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1 Introduction

In non-relativistic quantum mechanics, wave functions are descibed by the time-dependent Schrodinger
equation :

− 1

2m
∇2ψ + V ψ = i

∂ψ

∂t
(1)

This is really just energy conservation ( kinetic energy ( p
2

2m
) plus potential energy (V) equals total

energy (E)) with the momentum and energy terms replaced by their operator equivalents

p→ −i∇;E → i
∂

∂t
(2)

In relativistic quantum theory, the energy-momentum conservation equation is E2−p2 = m2 (note
that we are working in the standard particle physics units where h̄ = c = 1). Proceeding with the
same replacements, we can derive the Klein-Gordon equation :

E2 − p2 −m2 → −∂
2ψ

∂t2
+∇2ψ −m2 = 0 (3)

In covariant notation this is
−∂µ∂µψ −m2ψ = 0 (4)

Suppose ψ is solution to the Klein-Gordon equation. Multiplying it by −iψ∗ we get

iψ∗
∂2ψ

∂t2
− iψ∗∇2ψ + iψ∗m2 = 0 (5)

Taking the complex conjugate of the Klein-Gordon equation and multiplying by −iψ we get

iψ
∂2ψ∗

∂t2
− iψ∇2ψ∗ + iψm2 = 0 (6)

If we subtract the second from the first we obtain

∂

∂t

[
i

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)]
+∇ · [−i (ψ∗∇ψ − ψ∇ψ∗)] = 0 (7)

This has the form of an equation of continuity

∂ρ

∂t
+∇ · j = 0 (8)

with a probability density defined by

ρ = i

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
(9)

and a probability density current defined by

j = i (ψ∗∇ψ − ψ∇ψ∗) (10)

Now, suppose a solution to the Klein-Gordon equation is a free particle with energy E and mo-
mentum p

ψ = Ne−ipµx
µ

(11)
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Substitution of this solution into the equation for the probability density yields

ρ = 2E|N |2 (12)

The probability density is proportional to the energy of the particle. Now, why is this a problem? If
you substitute the free particle solution into the Klein-Gordon equation you get, unsurpisingly, the
relation

E2 − p2 = m2 (13)

so the energy of the particle could be

E = ±
√
p2 +m2 (14)

The fact that you have negative energy solutions is not that much of a problem. What is a problem
is that the probability density is proportional to E. This implies a possibility for negative probability
densities...which don’t exist.

This (and some others) problem drove Dirac to think about another equation of motion. His
starting point was to try to factorise the energy momentum relation. In covariant formalism

E2 − p2 −m2 → pµpµ −m2 (15)

where pµ is the 4-momentum : (E, px, py, pz). Dirac tried to write

pµpµ −m2 = (βκpκ +m)(γλpλ −m) (16)

where κ and λ range from 0 to 3. This notation looks a bit confusing. It may help if we write both
sides out long-hand. On the left-hand side we have

pµpµ −m2 = p20 − p · p = p20 − p21 − p22 − p23 −m2 (17)

On the right-hand side we have

(βκpκ +m)(γλpλ −m) = (β0p0 − β1p1 − β2p2 − β3p3 +m)(γ0p0 − γ1p1 − γ2p2 − γ3p3 −m) (18)

Expanding the right-hand side

(βκpκ +m)(γλpλ −m) = βκγλpκpλ −m2 +mγλpλ −mβκpκ (19)

This should be equal to pµpµ−m2, so we need to get rid of the terms that are linear in p. We can do
this just be choosing βκ = γκ. Then

pµpµ −m2 = γκγλpκpλ −m2 (20)

Now, since κ, λ runs from 0 to 3, the right hand side can be fully expressed by

γκγλpκpλ −m2 = (γ0)2p20 + (γ1)2p21 + (γ2)2p22 + (γ3)2p23 (21)

+ (γ0γ1 + γ1γ0)p0p1 + (γ0γ2 + γ2γ0)p0p2 (22)

+ (γ0γ3 + γ3γ0)p0p3 + (γ1γ2 + γ2γ1)p1p2 (23)

+ (γ1γ3 + γ3γ1)p1p3 + (γ2γ3 + γ3γ2)p2p3 −m2 (24)
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This must be equal to
pµp

µ −m2 = p20 − p21 − p22 − p23 −m2 (25)

One could make the squared terms equal by choosing (γ0)2 = 1 and (γ1)2 = (γ2)2 = (γ3)2=-1, but
this would not eliminate the cross-terms. Dirac realised that what you needed was something which
anticommuted : i.e. γµγν + γνγµ = 0 if µ 6= ν. He realised that the γ factors must be 4x4 matrices,
not just numbers, which satisfied the anticommutation relation

{γµ, γν} = 2gµν (26)

where

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (27)

We also define, for later use, another γ matrix called γ5 = iγ0γ1γ2γ3. This has the properties (you
should check for yourself) that

(γ5)2 = 1, {γ5, γµ} = 0 (28)

We will want to take the Hermitian conjugate of these matrices at various times. The Hermitian
conjugate of each matrix is

γ0† = γ0 γ5† = γ5 γµ† = γ0γµγ0 = −γ for µ 6= 0 (29)

If the matrices satisfy this algebra, then you can factor the energy momentum conservation equa-
tion

pµp
µ −m2 = (γκpκ +m)(γλpλ −m) = 0 (30)

The Dirac equation is one of the two factors, and is conventionally taken to be

γλpλ −m = 0 (31)

Making the standard substitution, pµ → i∂µ we then have the usual covariant form of the Dirac
equation

(iγµ∂µ −m)ψ = 0 (32)

where ∂µ = ( ∂
∂t
, ∂
∂x
, ∂
∂y
, ∂
∂z

), m is the particle mass and the γ matrices are a set of 4-dimensional
matrices. Since these are matrices, ψ is a 4-element column matrix called a “bi-spinor”. This bi-spinor
is not a 4-vector and doesn’t transform like one.

2 The Bjorken-Drell convention

Any set of four 4x4 matrices that obey the algebra above will work. The one we normally use includes
the Pauli spin matrices. Recall that each component of the spin operator S for spin 1/2 particles is
defined by its own Pauli spin matrix :

Sx =
1

2
σ1 =

1

2

(
0 1
1 0

)
Sy =

1

2
σ2 =

1

2

(
0 −i
i 0

)
Sz =

1

2
σ3 =

1

2

(
1 0
0 −1

)
(33)
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In terms of the Pauli spin matrices, the γ matrices have the form

γ0 =

(
1 0
0 −1

)
γµ =

(
0 σµ

−σµ 0

)
γ5 =

(
0 1
1 0

)
(34)

Each element of the matrices in Equations 34 are 2x2 matrices. 1 denotes the 2 x 2 unit matrix,
and 0 denotes the 2 x 2 null matrix.

3 The Probability Density and Current

In order to understand the probability density and probability flow we will want to derive an equation
of continuity for the probability. The first step is to write the Dirac equation out longhand :

iγ0
∂ψ

∂t
+ iγ1

∂ψ

∂x
+ iγ2

∂ψ

∂y
+ iγ3

∂ψ

∂z
−mψ = 0 (35)

We want to take the Hermitian conjugate of this :

[iγ0
∂ψ

∂t
+ iγ1

∂ψ

∂x
+ iγ2

∂ψ

∂y
+ iγ3

∂ψ

∂z
−mψ]† (36)

Now, we must remember that the γ are matrices and that ψ is a 4-component column vector.
Thus

[γ0
∂ψ

∂t
]† = [


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




∂ψ1

∂t
∂ψ2

∂t
∂ψ3

∂t
∂ψ4

∂t

]† (37)

=


∂ψ1

∂t
∂ψ2

∂t
∂ψ3

∂t
∂ψ4

∂t


†

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


†

(38)

=
(
∂ψ†

1

∂t

∂ψ†
2

∂t

∂ψ†
3

∂t

∂ψ†
4

∂t

)
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (39)

=
∂ψ†

∂t
γ0 (40)

Using the Hermitian conjugation properties of the γ matrices defined in the previous section we
can write Equation 36 as

−i∂ψ
†

∂t
γ0† − i∂ψ

†

∂x
γ1† − i∂ψ

†

∂y
γ2† − i∂ψ†

∂z
γ3† −mψ† (41)

which, as γµ† = −γµ for µ 6= 0 means we can write this as

−i∂ψ
†

∂t
γ0 − i∂ψ

†

∂x
(−γ1)− i∂ψ

†

∂y
(−γ2)− i∂ψ†

∂z
(−γ3)−mψ† (42)
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We have a problem now - this is no longer covariant. That is, I would like to write this in the form
ψ†(−i∂µγµ −m) where the derivative ∂µ now operates to the left. I can’t because the minus signs on
the spatial components coming from the −γµ spoils the scalar product.

To deal with this we have to multiply the equation on the right by γ0, since we can flip the sign
of the γ matrices using the relationship −γµγ0 = γ0γµ. Thus

−i∂ψ
†

∂t
γ0γ0 − i∂ψ

†

∂x
(−γ1γ0)− i∂ψ

†

∂y
(−γ2γ0)− i∂ψ†

∂z
(−γ3γ0)−mψ†γ0 (43)

or

−i∂ψ
†

∂t
γ0γ0 − i∂ψ

†

∂x
(γ0γ1)− i∂ψ

†

∂y
(γ0γ2)− i∂ψ†

∂z
(γ0γ3)−mψ†γ0 (44)

Defining the adjoint spinor ψ = ψ†γ0, we can rewrite this equation as

−i∂ψ
∂t
γ0 − i∂ψ

∂x
(γ1)− i∂ψ

∂y
(γ2)− i∂ψ

∂z
(γ3)−mψ (45)

and finally we get the adjoint Dirac equation

ψ(i∂µγ
µ +m) = 0 (46)

Now, we multiply the Dirac equation on the left by ψ :

ψ(iγµ∂µ −m)ψ = 0 (47)

and the adjoint Dirac equation on the right by ψ :

ψ(i∂µγ
µ +m)ψ = 0 (48)

and we add them together, which eliminates the two mass terms

ψ(γµ∂µψ) + (ψ∂µγ
µ)ψ = 0 (49)

or, more succinctly,
∂µ(ψγµψ) = 0 (50)

.
If we now identify the bit in the brackets as the 4-current :

jµ = (ρ, j) (51)

where ρ is the probability density and j is the probability current, we can write the conservation
equation as

∂µj
µ = 0 with jµ = ψγµψ (52)

which is the covariant form for an equation of continuity. The probability density is then just ρ =
ψγ0ψ = ψ†γ0γ0ψ = ψ†ψ and the probability 3-current is j = ψ†γ0γµψ.

This current is the same one which appears in the Feynman diagrams. It is called a Vector current,
and is the current responsible for the electromagnetic interaction.
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e−

e−

e−

e−

γ

φi φf

ψfψi

q

For the interaction in Figure 3, with two electromagnetic interactions, the matrix element is then

M =
e2

4π
[ψfγ

µψi]
1

q2
[φfγ

νφi] (53)

4 Examples

Now let’s look at some solutions to the Dirac Equation. The first one we will look at is for a particle
at rest.

4.1 Particle at rest

Suppose the fermion wavefunction is a plane wave. We can write this as

ψ(p) = e−ixµp
µ

u(p) (54)

where pµ = (E,−px,−py,−pz) and xµ = (t, x, y, z) and so −ixµpµ = −i(Et− x · p). This is just the
phase for an oscillating plane wave.

For a particle at rest, the momentum term disappears : −ixµpµ = −i(Et). Furthur, since the
momentum is zero, the spatial derivatives must be zero : ∂ψ

∂x,y,z
= 0. The Dirac equation therefore

reads

iγ0
∂ψ

∂t
−mψ = 0 (55)

or
iγ0(−iE)u(p)−mu(p) = 0 (56)

which gives us
Eγ0u(p) = mu(p) (57)

Now, u(p) is a 4-component bispinor, so properly expanding the gamma matrix in Equation 57,
we get

E


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 = m


u1
u2
u3
u4

 (58)
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This is an eigenvalue equation. There are four independent solutions. Two with energy E = m
and two with E = −m. The solutions are just

u1 =


1
0
0
0

 u2 =


0
1
0
0

 u3 =


0
0
1
0

 u4 =


0
0
0
1

 (59)

with eigenvalues m, m, -m and -m respectively.
The first two solutions can be interpreted as positive energy particle solutions with spin up and

spin down. One can see this be checking if the function is an eigenfunction of the spin matrix : Sz.

Szu1 =
1

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




1
0
0
0

 =
1

2
u1 (60)

and similarly for u2.
Note that we have yet to normalise these solutions. We won’t either for the purposes of this

discussion. What about these negative energy solutions? We are required to keep them (we can’t just
say that they are unphysical and throw them away) since quantum mechanics requires a complete set
of states.

What happens if we allow the particle to have momentum?

4.2 Particle in Motion

Again, let’s look for a plane wave solution

ψ(p) = e−ixµp
µ

u(p) (61)

Plugging this into the Dirac equation means that we can replace the ∂µ by pµ and remove the
oscillatory term to obtain the momentum-space version of the Dirac Equation

(γµpµ −m)u(p) = 0 (62)

Notice that this is now purely algebraic and can be easily(!) solved

γµpµ −m = Eγ0 − pxγ1 − pyγ2 − pzγ3 −m (63)

=

(
1 0
0 −1

)
E −

(
0 σ
−σ 0

)
· p−m

(
1 0
0 1

)
(64)

=

(
(E −m) −σ · p
σ · p −(E +m)

)
(65)

where each element in this 2x2 matrix is actually a 2x2 matrix itself. In this spirit, let’s write the
4-component bispinor solution as 2-component vector

u =

(
uA
uB

)
(66)
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then the Dirac Equation implies that

(γµpµ −m)u(p) = 0 =⇒
(

(E −m) −σ · p
σ · p −(E +m)

)(
uA
uB

)
=

(
0
0

)
(67)

leading two coupled simultaneous equations

(σ · p)uB = (E −m)uA (68)

(σ · p)uA = (E +m)uB (69)

Now, let’s expand that (σ · p) :

(σ · p) =

(
0 1
1 0

)
px +

(
0 −1
i 0

)
py +

(
1 0
0 −1

)
pz (70)

=

(
pz px − ipy

px + ipy −pz

)
(71)

and right back to the Dirac Equation

(σ · p)uB = (E −m)uA (72)

(σ · p)uA = (E +m)uB (73)

gives

uB =
(σ · p)

E +m
uA (74)

=
1

E +m

(
pz px − ipy

px + ipy −pz

)
uA (75)

Now, we just need to make choices for the form of uA. Let’s make the obvious choice and remember
that uA is a 2-component spinor so we need to specify two solutions:

uA =

(
1
0

)
or uA =

(
0
1

)
(76)

These give

u1 = N1


1
0
pz

E+m
px+ipy
E+m

 and u2 = N2


0
1

px−ipy
E+m
−pz
E+m

 (77)

where N1 and N2 are normalisation factors we won’t go into. Note that, if p = 0 these correspond to
the E > 0 solutions we found for a particle at rest, which is good.

Repeating this for uB =

(
1
0

)
and uB =

(
0
1

)
which gives solutions u3 and u4

u3 = N3


pz

E−m
px+ipy
E−m

1
0

 and u4 = N4


px−ipy
E−m
−pz
E−m

0
1

 (78)

9



and collecting them together

u1 = N1


1
0
pz

E+m
px+ipy
E+m

 u2 = N2


0
1

px−ipy
E+m
−pz
E+m

 u3 = N3


pz

E−m
px+ipy
E−m

1
0

 u4 = N4


px−ipy
E−m
−pz
E−m

0
1

 (79)

All of which, if put back into the Dirac Equation, yields : E2 = p2 + m2 as you might expect.
Comparing with the p = 0 case we can identify u1 and u2 as positive energy solutions with energy
E =

√
p2 +m2, and u3, u4 as negative energy solutions with energy E = −

√
p2 +m2.

How do we interpret these negative energy solutions? The conventional interpretation is called
the “Feynman-Stuckelberg” interpretation : A negative energy solution represents a negative energy
particle travelling backwards in time, or equivalently, a positive energy antiparticle going forwards in
time.

With this interpretation we tend to rewrite the negative energy solutions to represent positive
antiparticles. Starting from the E < 0 solutions

u3 = N3


pz

E−m
px+ipy
E−m

1
0

 and u4 = N4


px−ipy
E−m
−pz
E−m

0
1

 (80)

Here we implicitly assume that E is negative. We define antiparticle states by just flipping the sign
of E and p following the Feynman-Stuckelberg convention.

v1(E, p)e
−i(Et−x·p) = u4(−E,−p)ei(Et−x·p) (81)

v2(E, p)e
−i(Et−x·p) = u3(−E,−p)ei(Et−x·p) (82)

where E =
√
|p|2 +m2. Note that v1 is associated with u4 and v2 is associated with u3. We do

this because the spin matrix, Santiparticle, for anti-particles is equal to −Sparticle i.e. the spin flips for
antiparticles as well and the spin eigenvalue for v1 = u4 is spin-up and v2 = u3 is spin-down.

In general u1, u2, v1 and v2 are not eigenstates of the spin operator (Check for yourself). In
fact we should expect this since solutions to the Dirac Equation are, by definition, eigenstates of the
Hamiltonian operator, Ĥ, and the Sz does not commute with the Hamiltonian : [Ĥ, Ŝz] 6= 0, and
hence we can’t find solutions which are simultaneously solutions to Sz and Ĥ. However if the z-axis
is aligned with particle direction : px = py = 0, pz = ±|p| then we have the following Dirac states

u1 = N


1
0
±|p|
E+m

0

 u2 = N


0
1
0
∓|p|
E+m

 v1 = N


0
∓|p|
E+m

0
1

 v2 = N


±|p|
E+m

0
1
0

 (83)

These are eigenstates of Sz

Szu1 = +
1

2
u1 Santiz v1 = −Szv1 = +

1

2
v1 (84)

Szu2 = −1

2
u2 Santiz v2 = −Szv2 = −1

2
v2 (85)

So we have found solutions of the Dirac Equation which are also spin eigenstates....but only if the
particle is travelling along the z-axis.
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4.3 Charge Conjugation

Classical electrodynamics is invariant under a change in the sign of the electric charge. In particle
physics, this concept is represented by the “charge conjugation operator” that flips the signs of all
the charges. It changes a particle into an anti-particle, and vice versa:

Ĉ|p >= |p > (86)

. Application of Ĉ twice brings us back to the the orignal state : Ĉ2 = 1 and so eigenstates of Ĉ are
±1. In general most particles are not eigenstates of Ĉ. If |p > were an eigenstate of Ĉ then

Ĉ|p >= ±|p >= |p > (87)

implying that only those particles which are their own antiparticles are eigenstates of Ĉ. This leaves
us with photons and the neutral mesons like π0, η and ρ0.

Ĉ changes a particle spinor into an anti-particle spinor. The relevant operation is

ψ → ψC = Ĉγ0ψ∗ (88)

with Ĉ = iγ2γ0.
We can apply this to, say, the u1 solution to the Dirac Equation. if ψ = u1e

−i(Et−x·p), the
ψC = iγ2ψ∗ = iγ2u∗1e

i(Et−x·p)

iγ2u∗1 = i


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

N1


1
0
pz

E+m
px+ipy
E+m


∗

= N1


px−ipy
E+m
−pz
E+m

0
1

 = v1 (89)

or, in full, Ĉ(u1e
−i(Et−x·p)) = v1e

i(Et−x·p).
Hence charge conjugation changes the particle eigenspinors into their respective anti-particle

spinors.

4.4 Helicity

The fact that we can find spin eigenvalues for states in which the particles are travelling along the
spin-direction indicates that the quantity we need is not spin but helicity. The helicity is defined as
the projection of the spin along the direction of motion:

ĥ = Σ · p̂ = 2S · p̂ =

(
σ 0
0 σ

)
· p̂ (90)

and has eigenvalues equal to +1 (called right-handed where the spin vector is aligned in the same
direction as the momentum vector) or -1 (called left-handed where the spin vector is aligned in the
opposite direction as the momentum vector), corresponding to the diagrams in Figure1.

It can be shown that the helicity does commute with the Hamiltonian and so one can find eigen-
states that are simultaneously states of helicity and the Hamiltonian.

The problem, and it is a big problem, is that helicity is not Lorentz invariant in the case of a
massive particle. If the particle is massive it is possible to find an inertial reference frame in which
the particle is going in the opposite direction. This does not change the direction of the spin vector,
so the helicity can change sign.

The helicity is Lorentz invariant only in the case of massless particles.
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Figure 1: The two helicity states. On the left the spin vector is aligned in the direction of motions of
the particle. This is a right-handed helicity state and has helicity +1. On the right the spin vector
is antiparallel to the particle momentum. This is a left-handed helicity state with helicity -1.

4.5 Chirality

We’d rather have operators which are Lorentz invariant, than commute with the Hamiltonian. In
general wave functions in the Standard Model are eigenstates of a Lorentz invariant quantity called
the chirality. The chirality operator is γ5 and it does not commute with the Hamiltonian. Due to this,
it is somewhat difficult to visualise. The best picture I can get comes from the definition : something
is chiral if it’s mirror image does not superimpose on itself. Think of your left hand. It’s mirror image
(from the point of view of someone in that mirror looking back at you) is actually a right hand. It
and it’s mirror image cannot be superimposed andit is therefore an intrinsically chiral object.

In the limit that E >> m, or that the particle is massless, the chirality is identical to the helicity.
For a massive particle this is no longer true.

In general the eigenstates of the chirality operator are

γ5uR = +uR γ5uL = −uL γ5vR = −vR γ5vL = +vL (91)

, where we define uR and uL are right- and left-handed chiral states. We can define the projection
operators

PL =
1

2
(1− γ5) PR =

1

2
(1 + γ5) (92)

such that PL projects outs the left-handed chiral particle states and right-handed chiral anti-particle
states. PR projects out the right-handed chiral particle states and left-handed chiral anti-particle
states. The projection operators have the following properties :

P 2
L,R = PL,R; PRPL = PLPR = 0; PR + PL = 1 (93)

Any spinor can be written in terms of it’s left- and right-handed chiral states:

ψ = (PR + PL)ψ = PRψ + PLψ = ψR + ψL (94)

Chirality holds an important place in the standard model. Let’s take a standard model probability
current

ψγµφ (95)

We can decompose this into it’s chiral states

ψγµφ = (ψL + ψR)γµ(φL + φR)

= ψLγ
µφL + ψLγ

µφR + ψRγ
µφL + ψRγ

µφR
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Now, ψL = ψ†Lγ
0 = ψ† 1

2
(1 − γ5)γ0 = ψ†γ0 1

2
(1 + γ5) = ψ 1

2
(1 + γ5) = ψPR where I have used the

fact that γ5† = γ5 and γ5γ0 = −γ0γ5. Similarly ψR = ψPL.
Using this, it is easy to show that the terms ψLγ

µφR and ψRγ
µφLare equal to 0:

ψLγ
µφR = ψPRγ

µPRφ (96)

= ψ
1

2
(1 + γ5)γµ

1

2
(1 + γ5)φ (97)

= ψ
1

4
(1 + γ5)(γµ + γµγ5)φ (98)

= ψ
1

4
(1 + γ5)(γµ − γ5γµ)φ (99)

= ψ
1

4
(1 + γ5)(1− γ5)γµφ (100)

= ψ
1

4
(1 + γ5 − γ5 − (γ5)2)γµφ (101)

= 0 (102)

since (γ5)2 = 1 and γµγ5 = −γ5γµ. Similarly for the other cross term, ψRγ
µφL.

Hence,

ψγµφ = ψLγ
µφL + ψRγ

µφR (103)

So left-handed chiral particles couple only to left-handed chiral fields, and right-handed chiral fields
couple to right-handed chiral fields.

One must be very careful with how one interprets this statement. What it does not say is that
there are left-handed chiral electrons and right-handed chiral electrons which are distinct particles.
The “particles” are those states which propagate with fixed mass under the Dirac equation. What this
means is that the Standard Model does not mix chiralities or, to put it another way, no fundamental
interaction is capable of turning a left-chiral particle into a right-chiral particle. At the same time, it
also shows that the electromagnetic interaction (embodied in the vector current) treats both chiralities
the same. In this case, this part of the Standard Model exhibits chiral symmetry. We will find that
this is not the case for the weak interaction.

Useful though it is when describing the interaction of fields in the Standard Model, chirality is
not conserved in the propagation of a free particle. In fact the chiral states φL and φR do not even
satisfy the Dirac equation. Since chirality is not a good quantum number it can evolve with time. A
massive particle starting off as a completely left handed chiral state can evolve a right-handed chiral
component. By contrast, helicity is a conserved quantity during free particle propagation. Only in
the case of massless particles, for which helicity and chirality are identical and are conserved in free-
particle propagation, can left- and right-handed particles be considered distinct. For neutrinos this
mostly holds.

5 What you should know

• Understand the covariant form of the Dirac equation, and know how to manipulate the γ
matrices.
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• Know where the definition of a current comes from.

• Understand the difference between helicity and chirality.

• Be able to manipulate gamma matrices.

6 Futhur reading

Griffiths Chapter 7, Sections 7.1, 7.2 and 7.3 Griffiths Chapter 10, Section 10.7
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