Is Super-B Sufficiently Superb? --On a Physics Menu for a Super-B Factory

Ikaros Bigi, Notre Dame du Lac

4/'06

2 questions

(A) ∃ sufficiently strong justification for dedicated heavy flavour program?

(B) If so -- does one really need a Super-B factory as part of such a program?

answer to question (A) straightforward:

fermion masses
 family structure
 CKM parameters
 central mysteries
 strongly suspected NP
 ssNP at ~ ??? TeV

Baryogenesis?

- Heavy flavour studies
 - ◆ are of fundamental importance,
 - their lessons cannot be obtained any other way and
 - ↔ they cannot become obsolete.

They will remain crucial in our efforts to reveal Nature's Grand Design irrespective of high p_T studies at FNAL, LHC & LC!

answer to question (B) much less straightforward

(3.1) Frontal/Brute Force Attack

(3.2) Obvious Attacks

(3.3) Attacking Supply Lines

(3.4) Flanking Attacks

(I) Sizing up the Enemy

Remember AC Milano leading FC Liverpool 3:0 at halftime with gorgeous play -- yet the pesky Brits, while still being outplayed, refused to concede.

That is the story as well with the SM:

Every self-respecting HEP type has designed extensions of the SM that are greatly superior to it --

now we have to overcome the stubborness of the SM to yield!

Latest point in case:

 $B_s - \overline{B}_s$ oscillations!

3 basic tenets

none of the novel successes of the SM weaken the case for New Physics -- presumably around the TeV scale

to learn the salient features of this New Physics we must study its impact on heavy flavour transitions -- even if there is none observable

CP studies `instrumentalized' to analyze this New Physics • we cannot count on numerically massive impact of this New Physics

need precision experimentally & theoretically

I am an enthusiastic supporter of a Super-B factory -- even if it is not near Rome or near Venice or near Pisa 6

(II) Defining Goals of the Campaign

 finding manifestations of TeV scale NP not enough -must aim for identifying its salient features

remember: SUSY an organizing principle - not a theory source & type of SUSY breaking quite obscure if cpNP = SUSY, then very atypical SUSY

info from heavy flavour studies complementary
 (not just additive) to that from LC studies

Super-B = Superflavour Factory!

 τ & charm
 include their requirements from the start

 resist temptation to fight last war!

justification for Super-B factory
3rd generation
<pre>precision tool: higher stat.</pre>
heavily mined gold mine
competing against larger than
competing against la ger man
expected success of B fact.

you cannot overdesign Super-B

Sanda's Challenge of L ~ 10^{43} `tongue-in-cheek',

yet not frivolous

Super-B has to & can be justified by comprehensive program:

1st priority B

2nd priority $\boldsymbol{\tau}$

3rd priority charm

(III) Strategies of Attack

(3.1) Frontal/Brute Force Attack

LHC

(3.2) Obvious Attacks

 \mathcal{E} in $B_d \rightarrow \pi\pi$, $\pi\pi\pi$, $\phi K_S \dots \eta K_S \dots$

time dependent Dalitz plot studies the tool of the future

"there is no royal way to fundamental physics"

can experimental sensitivity be exploited theoretically?

(3.3) Attacking Supply Lines

Prediction only as good as numerical input

need accurate values for |V(ub)|, |V(td)|, i.e. ± few %

V(ub)

```
popular opinion:

exclusive SL B decays

B \rightarrow | v D^* + \begin{cases} in the lattice \\ we trust' \end{cases} |V(cb)|, |V(ub)| \\ we trust' \end{cases}
yet Lenin: "Trust is good -- control is better!"
```

➡ inclusive SL B decays

partially integrat. had. recoil mass spectrum

 $\int dM_X d\sigma/dM_X (B \rightarrow I\nu X)$ with $M_{X,max} < M_D$

relevant HQP m_b, μ_{π}^2 , μ_{G}^2 , ρ_{D}^3 already known from energy and mass moments of $B \rightarrow l\nu X_c$ (need better $M_{2,3,4} \times !$) $\Delta V(ub)/V(ub) \sim 5\%$ appears quite feasible least reliable part theoretically: low q^2 (q=lepton momentum)

- cut low q^2 Bauer et al.
- 😊 can be done
- 8 lose constraints due to Sum Rules
- 😕 retain < 50 % of rate -- duality viol.?
- need dependence on q²
 statistics of Super-B
- •• infer from recoil mass spectrum in $B \rightarrow \gamma X$ Uraltsev,IBI
- Red photon spectrum below 2 GeV --

say 1.8 GeV < E_{γ} < 2 GeV

can one do that at Super-B?

V(cb)

 $B \rightarrow | v D$: 2 % conceivably achievable novel tool (Uraltsev): • BPS limit for $\mu_{\pi}^2 = \mu_{G}^2$ • expansions in $(\mu_{\pi}^2 - \mu_{G}^2) / \mu_{\pi}^2$ & in $1/m_{O}$ can be validated \bowtie compare V(cb) from $B \rightarrow |\nu D$ with V(cb)|_{incl} region calculate $f_{(q^2)}$, which can be measured in $B \rightarrow \tau \nu D$ -- presumably beyond B factories if validation successful \blacktriangleright search for NP in $\mathbb{B} \rightarrow \tau \nu \mathbb{D}$ (s. later)

Interpretation of accurate data?

 $\mathcal{E}P$ in $B \rightarrow 3\pi, 4\pi, 3K, ...$

different partial waves contribute with different signs to CP asymmetry even for given weak parameters: $A_{CP}(B^0 \rightarrow f) = \overline{\eta_f} \sin 2\phi... \sin \Delta mt$, $CP|f > = \eta_f|f >$

 $\Box \quad B \rightarrow 3\pi \qquad \phi_3 / \alpha \quad \& \text{ search for New Physics}$

 $3\pi = \rho \pi + \sigma \pi + ...$ even close to the ρ bands $\sigma \pi$ - chiral dynamics: not described by Breit-Wigner curve memento: `wrong' amplitudes contribute linearly to asymmetry -- & possibly with opposite sign!

need multi-neutral channels for clarification not feasible at hadronic colliders

(3.4) Flanking Attacks

search for a CP asymmetry in $B \rightarrow \gamma X_{s,d}$

 $B \rightarrow I^+I^- X_q$

a larger # of effective operators

- more observables: spectra of leptons, their forwardbackward & CP asymmetries
- with the statistics of Super-B can (start to) mine this wealth of potential information on New Physics
- much wider window to
 - ➡ find New Physics &
 - diagnose its features

• dynamical info in general different from $B \rightarrow I^+I^-X$

can a Super-B detector be sufficiently hermetic?

$B \rightarrow \tau \nu D/\tau \nu X_c$

search for charged Higgs contrib. in large tan β scenario in $\Gamma(B \rightarrow \tau \nu D) / \Gamma(B \rightarrow \mu \nu D)$ (Miki, Miura & Tanaka)

Yet

- \bigotimes hadronic form factors drop out only for $m_{b,c} \rightarrow \infty$
- $\hfill \hfill \hfill$
- *if* validated in extracting V(cb) from $B \rightarrow \tau v D$
- sensitive probe for non-minimal Higgs dynamics due to novel theoretical tool

Novel Territory: $e^+e^- \rightarrow B_sB_s$

- validate V(cb), V(ub) [V(td)]
- validate NP signals from $B \rightarrow \gamma X$, $I^+I^- X$
- search for $\Delta\Gamma$ driven \mathcal{CP}

τ Decays

 if baryogenesis driven by leptogenesis, want to find leptonic CP:

better chance in τ decays since

- more complex final states
- $rac{\tau}$ can be polarized -- even without polarized beams

$$e^+e^- \rightarrow \tau^+\tau^-$$

EPR!

- rare decays
 - $\tau \rightarrow \mu \gamma$, $e \gamma$
 - $\tau \rightarrow 3\mu$, 3e, µee, ...

tests of lepton universality

 $\tau \rightarrow \mu \mu^{+} \mu^{-} \iff b \rightarrow s \overline{s} s \qquad B \rightarrow \phi K_{s}! _{20}$

Charm Decays

- © FIChNC dynamics could be much stronger in up-type quarks
- only charm allows full range of probes for New Phys. there
- present absence of any New Physics hint not telling
 - only now entering realistic search territory
 - … and a long way to go!
- with and without D⁰ oscillations most reliable probe for NP

The program at the B factories has *primarily* been of the `hypothesis driven' variety -- and a most successful one at that! Yet at a Super-B factory (with τ & charm) we *primarily* have to do `hypothesis generating' research and search for the `New CP Paradigm'

You cannot overdesign it!

- A Super-B factory is also a
- Super-Tau as well as
- Super-Charm factory
- of truly unique capabilities

3rd family down-type quark
3rd family down-type lepton
2nd family up-type quark

NB:

Studies of CP, oscillations & rare decays instrumentalized to probe & analyze TeV scale New Physics

1 μ vertex driven by demands from charm & τ studies

A high quality data:

- $\left.\begin{array}{l} \text{low background} \\ \text{hermetic detector}\end{array}\right\} \begin{array}{l} B \to \tau\tau, \tau\nu, \tau\nu X \\ B \to \nu\nu X, B \to \gamma X_d \text{ vs. } \gamma X_s \\ \tau \to \nu e\nu/\mu\nu, \nu K\pi\end{array}$
- Solution is a straight of the second stra
- polarized e⁻ beam? Mainly for CP studies of τ decays

it is a new paradigm centered on precision in addition to high sensitivity -- many questions raised and problems suggested; answers require nontrivial work --

yet positive decision must be based on a vision!

There are still huge treasures to be found in heavy flavour studies --

but it will not be another `California Gold Rush'

`All roads lead to Rome'

Personally I wish this one does as well