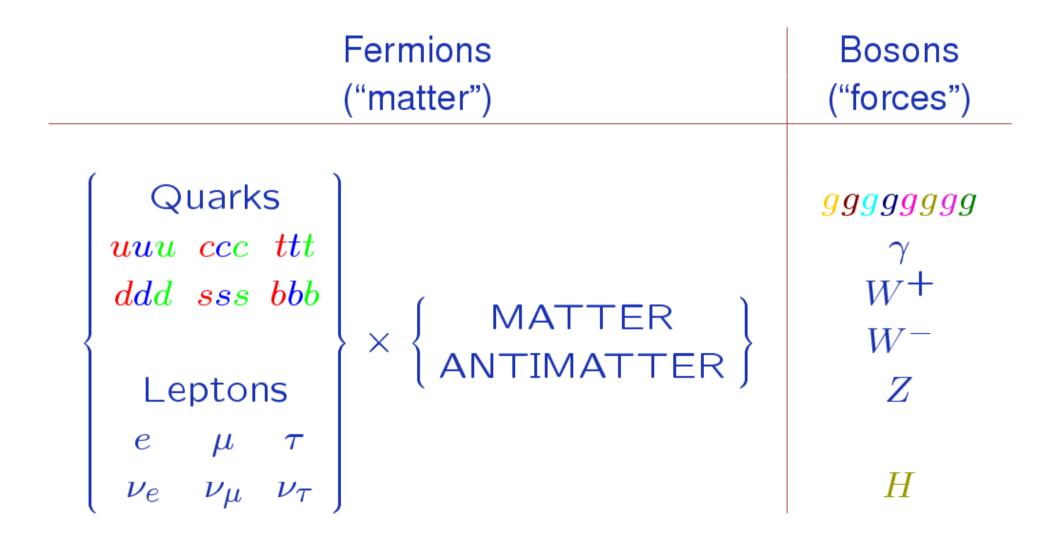
Flavour Physics

Tim Gershon University of Warwick


31 March 2014

Outline

Lecture 1

- what is flavour physics?
- some history, some concepts, some theory
- charged lepton physics

What is flavour physics?

Parameters of the Standard Model

- 3 gauge couplings
- 2 Higgs parameters
- 6 quark masses
- 3 quark mixing angles + 1 phase
- 3 (+3) lepton masses
- (3 lepton mixing angles + 1 phase)

() = with neutrino mass

Parameters of the Standard Model

- 3 gauge couplings
- 2 Higgs parameters
- 6 quark masses
- 3 quark mixing angles + 1 phase
- 3 (+3) lepton masses
- (3 lepton mixing angles + 1 phase)

() = with neutrino mass

PARAMETERS

What isn't flavour physics?

QCD: the strong interaction

though intimately related to quark flavour physics Electroweak physics

though intimately related to charged couplings & suppression of flavour changing neutral currentsquark masses and mixings generated via the Higgs mechanism

"Energy frontier physics" a.k.a "high-p, physics"

though important complementarity between searches for on-shell new particles and searching for their quantum effects in loop processes

Aspects of flavour physics

Families / generations

3 pairs of quarks (are we sure?)

3 pairs of leptons (are we sure?)

Hierarchies

m(t) > m(c) > m(u) $m(\tau) > m(\mu) > m(e)$

Mixings & couplings

hierarchy in quark mixings what about lepton mixings? m(b) > m(s) > m(d) $m(v_{T}) > m(v_{U}) > m(v_{e}) ?$

Aspects of flavour physics

Mixings & couplings

universality

(no) flavour changing neutral currents

Symmetry principles & their violation

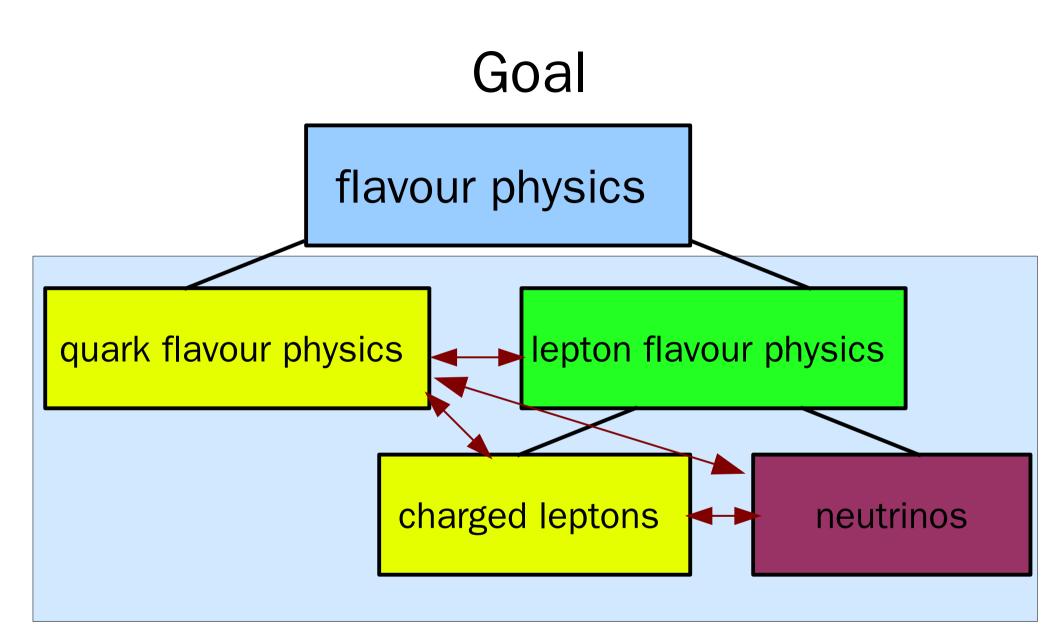
P violation / C violation

CP violation / T violation

baryon asymmetry of the universe

lepton flavour violation

Unification


What's special about neutrinos?

Parity violation

neutrinos only left-handed (chirality) antineutrinos only right-handed (chirality)

YET, not massless

where are the right-handed neutrinos? Could be a completely new type of field Physics beyond the Standard Model Possible probes of grand unification <u>See Steve Boyd's lectures</u>

Unified understanding of flavour physics!

Alternative Divisions

flavour physics

flavour changing physics

lifetimes, decays, mixings, CP violation flavour conserving physics

masses, dipole moments

History

Isospin

What is the difference between the proton (charge = +1) and the neutron (neutral)?

masses almost identical

coupling to the strong interaction identical

Heisenberg (1932) proposed (p,n) members of isospin doublet:

p: $(I,I_{_{_{1}}}) = (1/2,+1/2)$ n: $(I,I_{_{_{1}}}) = (1/2,-1/2)$

pions form an isospin triplet $\pi^{+,0,-}$: $(I,I_{7}) = (1, +1,0,-1)$

Isospin symmetry

Strong interaction same for proton & neutron

Hamiltonian invariant under global SU(2) rotation

pions thought to be Yukawa particles

gauge bosons responsible for mediating strong force (related to local SU(2) symmetry ... <u>not</u> correct description of strong interaction)

Isospin is not an exact symmetry

nonetheless, v. useful concept

successful because $m_u \sim m_d \& m_u, m_d < \Lambda_{ocd}$

Discovery of strangeness

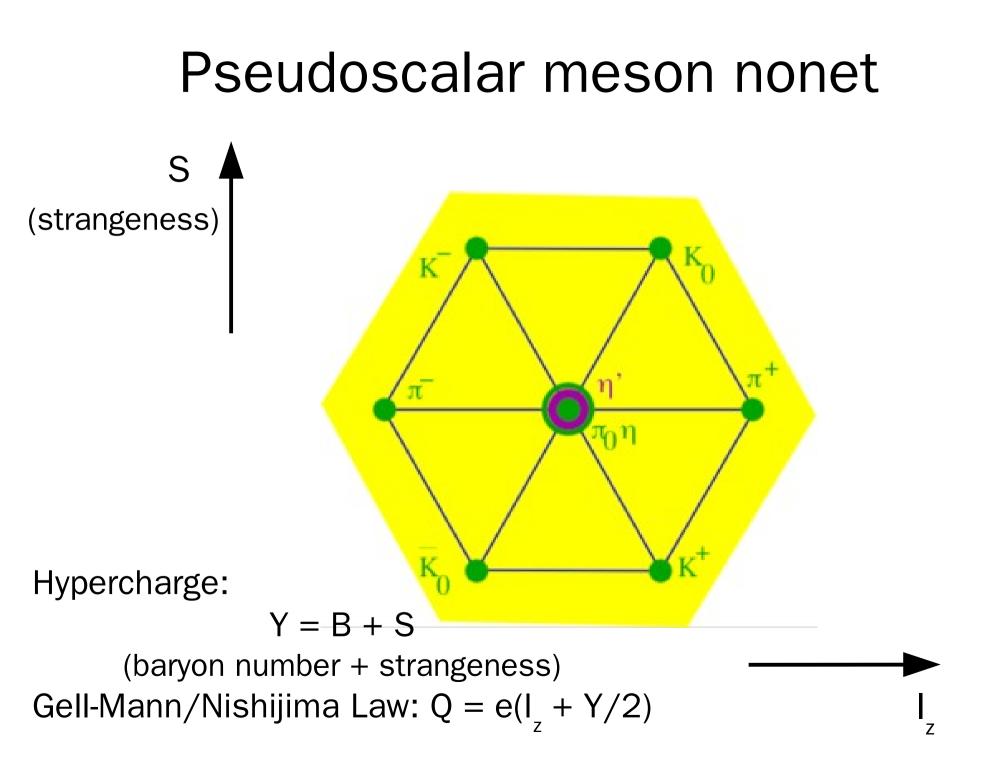
1947, G. D. Rochester and C. C. Butler

neutral particle (no track) \rightarrow two charged pions charged particle (track) \rightarrow charged pion + something lifetimes O(10⁻¹⁰s) – long-lived : "strange"

Gell-Mann & Pais: "strangeness"

conserved in strong interactions (production) quark-antiquark pairs produced violated in weak interactions (decay)

Gell-Mann, Nishijima & Ne'eman

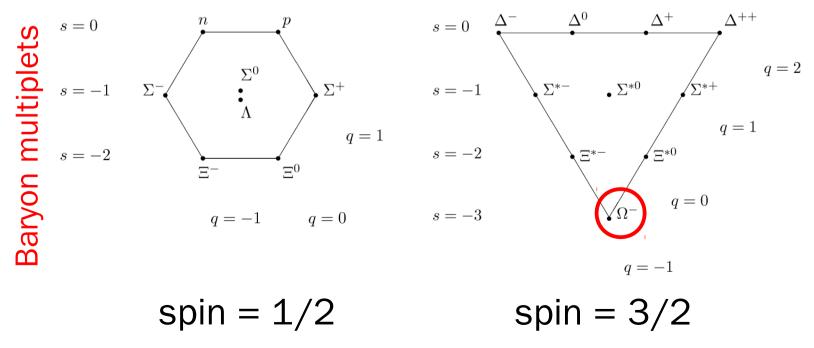

"the eight-fold way": SU(3) quarks

Note on the "quark model"

Nowadays, accepted that quarks are real, physical entities

Originally introduced as a *model* with which to explain the particle "zoo"

Acceptance of quarks not until after discovery of charm



The Quark Model circa 1960s

Many new particles discovered

"The eight-fold way" – flavour SU(3) – provides elegant scheme for categorisation

discovery of Ω^{-} (sss) [1964] in particular vindicates theory

The θ – τ puzzle

The particle decaying to $\pi^{*}\pi^{0}$ was originally called the θ

"Another" particle (called τ) decaying to $\pi^{+}\pi^{-}\pi^{+}$ was also discovered

parities of 2π and 3π are opposite

but masses and lifetimes of θ & τ same

Parity violation discovered 1957 (C.N.Wu, following T.D.Lee and C.N.Yang)

θ & τ are the same particle: " K⁺"

P and CP

Now understood that P is maximally violated in beta decay

no right-handed neutrinos

However, C is also maximally violated

no left-handed antineutrinos

Product CP is conserved (Landau 1957)

CP distinguishes absolutely between matter and antimatter Note that CPT is conserved in any Lorentz invariant gauge field theory (Luders, Pauli)

Cabibbo

Compare rates of

$$\begin{split} s &\rightarrow u \quad \text{eg. } \mathsf{K}^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \mathsf{v}_{\mu}, \, \Lambda \rightarrow p \pi^{\scriptscriptstyle +}, \, \Sigma^{\scriptscriptstyle -} \rightarrow n e^{\scriptscriptstyle +} \mathsf{v}_{e} \\ d &\rightarrow u \quad \text{eg. } \pi^{\scriptscriptstyle +} \rightarrow \mu^{\scriptscriptstyle +} \mathsf{v}_{\mu}, \, n \rightarrow p e^{\scriptscriptstyle +} \mathsf{v}_{e} \end{split}$$

 $s \rightarrow u$ transitions suppressed by a factor ~ 20

Small differences in values of Fermi constant measured from d \rightarrow u compared to muon decay

Cabibbo (1963) proposed:

$$(u,d)_{c} = (u, d \cos \theta_{c} + s \sin \theta_{c})$$

sin $\theta_{c} = 0.22$ (empirically)

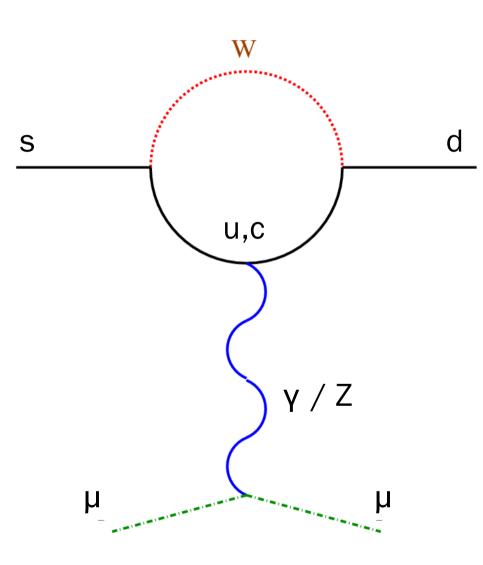
Neutral kaon mixing

Physical states turn out to be almost equal admixtures of strangeness eigenstates

$$K_{S} \simeq \frac{1}{\sqrt{2}} \left(K^{0} + \overline{K}^{0} \right) \qquad K_{L} \simeq \frac{1}{\sqrt{2}} \left(K^{0} - \overline{K}^{0} \right)$$

 $K_{s} \rightarrow \pi^{+}\pi^{-}, \pi^{0}\pi^{0}$ (CP even) $K_{L} \rightarrow \pi^{+}\pi^{-}, \pi^{0}\pi^{0}$ forbidden by CP symmetry $K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0}, \pi^{0}\pi^{0}\pi^{0}, \pi^{+-}e^{-+}v, \pi^{+-}\mu^{-+}v$

$$\begin{split} & \text{The GIM mechanism} \\ & \text{K}^+ \rightarrow \mu^+ \nu_\mu \text{ so why not } \text{K}^0 \rightarrow \mu^+ \mu^-? \\ & \text{K}^+ \rightarrow \pi^0 \mu^+ \nu_\mu \text{ so why not } \text{K}^0 \rightarrow \pi^0 \mu^+ \mu^-? \\ & \text{BR}(\text{K}_{\ } \rightarrow \mu^+ \mu^-) \sim 7 \ 10^{-9} \\ & \text{BR}(\text{K}_{\ } \rightarrow e^+ e^-) \sim 10^{-11} \\ & \text{BR}(\text{K}^0 \rightarrow \pi^0 \mu^+ \mu^-) <\sim 10^{-10} \end{split}$$


GIM (Glashow, Iliopoulos, Maiani) mechanism (1970)

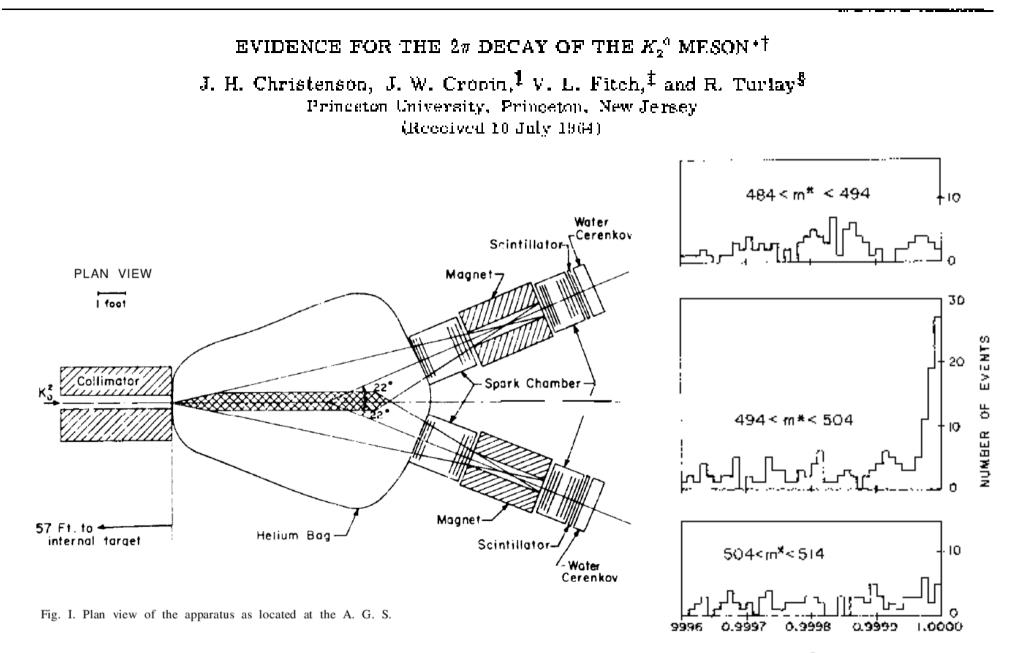
no tree level flavour changing neutral currents suppression of FCNC via loops

Requires that quarks come in pairs (doublets)

predicts existence of charm quark

GIM suppression of loops

 $A = V_{us}V_{ud}^{*} f(m_{u}/m_{w}) + V_{cs}V_{cd}^{*} f(m_{c}/m_{w})$ 2x2 unitarity: $V_{us}V_{ud}^* + V_{cs}V_{cd}^* =$ $\sin(\theta)\cos(\theta) - \cos(\theta)\sin(\theta) = 0$ $m_{\mu}, m_{\mu} < m_{\mu}$: $f(m_{\mu}/m_{\mu}) \sim f(m_{\mu}/m_{\mu})$.:. A ~ O kaon mixing \Rightarrow predict m


CP Violation

In 1964, Christensen, <u>Cronin</u>, <u>Fitch</u> & Turlay, unexpectedly observe $K_{I} \rightarrow \pi^{+}\pi^{-}$

 $CP(-1) \rightarrow CP(+1)$

Numerous explanations proposed

1973: Kobayashi & Maskawa demonstrate that CP violation arises naturally from quark mixing if there are 3 generations of quarks

cos 8

FIG. 3. Angular distribution in three mass ranges for events with $\cos \phi > 0.9995$.

CKM Matrix / KM mechanism

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

3x3 matrix of complex numbers \Rightarrow 18 parameters Unitary \Rightarrow 9 parameters

Quark fields absorb unobservable phases

 \Rightarrow 4 parameters

3 mixing angles and <u>1 phase</u> (V_{CKM} complex)

CP-Violation in the Renormalizable Theory of Weak Interaction

Progress of Theoretical Physics, Vol. 49 No. 2 pp. 652-657

Makoto Kobayashi and Toshihide Maskawa Department of Physics, Kyoto University, Kyoto

(Received September 1, 1972)

In a framework of the renormalizable theory of weak interaction, problems of CP-violation are studied. It is concluded that no realistic models of CP-violation exist in the quartet scheme without introducing any other new fields. Some possible models of CP-violation are also discussed.

Sakharov conditions

Proposed by A.Sakharov, 1967

Necessary for evolution of matter dominated universe, from symmetric initial state

baryon number violation

C & CP violation

thermal inequilibrium

No significant amounts of antimatter observed

 $\Delta N_{_{\rm B}}/N_{_{\rm Y}} = (N(baryon) - N(antibaryon))/N_{_{\rm Y}} \sim 10^{-10}$

Dynamic generation of BAU

Suppose equal amounts of matter (X) and antimatter (X) X decays to

A (baryon number N_{A}) with probability p

B (baryon number $N_{_{B}}$) with probability (1-p)

X decays to

<u>A</u> (baryon number $-N_{A}$) with probability <u>p</u>

<u>B</u> (baryon number $-N_{\rm B}$) with probability (1-<u>p</u>)

Generated baryon asymmetry:

$$\Delta N_{TOT} = N_A p + N_B (1-p) - N_A p - N_B (1-p) = (p - p) (N_A - N_B)$$

Require $p \neq p \& N_A \neq N_B$

CHARGED LEPTONS

Charged leptons

- Focus of these lectures is on quark flavour physics
- Neutrinos covered elsewhere
- What about charged leptons?
 - precision tests of the lepton flavour sector
 - lepton flavour violation
 - electric dipole moments
 - magnetic moments (g-2)

Lepton flavour violation

Essentially forbidden in the Standard Model Further improvements and upgrades expected from NEG experiment Muon sector limits

 $BR(\mu \rightarrow e\gamma) < 5.7 \times 10^{-13}$

New 4-reee experiment proposed @ PSI MEG Collaboration (PSI; Switzerland)

PRL 110 (2013) 201801

```
BR(\mu \rightarrow eee) < 1.0 \times 10^{-12}
```

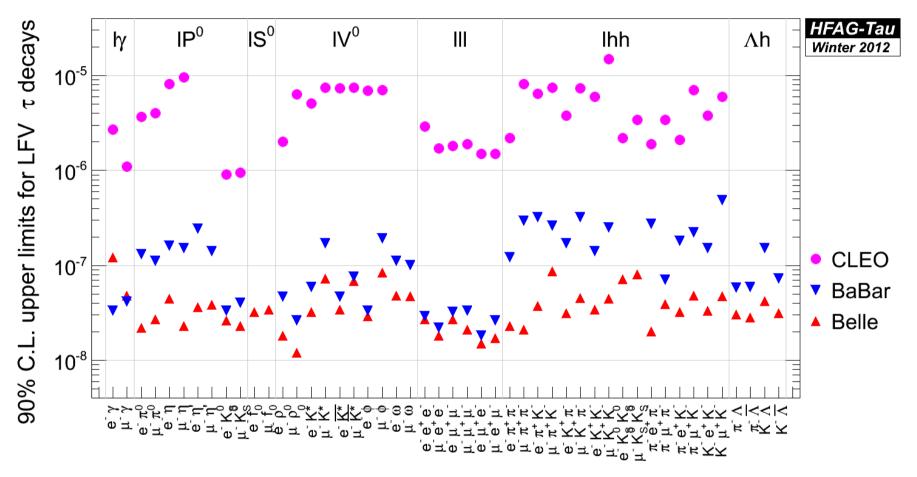
SINDRUM Collaboration (PSI)

NPB 299, 1 (1998)

 $\mu \rightarrow e$ conversion

various limits (capture on ³²S,Cu,Ti,Pb)

best is $\sigma(\mu Ti \rightarrow eTi)/\sigma(\mu Ti \rightarrow capture) < 4.3 \times 10^{-12}$


COMET/PRISM (JPARC) & mu2e (FNAL) proposed to improve on this limit

т lepton flavour violation

т has many more possible decay channels

BR(T→µγ), BR(T→eγ) <~ 10⁻⁸
BR(T→µπ⁰), BR(T→eπ⁰) <~ 10⁻⁷
BR(T→µK_s), BR(T→eK_s) <~ 10⁻⁸
BR(T→µµµ), BR(T→eµµ), BR(T→µee), ... <~ 10⁻⁸
All these limits from "B factories"
$$e^+e^- \rightarrow T^+T^-$$
 at $E_{_{CM}} = m(Y(4S))$
CLEO, BaBar, Belle

т lepton flavour violation

Main message: no sign of LFV Belle2 (KEK) will significantly improve on these limits (LHCb also has potential for $\tau \rightarrow \mu \mu \mu$ and some other modes)

Electric dipole moments

EDMs are both P violating and T violating

 $|d_{e}| < 8.7 \text{ x } 10^{-29} \text{ e cm}$ [Science 343 (2014) 6168, 269]

significant & continuing progress in last few years

- proposal to reach down to $O(10^{-24})$ e cm

т EDM limits [Belle, PLB 551, 16 (2003)]

$$\text{Re}(d_{-}) = (1.2 \pm 1.7) \times 10^{-17} \text{ e cm}$$

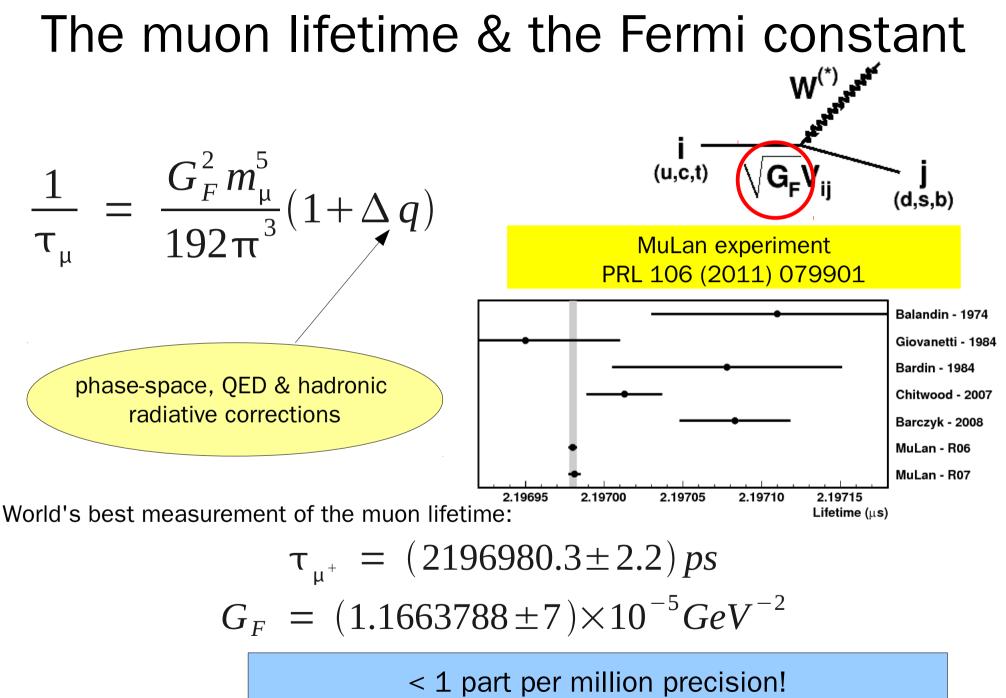
 $Im(d_{T}) = (-0.8 \pm 0.9) \times 10^{-17} e cm$

Many other EDMs also measured (proton, neutron, deuteron, various nuclei, ...)

EDM measurement sensitivity

For neutron EDM:

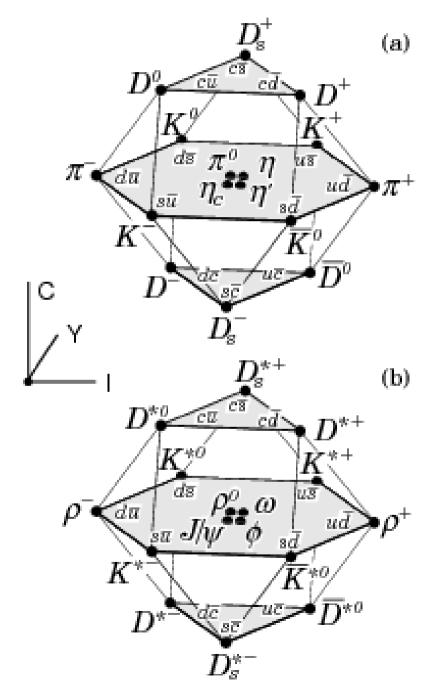
 $|d_n| < 3.0 \times 10^{-26} \text{ e cm} [PRL 97, 131801 (2006)]$

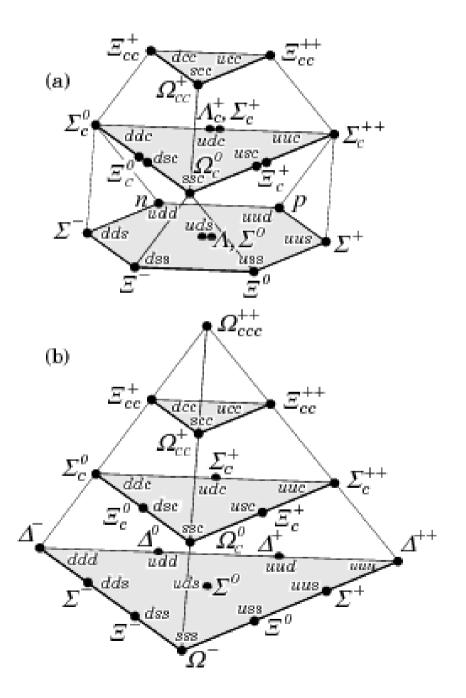

"If neutron were the size of the earth, current limit corresponds to a charge separation of $\sim 10 \ \mu m$ "

Anomolous magnetic moments

$(g-2)_{o}$ famous test of the precision of QED

 $(g-2)_{P}/2 = (1159.652186 \pm 0.000004) \times 10^{-6}$


Can also be tested for μ and τ , though theoretical corrections are larger and harder to calculate (includes also QCD effects)



Summary

- Development of quark model & flavour physics Key roles of
 - mixing, flavour changing neutral currents symmetries, CP violation
- Flavour physics probes high energy scales
 - prediction of existence and properties of charm, bottom and top quarks
 - link to matter-antimatter asymmetry of the Universe
- Charged lepton physics
 - new physics probes in both flavour-conserving and flavour-changing interactions

Hadron multiplets – SU(4)

