s*sin(0)) add second one
(c,s')=(c,d*cos(0)-s*sin(0))

= Now Z° would also couple to s's' which would give us term like
-(sd+sd)sinBcosB which cancels contribution from other
doublet

= Cancelation not perfect due to other contributions

B Soin 1970 charm quark was predicted, despite that not everybody
accepted existence of the quarks
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Neutral Kaon Oscillation WA.MICK

® Now we come to next puzzle about neutral kaon lifetimes

m QOriginally two particles were seen with same mass, but very
different lifetimes 9-10" s and 5-10*

® They not only have very different lifetimes, but first one decays
to 21 while other to 3

m Both were produced in same type of interaction in association
with other strange particles

m |s this just strange coincidence or is there something more
behind it?

m Different decays suggest that lifetimes have something to do
with CP symmetry
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Neutral kaon mixing WA]QV/ICK

®m To explain different lifetimes, lets look to CP properties
= CP|2r>=+ |27 >
= CP|3m>=-|3m>

m Shorter lived kaon (call it [K.>) decays to 21 and is CP-even

m Longer lived kaon (call it |K,>) decays to 31 and is CP-odd

m Difference in the lifetimes come from different phase space available
in two decays

= m(2m)=279 MeV, m(31)=419 MeV and M(K®)=497 MeV

(2m)*

dl’ =
2M

p,
M[?d®,  dP, =0"P -3 p) x
(
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Neutral kaon mixing WARWICK

® Now we have to put together fact that in strong interaction we
produce K° or K°, while in weak interaction (decay) we have K.

and K2

m But we already know from quark mixing, that quarks entering
strong and weak interaction are not exactly same

® S0 we can connect kaons from strong interaction to those in
weak interaction via mixing

m \We can define those as
» K=1/2(K0+K?)
s K =1/2(K*K?)
= With CP | K°> =+ K®and CP | K® > = + K° all fits together
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Time evolution WARWICK

® Now we can start to look to time evolution
= Definitely one set of states will behave like ¢(I'/2+im)t
m Question is which ones behave this way?

m After deciding above question, it is easy to calculate what to
expect at given time for all four states

®m There is interesting effect called kaon regeneration which we
have no time to discuss here, but it is useful to understand it

Blackboard is my friend here
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Kaon mixing in experiment WARWICK
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CP Violation WARWICK

m We defined K, to be CP-even and K, CP-odd

m |f CPis conserved, than
= K, decays only to 2
= K, decays only to 3
m \What happens when CP is violated?

® Could we experimentally test CP violation?
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Experimental test of CPV WARWICK
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Result of the experiment WARWICK

484 < m* < 494 lo m |f CP is violated, should see

rﬁﬂﬁﬂ K,—21
~ Y,

® Angle between sum of the
30 momenta of 21 and beam
should be zero

[* £ = Experiment measured
494 < mX< 504 lo E R N(Ky — ntn™) _
] g N (K5 — all charged)
| 0 = (2+0.4)107?

504<m*<514 110

0.9996 0.9997 0.9998 0.9999 1.0000

cos B
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Standard model
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Note on CKM matrix WA.MICK

m CKM matrix is unitary matrix
® [t has only four parameters

® Product of any two rows or two columns is equal to zero

= |t can be visualized as triangle in complex plain (called unitarity
triangle)

m All unitarity triangles have same area given by Jarlskog
invariant

m Jarlskog invariant is measure of CP violation in quark sector

B The CKM matrix is hierarchical
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Some questions for thinking WA]QV/ICK

®m \What are implications of observation of CP violation?
® \What you would do to confirm Kobayashi-Maskawa mechanism

m |[f you have answers in terms of experiment, what capabilities
experiment has to have?

® How would you determine CKM matrix elements?
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