Introduction to Calorimetry

Marcel Stanitzki

STFC - Rutherford Appleton Laboratory

Outline

- A short overview
- Particle shower basics
- Calorimeters
 - Sampling Calorimeters
 - Homogeneous Calorimeters
- Readout and DAQ
- Example systems
- Advanced Technologies
 - Particle Flow
 - Dual-Readout

Calorimetry - What is it?

- A calorimeter measures the energy of an incoming particle
 - Stopping the particle
 - Converting the energy into something detectable
 - Basic mechanism: electromagnetic/hadronic showers
 - The measured output is linear to the incoming energy
- It measures the location of the energy deposit
 - Allows "tracking" of neutrals, e.g. photons and neutrons
- A hermetic calorimetry is essential to measure "missing energy"
 - From all particles escaping detection
 - Neutrinos, Neutralinos and all that

Calorimetry & Particles

- Only ~ 13 Particles actually seen by a detector
 - Everything else is too short-lived
- Charged Hadrons
 - π[±], p[±], K[±]
 - Generate hadronic Showers
- Electrons & photons
 - Generate Electromagnetic showers
- Neutral Hadrons
 - n,K_L
 - Generate hadronic Showers
- Muons
 - Usually only a track through the calorimeters

As done in CMS

Particle Showers

- Calorimeters stop particles by generating particle showers
- Two basic types
 - Electromagnetic showers
 - Hadronic showers
- Electromagnetic Showers
 - Driven by QED
 - Clean and simple
- Hadronic showers
 - Nuclear interactions and EM component
 - Quite complicated
 - Very difficult to model

EM Interaction with Matter

- Electrons and photons as the main components
- Above ~ 1 GeV
 - Electrons:Bremsstrahlung radiating off photons
 - Photons: Pair production
 - Increase of particles
- Below a critical energy E_c
 - Ionization dominates
 - Shower slowly dies out
- Material dependent
 - Density ρ
 - Number of Protons (Z) and nucleons (A)

EM shower basics

EM Definitions

- Radiation length (X₀)
 - When the energy has been reduced to 1/e
 - Characterizes the shower depth
- Critical Energy (E_C)
 - Energy, where Ionization takes over
- Moliere Radius (r_{Moliere})
 - Radius which contains 90 % of the shower
 - Characterizes the width of the shower
- Shower Max(imum)
 - The peak of the shower

$$X_0 = \frac{716.4A}{Z(Z+1) \cdot \ln(287/\sqrt{Z})} \cdot \frac{1}{\rho}$$

$$E_{C, solid/liquid} = \frac{610 MeV}{Z + 1.24}$$

$$E_{C, gas} = \frac{710 MeV}{Z + 0.92}$$

$$r_{Moliere} = 21.2 \, MeV \frac{X_0}{E_C}$$

$$S_{max} = \ln\left(\frac{E_{Incoming}}{E_C}\right)$$

Material Dependence

	Z	ρ (g/cm³)	X ₀ (cm)	λ _{Int} (cm)
С	6	2.2	19	38.1
Al	13	2.7	8.9	39.4
Fe	26	7.87	1.76	16.8
Cu	29	8.96	1.43	15.1
W	74	19.3	0.35	9.6
Pb	82	11.35	0.56	17.1
U	92	18.7	0.32	10.5

Shower Shapes

Layer Layer 25 cm

EM Showers Pictures

20 GeV electrons longitudinal shower profile

Short Summary

- EM showers
 - dependent on density and Z
- As Z increases
 - shower maximum shifts to greater depth
 - Slower decay after the Shower maximum
- The typical scale of EM showers is mm
 - A EM Calorimeter is not a very thick object
- Location of Shower max scales with In(E)
 - Allows to build compact calorimeters!

Hadronic Showers

- Hadronic showers are much more complex
- Incoming particle hits nucleus → secondaries
 - electromagnetic component (from π^0)
 - strong interaction component (from n,p, π^+)
 - fission ...
 - knock-off ...
 - Delayed photons
- Hadronic Showers are
 - much broader
 - extend deeper in the calorimeter
 - have significant event-by-event fluctuations

Hadronic Shower basics

From T. Virdee

Hadronic shower definitions

- Basic quantity is the nuclear interaction length $\lambda_{I} = \frac{A}{N_{A} \cdot \sigma_{Total}}$ $\lambda_{I} \sim A^{\frac{1}{3}}$
 - Analog to the radiation length
 - Order of magnitude larger
- Only approximations for
 - Shower max

$$S_{max}(\lambda_I) \sim 0.2 \cdot \ln(E) + 0.7$$

- Shower fractions
 - f_{EM} as electromagnetic fraction
 - f_{had} for the strong interaction fraction
 - Generally f_{FM} increases with energy

$$f_{em} = 1 - \left(1 - \frac{1}{3}\right)^{n}$$

$$f_{em} = 1 - \left(\frac{E}{E_0}\right)^{(k-1)}$$

Hadronic Shower Shapes

Layer 275 cm

Layer

Individual Showers

Selecting HCAL material

	Z	ρ (g/cm³)	X ₀ (cm)	λ _{Int} (cm)
С	6	2.2	19	38.1
Al	13	2.7	8.9	39.4
Fe	26	7.87	1.76	16.8
Cu	29	8.96	1.43	15.1
w	74	19.3	0.35	9.6
Pb	82	11.35	0.56	17.1
U	92	18.7	0.32	10.5

Materials again

Compensation

- As already stated, hadronic showers have
 - electromagnetic component (e)
 - strong interaction component (h)
 - e/h ≠1
- EM fraction increases with energy
 - Non-linearities
- Event by Event fluctuations
 - tend to be non-gaussian
 - Affect the resolution
- What can be done?
 - Compensating calorimeters to achieve e/h=1

How to compensate?

- Software-based
 - Try to reweight on a shower-by-shower basis
 - difficult
- Reduce EM-Component
 - High Z material for filtering out photo-electrons
- Boost hadronic response
 - mainly the neutron component
- Use of
 - Organic (hydrogen-rich) materials have a large neutron cross-section
 - Uranium (Nuclear fission triggered by neutrons)

The Uranium question

- Depleted Uranium was en vogue for a while as absorber
 - Several Calorimeters, e.g. ZEUS, D0
- But compensation mainly due to
 - EM suppression
 - Boosting hadronic response
- The fission fragments carried lots of energy
 - But to slow to matter
- Uranium is a nasty material
 - Radioactive
 - Very reactive (grinds catch fire)
 - Mechanical properties
- These disadvantages made it unpopular

Short summary

- Hadronic Showers
 - are very complex
- They have two components
 - electromagnetic
 - strong-interaction
- Electromagnetic fraction increases with energy
 - leads to non-linearity
- Compensation
 - trying to achieve e/h=1

Shower simulations

EM Showers

- Well-modeled using EGS4 or GEANT4 packages
- Extensively validated using test beam data

Hadronic showers

- no preferred model
- GEANT4 and FLUKA are most popular packages
- Various compositions of models, so-called physics lists
- One fit all doesn't exist
- Test beam data used to tune the physics lists

Calorimeter Resolution

Resolution is parametrized as

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{(E)}} \oplus \frac{b}{E} \oplus c$$

- a: Stochastic term
 - Fluctuations is the signal generating processes
- b: Noise Term
 - Due to read-out electronics
- c: Constant Term
 - Non-uniform detector response
 - Channel to channel inter-calibration errors
 - Fluctuations in longitudinal energy containment
 - Energy lost in dead material, before or in detector

Calorimeter types

- Basically there are two classes
 - HomogeneousCalorimeters
 - Sampling Calorimeters
- Either type is extensively used for ECALs
- HCALs are almost exclusively sampling calorimeters
- Decision for either depends on application

Homogeneous Calorimeters

- Three ways to make one
 - Scintillating crystals
 - lead glass (Cerenkov light)
 - Noble gas liquids
- Either offers very good resolution
- Disadvantages
 - no direct longitudinal shower information
 - Crystals are expensive
 - very non-linear for hadrons

Parameter	.: ρ	MP	X_0^*	R_M^*	dE^*/dx	λ_I^*	$ au_{ m decay}$	$\lambda_{ m max}$
Units:	g/cm^3	$^{\circ}\mathrm{C}$	cm	cm	MeV/cm	cm	ns	nm
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	230	410
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	630^s	300^{s}
							0.9^{f}	220^{f}
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1300	560
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	35^s	420^{s}
							6^f	310^{f}
${ m PbWO}_4$	8.3	1123	0.89	2.00	10.1	20.7	30^s	425^s
							10^f	420^{f}
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402
$LaBr_3(Ce)$	5.29	788	1.88	2.85	6.9	30.4	20	356

Read-out

- Mostly light-based
 - tends to be blue
- Classical
 - Photomultiplier
- Advanced
 - Avalanche Photo-Diodes
 - Silicon-Photo-multipliers
- Caveat
 - Readout electronics always at the end
 - highly non-linear for hadrons

The CMS ECAL

Target Applications

- ECAL only systems
 - e.g. B-Factories
 - generally medium energy machines
- Good ECAL is essential
 - no Jet physics at all
- Examples
 - BaBar, Belle
 - KTeV

- ECAL+ HCAL
 - If ultimate ECAL resolution is needed
 - e.g. $H \rightarrow \gamma \gamma$
- Necessary compromise on HCAL performance
- Examples
 - CMS
 - L3

Example systems

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_{0}$	$2.7\%/\mathrm{E}^{1/4}$	1983
$\mathrm{Bi}_{4}\mathrm{Ge}_{3}\mathrm{O}_{12}\ (\mathrm{BGO})\ (\mathrm{L3})$	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E}\oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16-18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5$ GeV	1998
$PbWO_4$ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus 0.42\% \oplus 0.09/E$	1998
Scintillator/depleted U (ZEUS)	20-30X ₀	$18\%/\sqrt{E}$	1988
Scintillator/Pb (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$5.7\%/\sqrt{E}\oplus 0.6\%$	1995
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (H1)	$20 – 30X_0$	$12\%/\sqrt{E} \oplus 1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_0$	$16\%/\sqrt{E} \oplus 0.3\% \oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_0$	$10\%/\sqrt{E} \oplus 0.4\% \oplus 0.3/E$	1996

Sampling Calorimeters

- Most Calorimeters in HEP are sampling calorimeters
- Provide high granularity both lateral and longitudinal
- Two ingredients
 - active (readout)
 - passive(absorber)
- Sampling fraction as key parameter

$$SF = \frac{\Delta E_{active}}{\Delta E_{active} + \Delta E_{passive}}$$

- May ways of building sampling Calorimeters
 - Sandwich
 - Spaghetti
 - •
- Sandwich Calorimeters have been the most popular

The CDF calorimeter

Read-Out strategies

- Two main ideas
- Light
 - Scintillator
- Charge
 - Silicon
 - Gas detectors
 - Liquid noble gases
- Either with the benefits and disadvantages
- First question is, though
- Analog (classic) or digital (new fashion)

Analog vs. digital readout

Analog Readout

- measures the energy deposited by the shower
- Fluctuations around the average occur due to angle of incidence, velocity and Landau spread

Digital Readout

- counts the number of particles in a shower
- Number of charged particles is an intrinsically better measure than the energy deposited
- Needs very high granularity otherwise limited by multiple hits per cell

An Example

Scintillator-based readout

- Usually talking about
 - organic scintillators
 - aka plastic
- Wave-length shifting to improve light detection
- Fibers to connect the readout
 - read out same as for e.g. crystals
- Easy to build calorimeter towers
- Lots of experience already with this technology

However

- A word of warning (R. Wigmans, Calorimetry)
 - The detector is inherently non-uniform
 - The detector is inherently unstable
- Reasons
 - Scintillation is very sensitive to the environment
 - Moving light to the readout is necessarily non-uniform
 - Aging ...
 - PMTs, Silicon-PMs etc are all temperature dependent
- This means careful monitoring and calibration

Other approaches

- Silicon-Pads
 - analog to a Silicon tracker
 - See Giulio Villani's talk
- Liquid Noble Gases
 - Argon is most popular
- Micro-Pattern Gas detectors
 - RPC
 - GEM
 - Micromegas
 - Most of them suited as digital counters

RPC

- Resistive Plate Chambers
 - cheap alternative to scintillators
- Idea
 - 2 high resistivity plates with gas in between
 - Particle triggers discharge
 - Self-resetting
- Signal readout capacitive coupling
- Very high segmentation is possible

GEM & Micromegas

GEM

- perforated copperkapton foil with field
- pitch ~ 100 μm
- Charge amplification in the holes
- MicroMegas
 - large Drift region
 - small amplification region
 - small metal mesh as separator
- Both of hight-rate and fast signals

Typical HCAL performance

Short summary

- Two types of calorimeter
 - homogeneous
 - sampling
- Each with the unique advantages
- Readout can be realized in many ways
 - light collection
 - charge collection
- The target application drives the technology choice

System design

- So far only talked about "the building blocks"
- A complete system is a different matter
- Various constraints
 - Space
 - Channel count
 - Services
 - Costs
- and derived parameters
 - Depth & Leakage
 - Segmentation
 - Dead areas

The ideal calorimeter

- Is infinitively deep
 - no leakage
- if infinitely fine segmented
 - and has no cracks
- needs no power or readout
 - hence no services
- Weighs nothing
 - no mechanical support

Space Constraints

- Calorimeter sits
 - either between tracker and coil
 - or is located (partially) outside the coil
- In the first case, the coil limit the size
 - of both tracker and calorimeter
 - Limiting factor are coil forces and cost
- This forces the choice of very dense material
 - like e.g. Tungsten or Steel
- Locating the calorimeter outside
 - impacts the physics as well
 - Coil is dead material

Leakage

- Can't make a calorimeter infinitely deep
 - So need a compromise
- Adding radiation length is expensive ...
 - Solid physics case required

Cont'd

Mechanics and Services

- Given the materials, Calorimeters are massive objects
 - CMS ECAL Barrel 68 t (PbWO₄ crystals)
 - ZEUS Calorimeter (Uranium) 700 t
- Mechanical support becomes crucial design feature
- Power consumption is equally impressive
 - Single channel ~ a few 10 mW
 - But 10⁶ channels so, 10 kW
- Cables
 - Running cables & fibers leads to cracks
 - Impact on performance

Advanced ideas

- Calorimetry R&D is an active field
- Advances in both electronics and material
 - Dealing with large amount of channels
 - new crystal materials
 - Silicon Photomultiplier & Large Area Silicon Detectors
- These allows exploring new ideas
 - Particle Flow Algorithms
 - Dual Readout Calorimetry

Particle Flow Algorithms

- Observation: Track measurements much better than calorimetric ones
 - Usually true up to several 100 GeV
 - Average particle momentum is more O(10 GeV)
- So use Tracker to measure the energy
 - Assuming all charged hadronic tracks are pions
 - Lepton-ID for electrons, muons
- Use Calorimeter only for
 - Neutral hadrons and photons
- Remove Calorimetry from the energy measurement

PFA in a nutshell

Jet Resolutions

Particle Class	SubDetector	Jet energy fraction	Particle Resolution	Jet Energy Resolution
Charged	Tracking	60%	$10^{\text{-4}}~\sqrt{E_{charged}}$	neg.
Photons	ECAL	30%	11 % √E _{EM}	6 % √E _{jet}
Neutral Hadrons	HCAL (+ECAL)	10%	40 % √E _{hadronic}	

- Energy resolution about 14% (driven by HCAL)
- Confusion terms have bigger impact

•
$$\sigma_{jet}^2 = \sigma_{charged}^2 + \sigma_{EM}^2 + \sigma_{hadronic}^2 + \sigma_{confusion}^2 + \sigma_{threshold}^2 + \dots$$

- Performance not limited by Calorimetry
 - Need high granularity to reduce confusion!

Sounds easy

- Associating showers to tracks
 - showers can overlap
 - track ambiguities
 - leakage
- Hadronic showers are very difficult
 - As you already know

Matching problems

Shower matching

Shower merging

PFA design considerations

- Highly granular
 - For Shower separation and matching
 - mm for ECAL, cm for HCAL
- Sampling Calorimeters with decent energy resolution
 - containment is an issue
- Minimize dead material
 - Fit inside the coil
 - Compact
- Calorimetry must also
 - Pass engineering constraints
 - Affordable

Other benefits

$$au^+
ightarrow
ho^+ au \quad (\pi^+ \pi^o au)$$

Calorimeter Aided Tracking Vo finder

A PFA Detector

ECAL Vertex **Detector HCAL Tracker** Solenoid

PFA at CMS

Jet energy resolution Simulated QCD-multijet events in the CMS barrel Missing E_T resolution for Di-jet events

Dual-Readout Calorimetry

- As already mentioned
 - Two components in hadronic showers
- Dual Readout Idea
 - Two active media
 - Scintillating Fibers measure visible energy
 - Quartz Fibers measure
 Cerenkov light from em component
- Implemented in the DREAM calorimeter

Dual Readout in Detail

Scintillation signal (S) and Cerenkov signal:

$$Q = E(f_{em} + h/e_{Q}(1 - f_{em}))$$

$$S = E(f_{em} + h/e_{S}(1 - f_{em}))$$

This can be written as

$$E = \frac{RS - Q}{R - 1}$$

$$R = \frac{1 - h/e_Q}{1 - h/e_S}$$

R will be taken from calibrations

Some plots

Energy Resolution

- DREAM prototype
 - Achieves linear hadronic response
 - Dual readout demonstration
- Limitations
 - Size of prototype (leakage)
 - Light yield
 - Fluctuations in visible energy
- Principle can be applied to other calorimeters with optical readout

Summary

- Calorimeters are not black magic
 - Hope you got an idea, how they work
- Lots of things I couldn't cover
 - Material for several lectures
- Calorimeter R&D is an active field
 - CALICE, DREAM ...
- Recommended Literature
 - R. Wigmans : Calorimetry
 - Review of Particle Physics 2009
 - T. Virdee : Experimental Techniques