

DETECTION OF HIGH ENERGY ASTROPARTICLES

Basic principles

- Cosmic rays and high-energy vs shower in the atmosphere
 - o detect light emitted or induced by the shower
 - Cherenkov radiation
 - fluorescence
 - o detect shower particles that reach the ground
 - much more likely for hadron-induced showers
- Neutrinos in general don't shower
 - \circ detect products of charged-current interactions (e, μ , τ)
- Ultra-high-energy neutrinos will shower in matter
 - o acoustic detection of shower energy

٠,

DETECTION OF AIR SHOWERS

Cherenkov radiation

- emitted by charged particles in the shower travelling at speeds > c/n where n is refractive index
 - o forward peaked
 - o faint, so requires dark skies
 - o relatively low energy threshold
 - $\ensuremath{\text{o}}$ works for both hadron and photon cascades—basis of ground-based $\gamma\ensuremath{\text{r}}$ ray astronomy

Nitrogen fluorescence

- UV radiation emitted by excited nitrogen molecules
 - o isotropic
 - o requires dark skies

Detection of shower particles on ground

- usually using water Cherenkov detectors
 - o higher threshold
 - o not dependent on sky conditions
 - o works better for hadron-induced showers

CHERENKOV RADIATION

- Radiation emitted by charged particle travelling faster than speed of light in a medium
 - wavefronts constructively interfere to produce cone of radiation
 - angle of cone given by $\cos \vartheta = 1/\beta n$
 - for astroparticle applications usually $\beta \approx 1$
 - hence in air $\vartheta \approx 1.3^{\circ}$ (depends on temperature); in water $\vartheta \approx 41^{\circ}$ (40° for ice)

4

CHERENKOV RADIATION

o Spectrum of radiation is given by Frank-Tamm formula

$$dE = \frac{\mu(\omega)q^2}{4\pi}\omega\left(1 - \frac{1}{\beta^2n^2(\omega)}\right)dx d\omega$$

- μ is permeability of medium, n its refractive index, q charge of particle, β its speed, ω emitted angular frequency, x length traversed.
 - note that $dE \propto \omega$; spectrum is continuous, but in general radiation is most intense at high frequencies
- Threshold given by $\beta > 1/n$
 - below this no Cherenkov radiation emitted
 - basis of "threshold Cerenkov counters" used for particle ID in particle physics experiments

FLUORESCENCE

- o Misnamed!
 - it's really scintillation
- Emitted isotropically
 - in contrast to Cherenkov
- Almost independent of primary particle species

Fluorescence spectrum excited by 3 MeV electrons in dry air

- exciting particles are mainly e[±] which are produced by both electromagnetic and hadronic cascades
- light produced ∝ energy deposited in atmosphere
- o Emitted light is in discrete lines in near UV
 - detection requires clear skies and nearly moonless nights

١,

SCHEMATIC OF AIR-SHOWER DEVELOPMENT

Gamma-induced showers have different particle content and will peak at a different height from hadron-induced showers. They also have a different morphology—note the subshowers in the hadron-induced cascade.

TEV GAMMA-RAY ASTRONOMY: **IMAGING ATMOSPHERIC CHERENKOV TELESCOPES** Particle identification ×direction Off pixel • shower shape o broader and less regular for hadron-induced showers o narrow cone of direct emission direct Cherenko from heavy nucleus emission from Energy reconstruction primary • total Cherenkov light yield α energy of primary 1028 o resolution typically 15-20% o threshold given by Heavy nucleus signal in HESS $E_T \propto \frac{1}{C(\lambda)} \sqrt{\frac{B(\lambda)\Omega au}{\eta(\lambda)A}}$ where ${\it C}$ is Cherenkov yield, ${\it B}$ sky background, ${\it \eta}$ photon collection efficiency, ${\it A}$ mirror area, ${\it \Omega}$ solid angle, ${\it \tau}$ integration time

IACT TECHNOLOGY: H.E.S.S. (NAMIBIA)

4 telescopes each of 108 m² aperture

Camera array of 2048 pixels (0.07°)

New 30-m telescope under construction (will reduce energy threshold to 30 GeV)

12

IACT TECHNOLOGY: VERITAS (USA)

Very similar to H.E.S.S.

4 telescopes each 110 m²

499-pixel camera

1/

IACT TECHNOLOGY: MAGIC (CANARY ISLANDS)

Larger telescopes (236 m²), hence lower threshold; also fast slew to respond to GRB alerts

The two telescopes can operate independently

Camera has inner core of 396 1" PMTs, outer ring of 180 1.5"

SOME RESULTS

- o Some blazar sources seen to vary on very short timescales (few minutes)
 - plots show PKS 2155–304 observed by HESS and Chandra (Aharonian et al., A&A 502 (2009) 749)
 - flare is much larger at TeV energies 2 but TeV & x-rays correlated
 - explaining these fast flares is a major challenge for models

GROUND ARRAY TECHNOLOGY

- Large area ground arrays consist of multiple small stations whose data are combined to reconstruct the shower
 - detector technology scintillator (SUGAR, AGASA) or water Cherenkov (Haverah Park, Auger)
 - some detectors (AGASA, Yakutsk) also include underground muon detectors
 - individual detectors need to be robust and self-contained
- Energy reconstruction by
 - conversion from shower size
 - o estimated number of electrons, $N_{\rm e}$, combined with muons, N_{μ} , for those experiments with muon detectors
 - particle density at a given (large) distance from core
 - smaller fluctuations, and less sensitive to primary particle type, than shower core

Direction is reconstructed from arrival time of shower at different ground stations • better than 1° if >4 stations fire (E > 8 EeV) **Sommer stations** **Sommer stations**

Calorimetric detector: total light intensity measures electromagnetic energy in shower response calibrated using artificial light source and direct excitation of fluorescence with nitrogen laser | Alignment Target | August | Au

PROPERTIES OF PRIMARY COSMIC RAYS: PARTICLE CONTENT \circ Particle identification by mean and variance of shower depth X_{\max} • At low energies similar to solar system, but enhanced O SIBYLL 2.1, Corsika 6.010 GGSJet01, Corsika 6.005/6.010 in low Z spallation products ▼ DATA at higher energy nearly pure protons System Abundances Abundance (Si = 100) GCR Abundances 10⁴ 102 NASA 100 10-2 HiRes: Abbasi et al., ApJ 622 (2005) 910 0 20 Element 17.25 17.5 17.75 18 18.25 18.5 18.75 19 19.25 19.5 19.75 20 20.25

ENERGY SPECTRUM OF UHECRS

Expect GZK cut-off at high energy
 owing to pion photoproduction
 via Δ resonance

• $\gamma + p \rightarrow \Delta^+ \rightarrow p + \pi^0 \text{ (or } n + \pi^+\text{)}$

- requires E_v = 145 MeV (150 MeV) for proton at rest
 - energy of CMB photon $\sim 3 k_B T = 7 \times 10^{-4} \text{ eV}$ on average
 - o so require proton $\gamma \sim 2 \times 10^{11}$, i.e. $E_p \sim 2 \times 10^{20}$ eV
 - $_{\rm o}$ this is an overestimate, because protons will see high-energy tail of CMB blackbody—true cutoff is about $5{\times}10^{19}~{\rm eV}$

E_p (eV)

- Result: protons with energies > 10²⁰ eV lose energy as they travel
 - effective range of >GZK protons ~100 Mpc essentially independent of initial energy

3

OBSERVATION OF GZK CUTOFF

- Seen by both Auger and HiRes
 - apparent difference is consistent with systematic error in energy scale
- This implies that sources of UHECRs are genuinely astrophysical objects

 local sources, e.g. decay of some kind of superheavy metastable dark matter, would not show cutoff

DETECTION OF UHE GAMMAS AND CRS: SUMMARY

- UHE astroparticles are easier to detect from the ground than from space
 - large detectors covering large effective areas are not easy to put into orbit
- Cherenkov, fluorescence and ground-array technologies all well established
 - each technique has advantages and disadvantages
 - "hybrid" detectors using multiple techniques are effective
- Multiwavelength studies of interesting objects provide increasingly good constraints on models
 - relevant for TeV γ -rays, not for CRs because of lack of directionality