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Calorimetry -What is it?Calorimetry -What is it?

● A calorimeter measures the energy of an incoming 
particle

 Stopping the particle

 Converting the energy into something detectable

 Basic mechanism: electromagnetic/hadronic showers

 The measured output is linear to the incoming energy

● It measures the location of the energy deposit
 Allows “tracking” of neutrals, e.g. photons and neutrons

● A hermetic calorimetry is essential to measure “missing 
energy”

 From all particles escaping detection

 Neutrinos, Neutralinos and all that
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Calorimetry & ParticlesCalorimetry & Particles
● Only ~ 13 Particles actually seen by a detector

 Everything else is too short-lived 

● Charged Hadrons
 π±,p±, K±

 Generate hadronic Showers

● Electrons & photons
 Generate Electromagnetic showers

● Neutral Hadrons

 n,KL

 Generate hadronic Showers

● Muons 
 Usually only a track through the calorimeters
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As done in CMSAs done in CMS
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Particle ShowersParticle Showers

● Calorimeters stop particles by generating particle 
showers

● Two basic types
 Electromagnetic showers

 Hadronic showers

● Electromagnetic Showers
 Driven by QED

 Clean and simple

● Hadronic showers
 Nuclear interactions and EM component

 Quite complicated

 Very difficult to model
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EM Interaction with MatterEM Interaction with Matter
● Electrons and photons as 

the main components

● Above ~ 1 GeV 
 Electrons:Bremsstrahlung 

radiating off photons

 Photons: Pair production

 Increase of particles

● Below a critical energy  EC

 Ionization dominates

 Shower slowly dies out

● Material dependent
 Density ρ

 Number of Protons (Z) and 
nucleons (A)
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EM shower basicsEM shower basics

From T. Virdee
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EM  DefinitionsEM  Definitions

● Radiation length (X0)

 When the energy has been 
reduced to 1/e

 Characterizes the shower depth

● Critical Energy (EC)

 Energy, where Ionization takes over

● Moliere Radius (rMoliere)

 Radius which contains 90 % of the 
shower

 Characterizes the width of the shower

● Shower Max(imum)
 The peak of the shower

X 0=
716.4A
Z (Z+1)⋅ln (287 /√Z )

⋅
1
ρ

EC , solid / liquid=
610MeV
Z+1.24

EC , gas=
710MeV
Z+0.92

rMoliere=21.2MeV
X 0

EC

Smax=ln (
E Incoming

EC

)
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Material DependenceMaterial Dependence

ZZ ρ (g/cmρ (g/cm33)) XX
00
 (cm) (cm) λλ

IntInt
 (cm) (cm)

C 6 2.2 19 38.1

Al 13 2.7 8.9 39.4

Fe 26 7.87 1.76 16.8

Cu 29 8.96 1.43 15.1

W  74 19.3 0.35 9.6

Pb 82 11.35 0.56 17.1

U  92 18.7 0.32 10.5



11

Shower ShapesShower Shapes

Layer Layer

10 GeV electron
SiW

50 GeV electron
SiW

25 cm
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EM Showers PicturesEM Showers Pictures

W Fe

20 GeV electrons 
longitudinal shower profile
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Short SummaryShort Summary

● EM showers
 dependent on density and Z

● As Z increases
 shower maximum shifts to greater depth

 Slower decay after the Shower maximum

● The typical scale of EM showers is mm
 A EM Calorimeter is not a very thick object

● Location of Shower max scales with ln(E)
 Allows to build compact calorimeters !
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Hadronic ShowersHadronic Showers

● Hadronic showers are much more complex

● Incoming particle hits nucleus  secondaries→

 electromagnetic component (from π0)

 strong interaction component (from n,p, π+)

● fission ...
● knock-off ...
● Delayed photons

● Hadronic Showers are
 much broader

 extend deeper in the calorimeter

 have significant event-by-event fluctuations
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Hadronic Shower basicsHadronic Shower basics

From T. Virdee
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Hadronic shower definitionsHadronic shower definitions

● Basic quantity is the nuclear interaction 
length 

 Analog to the radiation length

 Order of magnitude larger

● Only approximations for 
 Shower max

● Shower fractions

 fEM  as electromagnetic fraction

 fhad for the strong interaction fraction

 Generally fEM increases with energy

 

λ I=
A
N A⋅σTotal

λ I∼A
1
3

Smax(λ I )∼0.2⋅ln (E )+0.7

f em=1−(1−
1
3
)
n

f em=1−(EE 0
)
(k−1)
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Hadronic Shower ShapesHadronic Shower Shapes

Layer Layer

10 GeV neutron
Fe+Scintillator

50 GeV neutron
Fe+Scintillator

275 cm
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Individual ShowersIndividual Showers

50 GeV neutrons on 
Fe-Scintillator Stack
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Selecting HCAL materialSelecting HCAL material

ZZ ρ (g/cmρ (g/cm33)) XX
00
 (cm) (cm) λλ

IntInt
 (cm) (cm)

C 6 2.2 19 38.1

Al 13 2.7 8.9 39.4

Fe 26 7.87 1.76 16.8

Cu 29 8.96 1.43 15.1

W  74 19.3 0.35 9.6

Pb 82 11.35 0.56 17.1

U  92 18.7 0.32 10.5
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Materials againMaterials again
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CompensationCompensation

● As already stated, hadronic showers have
 electromagnetic component (e)

 strong interaction component (h)

 e/h ≠1

● EM fraction increases with energy
 Non-linearities

● Event by Event fluctuations
 tend to be non-gaussian

 Affect the resolution

● What can be done ?
 Compensating calorimeters to achieve e/h=1
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How to compensate ?How to compensate ?

● Software-based 
 Try to reweight on a shower-by-shower basis

 difficult

● Reduce EM-Component
 High Z material for filtering out photo-electrons

● Boost hadronic response 
 mainly the neutron component

● Use of
 Organic (hydrogen-rich) materials have a large neutron 

cross-section

 Uranium (Nuclear fission triggered by neutrons)
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The Uranium questionThe Uranium question

● Depleted Uranium was en vogue for a while as absorber
 Several Calorimeters, e.g. ZEUS, D0

● But compensation mainly due to
 EM suppression

 Boosting hadronic response

● The fission fragments carried lots of energy
 But to slow to matter

● Uranium is a nasty material
 Radioactive 

 Very reactive ( grinds catch fire)

 Mechanical properties

● These disadvantages made it unpopular
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Short summaryShort summary

● Hadronic Showers 
 are very complex

● They have two components
 electromagnetic

 strong-interaction

● Electromagnetic fraction increases with energy
 leads to non-linearity

● Compensation 
 trying to achieve e/h=1



25

Shower simulationsShower simulations

● EM Showers
 Well-modeled using EGS4 or GEANT4 packages

 Extensively validated using test  beam data

● Hadronic showers
 no preferred model

 GEANT4 and FLUKA are most popular packages

 Various compositions of models, so-called physics lists

 One fit all doesn't exist

 Test beam data used to tune the physics lists
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Calorimeter ResolutionCalorimeter Resolution

● Resolution is parametrized as

● a: Stochastic term
 Fluctuations is the signal generating processes

● b: Noise Term
 Due to read-out electronics

● c: Constant Term
 Non-uniform detector response

 Channel to channel inter-calibration errors

 Fluctuations in longitudinal energy containment

 Energy lost in dead material, before or in detector

σE

E
=
a

√(E )
⊕
b
E

⊕c
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Calorimeter typesCalorimeter types

● Basically there are two 
classes

 Homogeneous 
Calorimeters

 Sampling Calorimeters

● Either type is extensively 
used for ECALs

● HCALs are almost 
exclusively sampling 
calorimeters

● Decision for either 
depends on application

Photo-Detector

Absorber Readout
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Homogeneous CalorimetersHomogeneous Calorimeters

● Three ways to make one
 Scintillating crystals

 lead glass (Cerenkov 
light)

 Noble gas liquids 

● Either offers very good 
resolution

● Disadvantages
 no direct longitudinal 

shower information

 Crystals are expensive

 very non-linear for 
hadrons
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Read-outRead-out

● Mostly light-based
 tends to be blue

● Classical
 Photomultiplier

● Advanced
 Avalanche Photo-Diodes

 Silicon-Photo-multipliers

● Caveat
 Readout electronics 

always at the end

 highly non-linear for 
hadrons

ECAL HCAL

Electronics
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The CMS ECALThe CMS ECAL
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Target ApplicationsTarget Applications

● ECAL only systems
 e.g. B-Factories

 generally medium energy 
machines

● Good ECAL is essential
 no Jet physics at all

● Examples
 BaBar, Belle

 KTeV

● ECAL+ HCAL
 If ultimate ECAL 

resolution is needed

 e.g. H→γγ

● Necessary compromise on 
HCAL performance

● Examples
 CMS

 L3
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Example systemsExample systems
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Sampling CalorimetersSampling Calorimeters

● Most Calorimeters in HEP are sampling calorimeters

● Provide high granularity both lateral and longitudinal

● Two ingredients
 active (readout)

 passive(absorber)

● Sampling fraction as key parameter

● May ways of building sampling Calorimeters
 Sandwich

 Spaghetti

 ....

● Sandwich Calorimeters have been the most popular

SF=
Δ E active

Δ E active+Δ E passive
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The CDF calorimeterThe CDF calorimeter
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Read-Out strategiesRead-Out strategies

● Two main ideas

● Light
 Scintillator

● Charge
 Silicon

 Gas detectors

 Liquid noble gases

● Either with the benefits and disadvantages

● First question is, though

● Analog (classic) or digital (new fashion)
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Analog vs. digital readoutAnalog vs. digital readout
● Analog Readout

 measures the energy deposited by 
the shower

 Fluctuations around the average 
occur due to angle of incidence, 
velocity and Landau spread

● Digital Readout 
 counts the number of particles in a 

shower

 Number of charged particles is an 
intrinsically better measure than 
the energy deposited

 Needs very high granularity 
otherwise limited by multiple hits 
per cell 
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An ExampleAn Example

SiD 16mm2 area cells 

50× 50 μm2

MAPS pixels

ZOOM

MAPS 50 x 50 μm

Si Pads 4 x 4 mm
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Scintillator-based readoutScintillator-based readout

● Usually talking about
 organic scintillators

 aka plastic

● Wave-length shifting to 
improve light detection

● Fibers to connect the read-
out

 read out same as for e.g. 
crystals

● Easy to build calorimeter 
towers

● Lots of experience already 
with this technology
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HoweverHowever

● A word of warning (R. Wigmans, Calorimetry)
 The detector is inherently non-uniform

 The detector is inherently unstable

● Reasons
 Scintillation is very sensitive to the environment

 Moving light to the readout is necessarily non-uniform

 Aging ...

 PMTs, Silicon-PMs etc are all temperature dependent

● This means careful monitoring and calibration
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Other approachesOther approaches

● Silicon-Pads
 analog to a Silicon tracker

 See Giulio Villani's talk

● Liquid Noble Gases
 Argon is most popular

● Micro-Pattern Gas detectors
 RPC

 GEM

 Micromegas

 Most of them suited as digital counters
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RPCRPC

● Resistive Plate Chambers
 cheap alternative to 

scintillators

● Idea
 2 high resistivity plates 

with gas in between

 Particle triggers 
discharge

 Self-resetting

● Signal readout capacitive 
coupling

● Very high segmentation is 
possible
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GEM & MicromegasGEM & Micromegas

● GEM
 perforated copper-

kapton foil with field

 pitch ~ 100 μm

 Charge amplification in 
the holes

● MicroMegas
 large Drift region

 small amplification 
region

 small metal mesh as 
separator

● Both of hight-rate and 
fast signals
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Typical HCAL performanceTypical HCAL performance
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Short summaryShort summary

● Two types of calorimeter
 homogeneous

 sampling

● Each with the unique advantages

● Readout can be realized in many ways
 light collection 

 charge collection

● The target application  drives the technology choice
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System designSystem design

● So far only talked about “the building blocks”

● A complete system is a different matter

● Various constraints
 Space

 Channel count

 Services

 Costs

● and derived parameters
 Depth & Leakage

 Segmentation

 Dead areas
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The ideal calorimeterThe ideal calorimeter

● Is infinitively deep
 no leakage

● if infinitely fine segmented
  and has no cracks

● needs no power or readout
 hence no services

● Weighs nothing
 no mechanical support
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Space ConstraintsSpace Constraints

● Calorimeter sits
 either between tracker and coil

 or is located (partially) outside the coil

● In the first case, the coil limit the size 
 of both tracker and calorimeter

 Limiting factor are coil forces and cost

● This forces the choice of very dense material
 like e.g. Tungsten or Steel

● Locating the calorimeter outside
 impacts the physics as well

 Coil is dead material
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LeakageLeakage

● Can't make a calorimeter infinitely deep
 So need a compromise

● Adding radiation length is expensive …
 Solid physics case required
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Cont'dCont'd
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Mechanics and ServicesMechanics and Services

● Given the materials, Calorimeters are massive objects

 CMS ECAL Barrel 68 t (PbWO4 crystals)

 ZEUS Calorimeter (Uranium) 700 t

● Mechanical support becomes crucial design feature

● Power consumption is equally impressive
 Single channel ~ a few 10 mW

 But 106 channels so, 10 kW 

● Cables
 Running cables & fibers leads to cracks

 Impact on performance
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Advanced ideasAdvanced ideas

● Calorimetry R&D is an active field

● Advances in both electronics and material  
 Dealing with large amount of channels

 new crystal materials

 Silicon Photomultiplier & Large Area Silicon Detectors

● These allows exploring new ideas
 Particle Flow Algorithms

 Dual Readout Calorimetry
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Particle Flow AlgorithmsParticle Flow Algorithms

● Observation : Track measurements much better than 
calorimetric ones

 Usually true up to several 100 GeV

 Average particle momentum is more O(10 GeV)

● So use Tracker to measure the energy
 Assuming all charged hadronic tracks are pions

 Lepton-ID for electrons, muons

● Use Calorimeter only for
 Neutral hadrons and photons

● Remove Calorimetry from the energy measurement
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PFA in a nutshellPFA in a nutshell
Calorimeter Clustering

Match Tracks with
 Calorimeter Clusters

Remove Photon
 Calorimeter Clusters

Track reconstruction

Remaining
EM-only Calorimeter Clusters

Remaining
Calorimeter Clusters

Remove associated
 Calorimeter Clusters

DONE

Charged particles

Neutral Hadrons

Photons
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Jet ResolutionsJet Resolutions

● Energy resolution about 14% (driven by HCAL)

● Confusion terms have bigger impact

 σjet
2 = σcharged

2 + σΕΜ
2 + σhadronic

2 + σconfusion
2 

+ σthreshold
2  +…

● Performance not limited by Calorimetry
 Need high granularity to reduce confusion !

Particle Class

Charged Tracking 60% neg.

Photons ECAL 30%

Neutral Hadrons HCAL (+ECAL) 10%

SubDetector Jet energy 
fraction

Particle 
Resolution

Jet Energy 
Resolution

10-4   √Echarged

11 % √EEM        
6 % √E

jet

40 % √E
hadronic

13 % √E
jet
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Sounds easySounds easy

● Associating showers to 
tracks 

 showers can overlap

 track ambiguities

 leakage

● Hadronic showers are very 
difficult

 As you already know
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Matching problemsMatching problems

10 GeV Track

30 GeV
12 GeV

18 GeV

γ γγ

Won’t mergeWon’t merge Could get merged

© Mark Thomson

Shower 
matching

Shower 
merging
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PFA design considerationsPFA design considerations

● Highly granular 
 For Shower separation and matching

 mm for ECAL, cm for HCAL

● Sampling Calorimeters with decent energy resolution
 containment is an issue

● Minimize dead material
 Fit inside the coil

 Compact  

● Calorimetry must also
 Pass engineering constraints

 Affordable
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Other benefitsOther benefits

20 GeV π0

4

Calorimeter Aided Tracking 
V0 finder
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A PFA DetectorA PFA Detector
Vertex
Detector

ECAL

HCAL

Solenoid

Tracker
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PFA at CMSPFA at CMS

Jet energy resolution 
Simulated QCD-multijet events in the 
CMS barrel  

Missing ET resolution for Di-jet events
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Dual-Readout CalorimetryDual-Readout Calorimetry

● As already mentioned
 Two components in 

hadronic showers

● Dual Readout Idea
 Two active media

 Scintillating Fibers 
measure visible energy

 Quartz Fibers measure 
Cerenkov light from em 
component

● Implemented in the 
DREAM calorimeter
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Dual Readout in DetailDual Readout in Detail

● Scintillation signal (S) and Cerenkov signal:

● This can be written as

● R will be taken from calibrations

Q=E ( f em+h/eQ(1− f em))
S=E ( f em+h/eS (1− f em))

E=
RS−Q
R−1

R=
1−h/eQ
1−h /eS
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Some plotsSome plots
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Energy ResolutionEnergy Resolution

● DREAM prototype
 Achieves linear hadronic 

response

 Dual readout 
demonstration

● Limitations
 Size of prototype 

(leakage)

 Light yield

 Fluctuations in visible 
energy

● Principle can be applied 
to other calorimeters with 
optical readout

D
R
E
A
M
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SummarySummary

● Calorimeters are not black magic 
 Hope you got an idea, how they work

● Lots of things I couldn't cover
 Material for several lectures 

● Calorimeter R&D is an active field
 CALICE, DREAM ...

● Recommended Literature
 R. Wigmans : Calorimetry

 Review of Particle Physics 2009

 T. Virdee : Experimental Techniques
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