High PT physics at LHC - Lecture I (Introduction and LHC accelerator) Juraj Bracinik, Miriam Watson (University of Birmingham) Warwick week, April 2012 - Introduction - LHC machine - High P_{T} experiments Atlas and CMS - Standard Model physics - Searches ## Introduction ## What are these lectures going to be? - An introduction to the topics - Rather an overview, the topic is too broad to go into details - Different people need to know different details, but an overview can be useful to everyone... - Not too much maths, most of it just to give us feeling for orders of magnitude - (hope) a lot of discussion! (at least some...) ## Four lectures ... Lecture 1: Introduction to LHC physics, LHC accelerator Lecture 2: General purpose experiments (ATLAS and CMS) Lecture 3: "Bread and butter" physics at LHC Lecture 4: Overview of expected exciting discoveries! ## Please allow me to introduce myself ... I work for ATLAS trigger, so naturally biased ... ### Lecture 1- Introduction and LHC - Standard model of elementary particle physics and its Big Open Questions - Physics of hadronic collisions: - Initial state and parton density functions - Final state, kinematic variables used to characterize it - ◆ LHC machine: - General parameters - How are particles accelerated: RF - What keeps them running around? - Interaction points, that is where it all happens! # Standard model and its (standard) troubles ## Standard model and standard (model) troubles Standard Model describes all observed phenomena in Elementary particle physics - 2 x 6 fundamental fermions - "particles of matter" - 4 fundamental, spin 1 bosons - "particles of interaction" Language (mathematical) of SM: Local renormalizable Quantum Field Theory ## Standard model and its problems - Quantum field theory with massive spin-1 boson is not renormalizable - W and Z are very massive! - The main problem of Elementary Particle Physics today - The simplest (and most popular) model: - Postulate additional scalar field Higgs particle - It has nonzero vacuum expectation value - W and Z acquire mass in interaction with Higgs - γ remains mass-less - The only free parameter of the model is Higgs mass - From indirect evidence expect it is just around the corner! More details in Miriam's lecture on Friday... ## Standard model and its problems - If there is no Higgs? - In the SM Higgs boson prevents unitarity violation of WW scattering cross section! - Without the Higgs $\sigma(pp->WW) > \sigma(pp->anything)$ - At \(\int s = 1.2 \text{ TeV!} Something interesting must happen at TeV energies, Higgs or no Higgs... ## Dark matter - We know there is a physics beyond Standard model! - Just need to look at the sky! ## Dark matter ## Supersymmetry - Symmetry between bosons and fermions - Each SM model particle has it's supersymmetric partner (dream of each experimentalist!) - * Must be broken, a lot of free parameters - A lot of nice features - * Lightest SUSY particle is a dark matter candidate - Just behind the corner (or not) ## Basic kinematics of high energy hadron collisions ## One accelerator with TeV energy, please... Hadron colliders have their advantages when it comes to exploration of unknown territory (discovery physics) ## Detailed look at high energy pp collision - Protons at high energy behave as beams of pointlike particles partons - Proton beam offers wide range of (elementary) collision energies - Variable x (Bjorken x) gives fraction of proton energy carried by a parton: $$\hat{x} = \frac{P_{parton}}{P_{proton}}$$ Energy of (elementary) collision is then $$\sqrt{s_{elementary}} = \hat{x}_1 \hat{x}_2 \sqrt{s} \qquad s = (p_1 + p_2)^2$$ Proton colliders offer wide range of available center-of-mass energy for elementary collisions:-) ## Structure of the proton I - Distribution of partons in the proton is well known! - measured (mainly) in Deep Inelastic ep Scattering (DIS) - ◆ DIS ⇔ elastic electron-quark scattering! - Distribution of scattered electrons is very sensitive to distribution of partons in the proton ## Structure of the proton II #### Inclusive DIS cross section: $$\frac{d^2\sigma_{ep\to eX}}{dx\,dQ^2} = \frac{4\pi\alpha^2}{xQ^4}(y^2xF_1(x,Q^2) + (1-y)F_2(x,Q^2))$$ - Q virtuality of exchanged photon - → x Bjorken x #### In Leading Order: $$F_{2}(x,Q^{2}) = 2xF_{1}(x,Q^{2})$$ $$= x\sum_{q} e_{q}^{2} (q(x,Q^{2}) + \overline{q}(x,Q^{2}))$$ Parton distributions (q(x,Q2)) are obtained from (QCD) fits to cross section of various processes (ep NC, CC, high P_{τ} jet production, ...) ## Kinematics of produced particles I We are interested in momentum of produced particles: - Could use px,py,pz ... - Geometry of collision is cylindrical, can use cylindrical coordinates - → P, θ, φ - Physics is symmetric in phi - The fact that collisions are not collisions between pointlike particles complicates kinematic analysis - → Total longitudinal momentum of elementary collision is not known - \rightarrow Transversal momentum(P_{τ}) is conserved (and used very often) ## Produced particles - kinematics II → Usually do not use P and θ , but rapidity: $$y = \frac{1}{2} \ln \left(\frac{E + p_Z}{E - p_Z} \right)$$ ▶ Rapidity (Δy) and P_T are invariant with respect to Lorentz boosts along beam direction! $$m_T^2 = m^2 + p_T^2$$ $$E = m_T \cosh(y) \qquad p_z = m_T \sinh(y)$$ • For zero mass particles (or high p) rapidity is equal to pseudorapidity η : $$\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$$ ## Production of massive particles Two partons (with x1, x2) inside of two protons (with p proton A, p proton B) collide, create a heavy (new!) particle with mass M and rapidity y_M $$M^{2} = (x_{1} p_{proton A} + x_{2} p_{proton B})^{2}$$ $x_{1} x_{2} = \frac{M^{2}}{S}$ - Higher x means higher M - ◆ To produce mass of 100 GeV with accelerator running at 7 TeV requires x=0.007 - To produce mass of 5 TeV requires x = 0.36 $$p_{zM} = m_T sh(y_M) \rightarrow M sh(y_M) \qquad x_1 = \left[\frac{M}{\sqrt{s}}\right] \exp(y_M)$$ $$p_{zM} = p_{z part on 1} - p_{z part on} = (x_1 - x_2) \frac{\sqrt{s}}{2} \qquad x_2 = \left[\frac{M}{\sqrt{s}}\right] \exp(-y_M)$$ To produce M at zero rapidity we need partons with same x, going to higher rapidities of particle M means one parton at higher x, the other one at smaller x ## Luminosity Energy is not enough, one needs luminosity, too... $$N = \sigma \times L$$ N - number of events (we want) σ - cross section (given by Nature) L - luminosity (parameter of an accelerator) - Higgs couples mainly to particles with high mass, its cross section in pp collisions is rather small - Need a machine with high luminosity !!! # Introduction to LHC Warwick week, April 2012 ## LHC nominal parameters at collision energy | Particle type | p, Pb | |-------------------------------------------|-------------------------------------------------------| | Proton energy E _p at collision | 7000 GeV | | Peak luminosity (ATLAS, CMS) | 1 x 10 ³⁴ cm ⁻² s ⁻¹ | | Circumference C | 26 658.9 m | | Bending radius ρ | 2804.0 m | | RF frequency f _{RF} | 400.8 MHz | | # particles per bunch n _p | 1.15 x 10 ¹¹ | | # bunches n _b | 2808 | ### Particle accelerators Accelerator: accelerate and steer particles (and collide them): $$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) = \vec{F}_E + \vec{F}_B$$ - ▶ Both F_E and F_B cause deflection: - when v~c, 1T~ 3x10⁸ V/m - Achievable E field ~ few MV/m - Magnetic field is used in accelerators when possible (beam steering) $$ec{F}_{\scriptscriptstyle B} \bot ec{v}$$ J. Bracinik Only electric field accelerates! ## Accelerating particles Linear (electrostatic) accelerator Cyclotron An important function of an accelerator is to accelerate ... ## Accelerating particles - RF cavities - In any closed metallic box it is possible to generate electromagnetic oscillations - For example an ideal cylindric cavity - Many (infinite number) of solutions for E and B oscillating modes - The fundamental mode normally used for acceleration is named TM₀₁₀ - E_z is constant in space along the axis of acceleration, z, at any instant $$E_z = J_0(kr)$$ $$H_\theta = -\frac{j}{Z_0} J_1(kr)$$ $$e^{j\omega t}$$ $$k = \frac{2\pi}{\lambda} = \frac{\omega}{c} \lambda = 2,62a \quad Z_0 = 377\Omega$$ ## RF cavities - RF power is fed into the cavity from RF power generators (for example Klystrons) - RF power oscillates at desired frequency - Good to have cavity with superconducting walls to minimize losses... - Particles oscillating in the accelerator pass through the cavity many times, to be accelerated, they need to come at fixed phase - → Beam is composed of bunches with a large number of particles ## Phase stability and bunches I - Particles in a bunch have always certain spread in momentum! - Phase stability: - If increase in energy means increase in velocity, M1 and N1 will move toward P1 (stable particle trajectory) while M2 and N2 will move away from P2 (unstable trajectory) ## Phase stability and bunches II - Area of stability in phase space bunches - Energy and phase oscillate around nominal values synchrotron oscillations - For small amplitudes: Harmonic Oscillator - Higher amplitudes: non-linearities ## Accelerating particles - LHC cavities - 400 MHz superconducting cavity system - 8 single-cell cavities per ring - 1 klystron per cavity - ightharpoonup 4 cells are in one cryostat (4.5° K) Maximum field 5 MV/m 2MV/cavity gives 8MeV/turn "kick" RF frequency varies from 400.789 MHz (450 GeV) to 400.790 MHz (7 TeV) # Accelerating particles - LHC cavities Table 4.1: The Main Beam and RF Parameters. | | Unit | Injection | Collision | | |---------------------------------------------|--------------------|------------|-----------|--| | | | 450 GeV | 7 TeV | | | Bunch area $(2\sigma)^*$ | eVs | 1.0 | 2.5 | | | Bunch length $(4\sigma)^*$ | ns | 1.71 | 1.06 | | | Energy spread $(2\sigma)^*$ | 10^{-3} | 0.88 | 0.22 | | | Intensity per bunch | 10 ¹¹ p | 1.15 1.15 | | | | Number of bunches | | 2808 | 2808 | | | Normalized rms transverse emittance V/H | μm | 3.75 | 3.75 | | | Intensity per beam | A | 0.582 | 0.582 | | | Synchrotron radiation loss/turn | keV | - | 7 | | | Longitudinal damping time | h | - | 13 | | | Intrabeam scattering growth time - H | h | 38 | 80 | | | - L | h | 30 | 61 | | | Frequency | MHz | 400.789 | 400.790 | | | Harmonic number | | 35640 | 35640 | | | RF voltage/beam | MV | 8 | 16 | | | Energy gain/turn (20 min. ramp) | keV | 485 | | | | RF power supplied during acceleration/ beam | kW | ~ 275 | | | | Synchrotron frequency | Hz | 63.7 | 23.0 | | | Bucket area | eVs | 1.43 | 7.91 | | | RF (400 MHz) component of beam current | | 0.87 | 1.05 | | ^{*} The bunch parameters at 450 GeV are an upper limit for the situation after filamentation, \sim 100 ms after each batch injection. The bunch parameters at injection are described in the text. ## A consequence of phase stability Longitudinal stability - particle that comes earlier gets accelerated less: $$\frac{\partial V}{\partial t} > 0 \Rightarrow \frac{\partial E_z}{\partial z} < 0$$ $$\nabla \cdot \vec{E} = 0 \implies \frac{\partial E_x}{\partial x} + \frac{\partial E_z}{\partial z} = 0 \implies \frac{\partial E_x}{\partial x} > 0$$ - Maxwell equations show that this leads to defocussing in transversal direction... - → Need some magnets ... ## Keeping particles on circle - dipoles I - Circular accelerator deflecting forces are needed - Usually done with pieces of circular trajectory - Straight sections used to accelerate particles (RF) and to collide them (detectors) - In circular arc section bending by magnetic fiels - Dipole magnets: $$\frac{1}{\rho} = \frac{eB}{p}$$ $$\frac{1}{\rho}[m^{-1}] = 0.3 \frac{B[T]}{p[GeV/c]}$$ ## Keeping particles on circle - dipoles II #### Assuming: $$B = 8.3T$$ $$p = 7000 \frac{GeV}{c}$$ $$\frac{1}{\rho} = e \frac{8.3 \, V_s}{7000*10^9 \, eV/c} = \frac{8.3 \, s \, 3*10^8 \, m/s}{7000*10^9 \, m^2}$$ $$\frac{1}{\rho} = 0.333 \frac{8.3}{7000} \frac{1}{m}$$ Gives: $$\rho = 2.53 \text{ km} \longrightarrow 2\pi \rho = 17.6 \text{ km}$$ $$\approx 66\%$$ - Need strong magnets to bend high energy beam! - Most of LHC circumference used by dipole magnets! - ❖ In fact this limits maximum energy of LHC beams! ## Cyclotron, betatron, synchrotron, oh my ... - LHC is a synchrotron! - (in fact most of high energy accelerators are synchrotrons, for example HERA, Tevatron, LEP, SPS, PS, ...) - Means that particles follow the same (circular) trajectories, steered by magnets - When accelerating, changing magnetic field - Changing also frequency of accelerating (RF) field ## LHC dipole magnets - Edge of present technology - NbTi superconductors used at 2° K - Magnetic fields up to 8 T - Two-in-one (twin bore) design for two beam in common cryostat ## Keeping particles on circle - dipoles Table 3.4: Main parameters of the dipole cold mass. | | Value | Unit | |------------------------------------------------------------|-------------|------| | Injection field (0.45 TeV beam energy) | 0.54 | T | | Current at injection field | 763 | A | | Nominal field (7 TeV beam energy) | 8.33 | T | | Current at nominal field | 11850 | A | | Inductance at nominal field | 98.7 | mΗ | | Stored energy (both apertures) at nominal field | 6.93 | MJ | | Ultimate field | 9.00 | T | | Current at ultimate field | 12840 | A | | Stored energy (both apertures) at ultimate field | 8.11 | MJ | | Maximum quench limit of the cold mass (from short samples) | 9.7 | T | | Operating temperature | 1.9 | K | | Magnetic length at 1.9 K and at nominal field | 14312 | mm | | Distance between aperture axes at 1.9 K | 194.00 | mm | | Cold mass sagitta at 293 K | 9.14 | mm | | Bending radius at 1.9 K | 2803.98 | m | | Inner coil diameter at 293 K | 56.00 | mm | | Number of conductor blocks / pole | 6 | | | Number of turns / pole, inner layer | 15 | | | Number of turns / pole, outer layer | 25 | | | Electromagnetic forces / coil quadrant at nominal field | | | | Horizontal force component (inner and outer layer) | 1.8 | MN/m | | Vertical force component (inner and outer layer) | 0.81 | MN/m | | Electromagnetic forces / coil quadrant at ultimate field | | | | Horizontal force component (inner and outer layer) | 2.1 | MN/m | | Vertical force component (inner and outer layer) | 0.94 | MN/m | | Axial electromagnetic force at each ends at nominal field | 0.40 | MN | | Coil aperture at 293 K | 56.00 | mm | | Cold tube inner diameter at 293 K | 50.00 | mm | | Cold tube outer diameter at 293 K | 53.00 | mm | | Cold mass length at 293 K (active part) | 15.18 | m | | Cold mass diameter at 293 K | 570.0 | mm | | Cold mass overall length with ancillaries | 16.5 | m | | Total mass | ~ 27.5 | t | ## Squeezing the beam - quadrupoles I - Want to keep particles rotating on (around) reference trajectories - Problem to keep the beam together - even small disturbances (for example gravity) may lead to lost particles - restoring force of the type F=-kx, F=-ky would keep the particles close to the ideal orbit! ## Squeezing the beam - quadrupoles II - Magnet surfaces shaped as hyperbolas give linear field! - \bullet B_x = -gy - \bullet B_y = -gx - Quadrupole magnets! - Unfortunatelly, forces are focusing in one plane and defocusing in the orthogonal plane - $F_x = -qvgx$ - \bullet $F_y = qvgy$ J. Bracinik Opposite focusing/defocusing is achieved by rotating the magnet by 90° ## Strong focusing and FODO lattice I #### Analogy with optics - Alternating focusing and defocusing lenses give together total focusing effect in both planes - Strong focusing, one of big ideas in accelerator physics - Modern accelerators using FODO (Focusing DefOcusing) structures - Particles oscillate around nominal trajectories betatron oscillations ## Strong focusing and FODO lattice II The envelope around all the trajectories of the particles circulatin in the machine is called β -function: - Minimum at QD, maximum at QF - Property of particular machine (beam optics) Beam size: $$\sigma_{x,y} = \sqrt{\varepsilon \beta_{x,y}}$$ ε is the emmitance of the beam: describes the quality of the beam # LHC quadrupoles Table 3.5: Parameter list for main quadrupole magnets at 7.0 TeV. | Integrated Gradient | 690 | Т | | |-------------------------------------------------|----------------------------|------------|--| | Nominal Temperature | 1.9 | K | | | Nominal Gradient | 223 | T/m | | | Peak Field in Conductor | 6.85 | T | | | Temperature Margin | 2.19 | K | | | Working Point on Load Line | 80.3 | % | | | Nominal Current | 11870 | A | | | Magnetic Length | 3.10 | m | | | Beam Separation distance (cold) | 194.0 | mm | | | | | | | | Inner Coil Aperture Diameter (warm) | 56.0 | mm | | | Outer Coils Diameter | 118.44 | mm | | | Outer Yoke diameter | 452 | mm | | | Collar Material | Austeni | tic Steel | | | Yoke Material | Low Ca | rbon Steel | | | Yoke Length including End Plates | 3250 | mm | | | | | | | | Cold Mass Length Between End Covers | 5345 | mm | | | Total Mass Including Correctors | 6500 | kg | | | | | | | | Number of turns per Coil (pole) | 24 | | | | Number of turns per coil inner layer (2 blocks) | 2+8 | | | | Number of turns per coil outer layer (2 blocks) | 7+7 | | | | Cable length per coil (pole) | 160 | m | | | Cable length per two-in-one quadrupole | 1280 | m | | | | | | | | Bare Cable | Same as dipole outer layer | | | | Insulation Thickness 1st layer | 50 | μm | | | 2 nd layer | 37.5 | μm | | | 3 rd layer (adhesive) | 50+5 | μm | | | Self-inductance, one aperture | 5.6 | mH | | | Stored energy, one aperture | 395 | KJ | | | Electromagnetic forces: Resultant in x-dir | 537 | KN | | | Electromagnetic forces. Resultant in x-un | 331 | KIN | | # LHC layout - Circumference = 26658.9 m - 8 arcs and 8 straight sections - Straight section 528 mlong - Either experiment or "utilities" - Four used for experiments - Arcs are cca 100 m long, contain magnets (LHC lattice) - Optimized for maximum bending power - Each arc cell has a FODO structure, 106.9 m long ## LHC lattice - LHC FODO structure: - 1. Quadrupoles for focusing (in both planes) - 2. Dipoles for bending the beam - 3.(sextupoles for higher order corrections) ## Getting particles to collide - interaction point I #### Bringing beams together for collisions: - Bend them in dedicated dipole magnets (D1, D2 on the figure) - Then squeeze them as much as possible just before the collision point - Low-β triplets ## Getting particles to collide - interaction point II $L = f \frac{n_1 n_2}{4 \pi \sigma_x \sigma_v}$ - Low triplets: - Set of quadrupole magnets designed to squeeze beam before interaction point - Luminosity depends on: - Number of particles per bunch (n1, n2) - \bullet Bunch transverse size at the interaction point $(\sigma_{_{\!x}},\!\sigma_{_{\!v}})$ - Bunch collision rate f ## And many others ... - Vacuum system - Beam injection system - Beam dumping - Preaccelerators - Cryogenic system - Power distribution and protection - Correction magnets - Beam monitoring - Control system ***** ## £££ ... - LHC: the biggest and most expensive physics experiment ever built - Price (LHC booklet): - 3.03 billion Euro machine - → 0.71 billion Euro -experiments (CERN contribution), 3.5 billion including other sources (just my guess...) - 0.16 billion Euro computing - Price of other projects (coming from google ...) I find reasonable: - Hubble space telescope price at launch 1.5 billion \$ - Project Apollo: 25.4 billion \$ (congress in 1973) - → Wembley stadion (2007): £ 798 million - Space Shuttle Endeavor: 1.7 billion \$ (NASA page) - Human Genome project: 2.7 billion \$ (congress, 1991) Member States Contributions to the CERN budget - 2011 | | | % | MCHF | |---|----------------------|------------------|-----------| | | Austria | 2.18% | 23.886 | | | Belgium | 2.78% | 30.486 | | | Bulgaria | 0.32% | 3.509 | | | Czech Republic | 1.13% | 12.392 | | | Denmark | 1.79% | 19.695 | | | Finland | 1.26% | 13.869 | | | France | 15.42% | 169.140 | | | Germany | 19.44% | 213.297 | | | Greece | 1.90% | 20.860 | | | Hungary | 0.67% | 7.386 | | | Italy | 11.19% | 122.772 | | | Netherlands | 4.28% | 46.959 | | | Norway | 2.61% | 28.616 | | | Poland | 3.15% | 34.523 | | | Portugal | 1.26% | 13.777 | | | Slovak Republic | 0.55% | 5.987 | | | Spain | 8.82% | 96.784 | | | Sweden | 2.46% | 27.041 | | | Switzerland | 3.79% | 41.617 | | N | United Kingdom | 15.00% | 164.558 | | | | 100.00% | 1'097.154 | | | Romania (as Candidat | e for Accession) | 4.212 | Don't want to talk about money wasted on other things ... | | Baseline | 9- | | | | | |--------------------------------------------|-----------|-----------|-----------|-----------|-----------|---------------------------------------| | | 2010-11 | 2011-12 | 2012-13 | 2013-14 | 2014-15 | TOTALS | | | £'000 | £0000 | £'000 | £'000 | £'000 | £'000 | | Research Councils | 2,549,353 | 2,596,196 | 2,573,678 | 2,586,641 | 2,599,812 | 10,356,327 | | AHRC | 100,717 | 99,881 | 98,370 | 98,370 | 98,370 | 394,993 | | BBSRC | 362,341 | 370,306 | 359,471 | 351,471 | 351,471 | 1,432,718 | | EPSRC | 771,289 | 759,720 | 748,150 | 748,150 | 748,150 | 3,004,171 | | ESRC | 158,061 | 155,690 | 153,319 | 153,319 | 153,319 | 615,648 | | MRC | 545,585 | 536,172 | 546,243 | 559,894 | 574,641 | 2,216,950 | | NERC | 298,071 | 298,600 | 297,129 | 300,129 | 289,129 | 1,184,987 | | STFC - Core Programme | 177,519 | 190,060 | 172,200 | 172,200 | 172,190 | 706,650 | | STFC-Cross-Council facilities ¹ | 66,800 | 77,170 | 79,280 | 81,410 | 89,470 | 327,330 | | STFC-International | | | | | | | | Subscriptions ² | 68,970 | 108,598 | 119,515 | 121,697 | 123,071 | 472,881 | | HEFCE | 1,731,300 | 1,662,112 | 1,699,578 | 1,685,689 | 1,686,321 | 6,733,700 | | QR Research | 1,618,300 | 1,549,112 | 1,586,578 | 1,572,689 | 1,573,321 | 6,281,700 | | HEIF ³ | 113,000 | 113,000 | 113,000 | 113,000 | 113,000 | 452,000 | | National Academies | 87,832 | 87,465 | 86,547 | 86,547 | 86,547 | 347,106 | | Royal Society | 48,558 | 47,830 | 47,101 | 47,101 | 47,101 | 189,133 | | British Academy | 26,448 | 27,001 | 27,005 | 27,005 | 27,005 | 102015 | | Royal Academy of Engineering | 12,826 | 12,634 | 12,441 | 12,441 | 12,441 | | | Other Programmes | 43,616 | 24,496 | 24,140 | 24,165 | 24,005 | | | Science & Society | 15,441 | 13,000 | 13,000 | 13,000 | 13,000 | | | International | 5,104 | 5,095 | 4,740 | 4,765 | 4,605 | | | Foresight | 2,800 | 2,800 | 2,800 | 2,800 | 2,800 | 3 / / | | Evidence & Evaluation | 20,271 | 3,600 | 3,600 | 3,600 | 3,600 | | | UK Space Agency | 163,805 | 205,637 | 191,963 | 192,864 | 179,221 | Damed 1 | | Total S&R Resource | 4,575,906 | 4,575,906 | 4,575,906 | 4,575,906 | 4,575,906 | David Willetts
Minister for Univer | Final Year to Baseline 101.98% 97.67% 97.00% 97.00% 97.00% 105.33% 97.00% 97.00% 133.94% 178.44% 97.40% 97.22% 100.00% 98.54% 97.00% 100 1094 avid Willetts Minister for Universities and Science ## Conclusions and outlook - Elementary particle physics is at its critical point - SM works very well, masses of Z and W present a puzzle - *LHC is our chance!