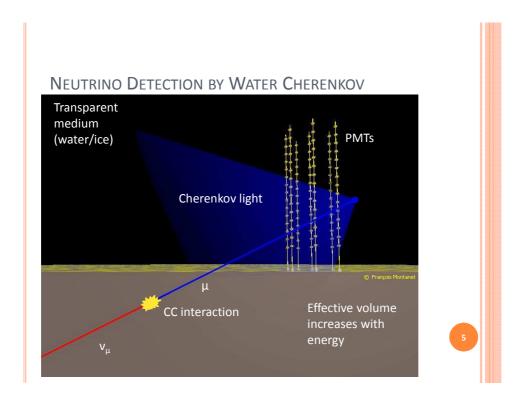
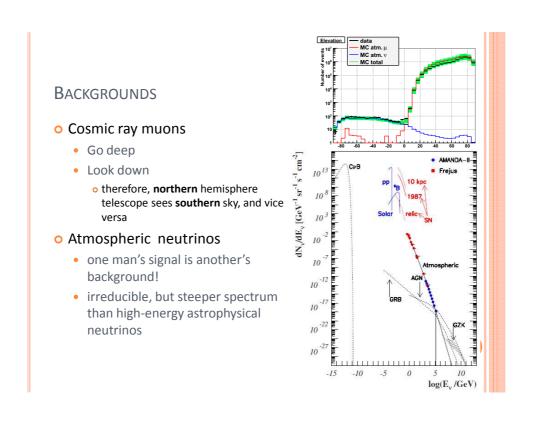
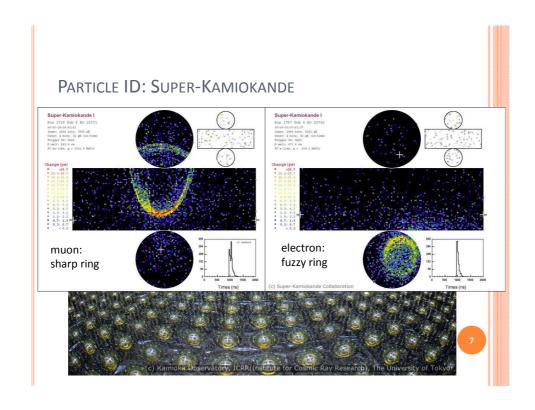


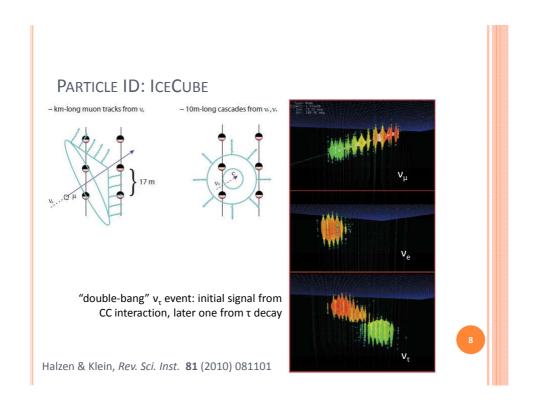
NEUTRINO DETECTION Neutrino cross-section rises with energy -31 -31.5 -32 -32.5 -33 CTW Total (--- CTW CC --- CTW NC --- GQRC Total --- GQRC CC --- GQRC NC ලි -33.5 o Only UHE neutrinos (>1015 eV or so) -34 interact with reasonably high probability -34.5 (such that Earth is opaque to them) 9 10 11 12 log₁₀ (E_v / GeV) Connolly, Thorne & Waters, hep-ph/1102.0691v1 -30 10¹² GeV -30.5

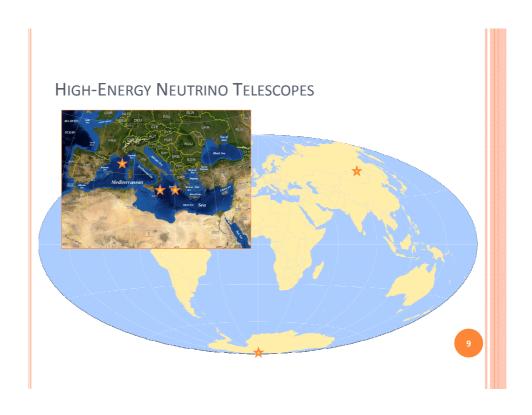
-30

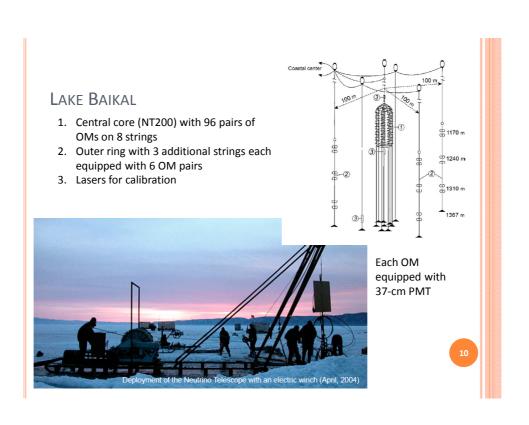

-30.5

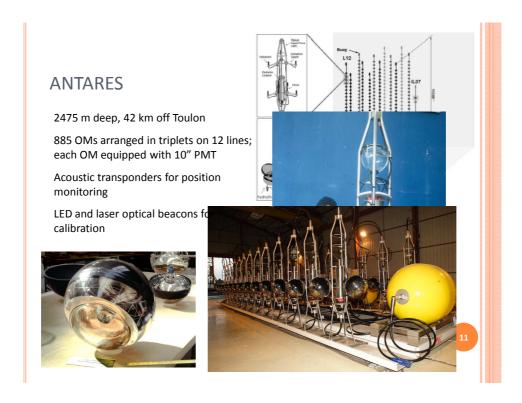


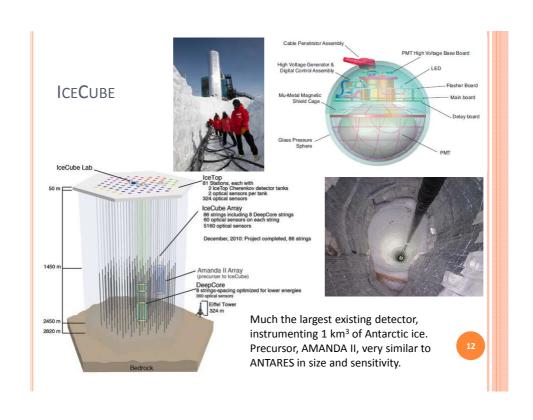



NEUTRINO DETECTION (PENETRATING NEUTRINOS)


- o Mostly rely on detecting the charged lepton produced in **CC** interactions
 - at lowest energies (solar neutrinos), also elastic scattering $(v + e \rightarrow v + e)$ and NC reaction on deuterium $(v + d \rightarrow v + p + n)$
 - note that at solar neutrino energies μ and τ cannot be produced by CC, so v_{μ} , v_{τ} only seen in NC (e.g. SNO)
- o Some early experiments using tracking calorimeters, but water Cherenkovs now standard practice
 - can obtain large effective volumes by instrumenting natural bodies of water/ice
 - · particle identification by ring morphology at low energies, shower shape at high energies







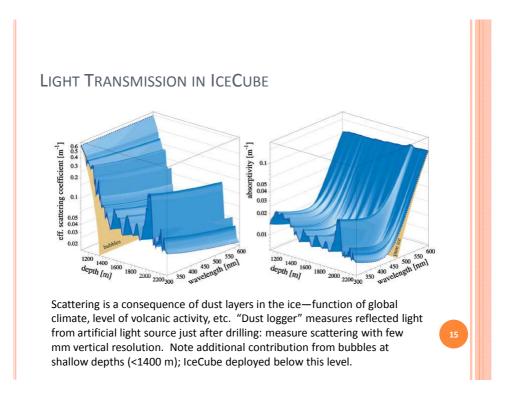
MEDIUM PROPERTIES

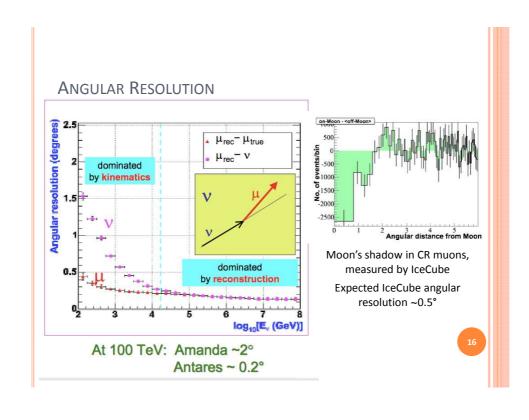
Property	Lake Baikal	Mediterranean (ANTARES)	Antarctic ice
Absorption length (m)	20-24	50-70 (blue)	~100
Scattering length (m)	30-70	230-300 (blue)	~20
Depth	1370	2475	2450
Noise	Quiet	⁴⁰ K, bioluminescence	Quiet
Retrieve/ redeploy	Yes	Yes	No

Long scattering length for ANTARES implies better angular resolution; long absorption length for IceCube implies sparser instrumentation. Quiet environments imply potentially useful data from singles rates.

13

BACKGROUND IN ANTARES


Three components


- steady background of ~60 kHz from ⁴⁰K
- slowly varying contribution from bioluminescence, probably bacterial
- short bursts of strong bioluminescence, probably from larger organisms

o Correlated within a single storey, but not over long distances

- minimal influence on tracking efficiency
- does probably preclude use of singles rate, e.g. for detection of low energy neutrinos from supernova

1/

EXPECTED FLUXES

- Expect high-energy astrophysical neutrinos to be produced in proton interaction cascades
 - therefore, observed CR flux implies upper bound on neutrino flux (Waxman-Bahcall bound: Phys. Rev. D59 (1998) 023002)

 therefore, observed CR flux implies upper bound on neutrino flux (Waxman-Bahcall bound: Phys. Rev. D59 (1998) 023002)

10

10

E 10

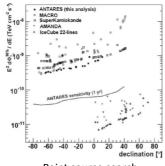
GeV/cm²s

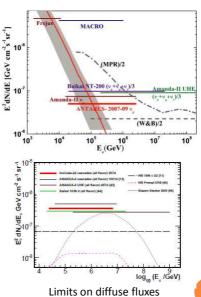
Hidden Core

Jet2

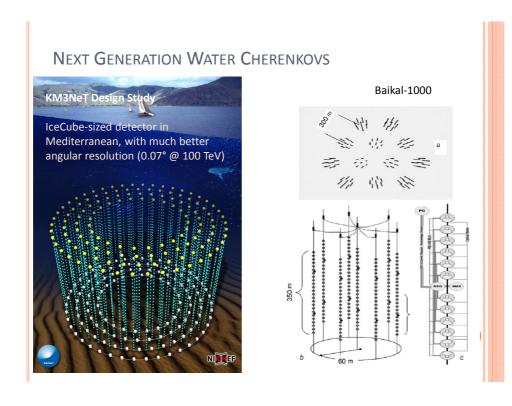
CR Limit

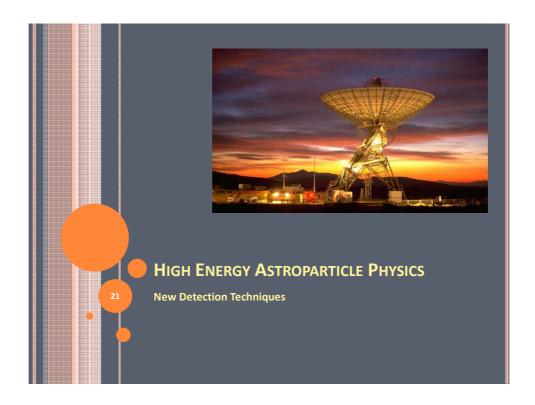
- argument goes as follows:
 - o from observed CR rate, deduce that the amount of energy emitted by astrophysical sources in the form of UHE CRs ($10^{19} 10^{21}$ eV) is of order 10^{37} J Mpc⁻³ yr⁻¹.
 - o assume that CRs lose some fraction ε of their energy through pion photoproduction before escaping the source
 - fraction of proton energy carried by neutrino produced in this way is about 5% independent of proton energy, so neutrino energy spectrum follows scaled-down version of proton spectrum


• resulting bound is $E_{\nu}^{2}\varphi_{\nu}$ < 2×10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ for 10¹⁴–10¹⁶ eV v

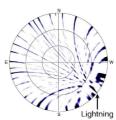

RESULTS

Still very statistics-limited.

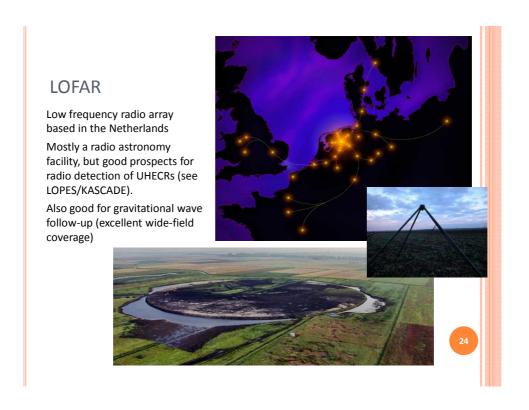

IceCube should be able to reach Waxman-Bahcall bound.


Point source search ANTARES astro-ph/1002.0701

ANTARES, Phys. Lett. **B696** (2011) 16 IceCube, astro-ph/1101.1692



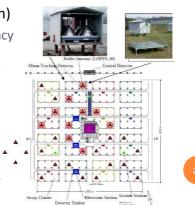
TAU-NEUTRINO DETECTION BY AIR SHOWERS • Earth-skimming v_τ interacts in Earth's crust to produce τ • τ decay in atmosphere initiates characteristic air shower • shower appears to be in early stage of development—typical horizontal shower is "old" • searched for by Auger—no signal (PRD 79 (2009) 102001) • searched for by Auger interest in the signal of the state of the signal of the signa



- synchrotron radiation from air-shower particles gyrating in Earth's magnetic field
- advantages over fluorescence:
 - o very high duty cycle (only wiped out by thunderstorms)
 - o low attenuation (so, large effective area)
- disadvantages:
 - o interference (need radio-quiet sites)
 - o high threshold (1017 eV)
- Radio Cherenkov (Askaryan effect) (0.1–2 GHz)
 - Cherenkov emission from neutrino-induced showers because of net negative charge
 - o initially neutral shower develops ~20% negative bias because of annihilation of e⁺ and additional e⁻ from Compton scattering etc.
 - o requires dense, radio-transparent medium
 - not air, not water

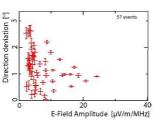
GEOSYNCHROTRON EMISSION • Studies run in association with Auger and KASCADE CR ground arrays • A declared key science goal of LOFAR Collaboration 1018 Flux E²⁵ J(E) (m²s⁻¹sr⁻¹eV¹⁵) 10 10" 1015 10 10 101 1014 1017 10^{ta} 10" 102 1021 1033 Energy (eV/particle)

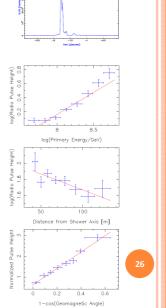
LOPES/KASCADE


KASCADE: scintillator-based ground array

LOPES (LOFAR Prototype Station)

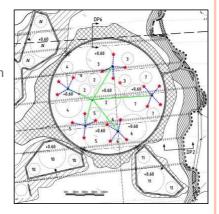
• initially 10, now 30, low-frequency RF antennas triggered by KASCADE "large event" trigger


- KASCADE reconstruction provides input to LOPES recon:
 - o core position of air shower
 - o its direction
 - o its size



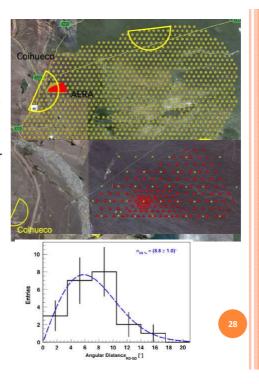
LOPES/KASCADE

- o First detection: January 2004
 - strong coherent radio signal coincident with KASCADE shower
 - reconstruction location agreed with KASCADE to 0.5°
- Extensive data sample now accrued
 - technique works well and suggests full


LOFAR array should be excellent CR detector

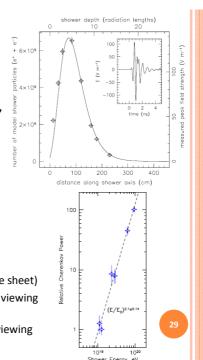
LOFAR AS A COSMIC RAY DETECTOR

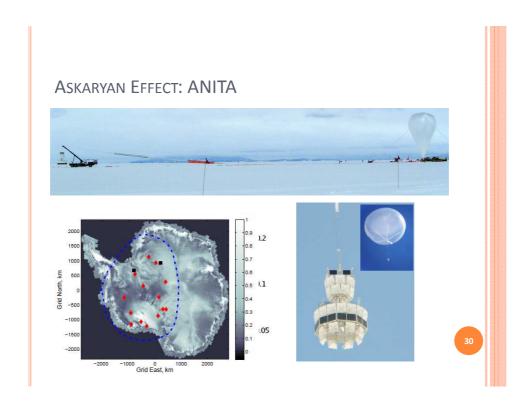
- Small scintillator-based airshower array (LORA) set up in LOFAR core
 - plastic scintillator detectors from KASCADE, set up in 5 sets of 4
 - estimated energy resolution ~30%, angular resolution ~1%
 - combined running with LOFAR expected soon

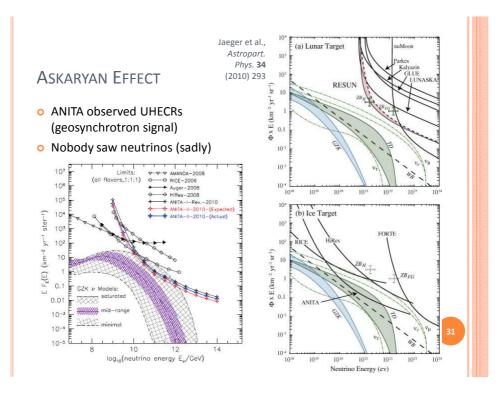


Thoudam et al., astro-ph/1102.0946v1

27

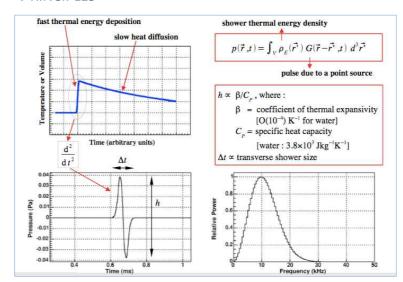

AUGER/AERA


- Preliminary studies using a few radio antennas at the Auger site gave promising results
- Plan to instrument 20 km² near Coihueco fluorescence telescope with 150 autonomous self-triggering radio antennas
 - 5000 events/year expected, 1000 above 10¹⁸ eV



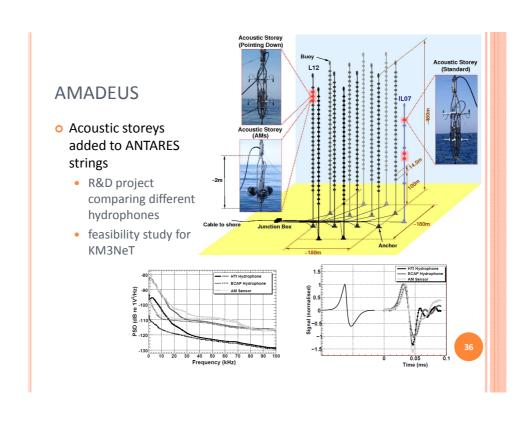
ASKARYAN EFFECT

- Effect demonstrated in sand(2000), rock salt (2004) and ice (2006)
 - all done in laboratory at SLAC
- Applications to neutrino detection
 - using the Moon as target
 - GLUE (detectors are Goldstone RTs)
 - NuMoon (Westerbork array; LOFAR)
 - o RESUN (EVLA)
 - using ice as target
 - FORTE (satellite observing Greenland ice sheet)
 - RICE (co-deployed on AMANDA strings, viewing Antarctic ice)
 - ANITA (balloon-borne over Antarctica, viewing Antarctic ice)

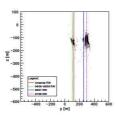


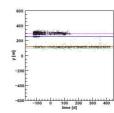
ACOUSTIC DETECTION (SHOWERING NEUTRINOS)

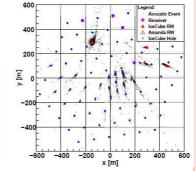
- o UHE (>1 PeV) neutrinos interact fairly readily
 - on entering dense medium (water) they will initiate shower
 - o this dumps energy in a thin cylinder (~20 m × 20 cm)
 - resulting pressure pulse spreads out from this cylinder in thin "pancake" perpendicular to incoming neutrino direction
 - produces characteristic bipolar acoustic pulse which can be detected by hydrophone array
 - advantages
 - o extremely long attenuation length (several km)
 - very large volume can in principle be instrumented with relatively small number of hydrophones
 - o hydrophone technology well established in underwater applications
 - can use off-the-shelf hardware
 - disadvantages
 - o the sea is a very noisy place
 - identifying signal very challenging


PRINCIPLES

EXPERIMENTS

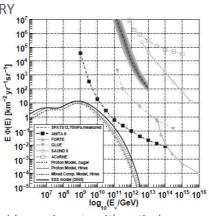

- ACORNE
 - UK feasibility study using military hydrophone array off Rona
- AMADEUS
 - codeployed with ANTARES
- o Lake Baikal
 - codeployed with Baikal-200
- ONDE
 - part of NEMO (NEutrino Mediterranean Observatory, not Neutrino Ettore Majorana Observatory!)
- SAUND-I and SAUND-II
 - in Bahamas, originally using military array, now extended
- SPATS
 - at South Pole, associated with IceCube


ACORNE • MoD hydrophone array off NW coast of Scotland • successful R&D project showing feasibility of technique • array geometry not optimal (not designed for neutrinos!) Example of background source—dolphin clicks!



SPATS

- Acoustic sensors on strings deployed in association with IceCube
 - very good at detecting IceCube drilling and water storage activities!



ACOUSTIC DETECTION: SUMMARY

- Experiments so far are R&D projects/feasibility studies
 - limits not competitive with radio at present
- Future strategy mostly co-deployment with large optical Cherenkovs
 - improves high-energy sensitivity
 - likely future direction: super-hybrid experiments with optical Cherenkov, acoustic and radio elements, plus air-shower array if appropriate
 - most nearly realised at South Pole with IceCube/IceTop/RICE/SPATS

NEUTRINO DETECTION: SUMMARY

- o High-energy neutrinos could provide information on
 - acceleration processes in high-energy astrophysics
 - GZK cut-off in cosmic rays
 - dark matter (see next lecture)
- Detection still in infancy
 - only IceCube probably large enough to collect statistics
- Various promising techniques
 - water Cherenkov at lower energies
 - radio and possibly acoustic at high end
- Hybrid experiments feasible at many sites