Other Physics at a Super B Factory

Tim Gershon University of Warwick

Thursday 27th April 2006

"Other Physics"

- Key physics priorities of Super B Factory are well established (eg. Bigi, yesterday)
 - 1) B physics
 - 2) т physics
 - 3) D physics
- When considering the physics case, we should consider as full as picture as possible: 4), 5) ...
- We do not know who wins the medals until we run the race!

BABAR 100+ CITATIONS BELLE

1) B. Aubert et al., OBSERVATION OF A NARROW MESON DECAYING TO D+(S) PIO AT A MASS OF 2.32-GEV/C**2. Phys.Rev.Lett.90:242001,2003. [HEP-EX 0304021] Cited 291 times in the HEP (SPIRES-SLAC) database. [Full entry]	1) S.K. Choi et al., OBSERVATION OF A NARROW CHARMONIUM - LIKE STATE IN EXCLUSIVE B+ -> K+ PI+ PI- J / PSI DECAYS. Phys.Rev.Lett.91:262001,2003. [HEP-EX 0309032] Cited <u>189 times</u> in the HEP (SPIRES-SLAC) database. [Full entry]
2) B. Aubert et al., MEASUREMENTS OF BRANCHING FRACTIONS AND CP VIOLATING ASYMMETRIES IN B0 -> PI+ PI-, K+ PI-, K+ K- DECAYS. Phys.Rev.Lett.89:281802,2002. [HEP-EX 0207055] Cited <u>198 times</u> in the HEP (SPIRES-SLAC) database. [Full entry] 3) B. Aubert et al., MEASUREMENT OF THE CP VIOLATING	2) K. Abe et al., MEASUREMENT OF TIME DEPENDENT CP VIOLATING ASYMMETRIES IN B0 -> PHI K0(S), K+ K- K0(S), AND ETA-PRIME K0(S) DECAYS. Phys.Rev.Lett.91:261602,2003. [HEP-EX 0308035] Cited <u>125 times</u> in the HEP (SPIRES-SLAC) database. [Full entry] 3) P. Krokovny et al., OBSERVATION OF THE D(SJ)(2317) AND D(SJ)(2457) IN B DECAYS.
ASYMMETRY AMPLITUDE SIN 2BETA. Phys.Rev.Lett.89:201802,2002. [HEP-EX 0207042] Cited <u>326 times</u> in the HEP (SPIRES-SLAC) database. [Full entry]	Phys.Rev.Lett.91:262002,2003. [HEP-EX 0308019] Cited <u>129 times</u> in the HEP (SPIRES-SLAC) database. [Full entry] 4) K. Abe et al., AN IMPROVED MEASUREMENT OF MIXING INDUCED CP VIOLATION IN THE NEUTRAL B MESON SYSTEM
4) B. Aubert et al., A STUDY OF TIME DEPENDENT CP VIOLATING ASYMMETRIES AND FLAVOR OSCILLATIONS IN NEUTRAL B DECAYS AT THE UPSILON(4S). Phys.Rev.D66:032003,2002. [HEP-EX 0201020]	Phys.Rev.D66:071102,2002. [HEP-EX 0208025] Cited <u>221 times</u> in the HEP (SPIRES-SLAC) database. [Full entry] 5) S.K. Choi et al., OBSERVATION OF THE ETA(C)(2S) IN
Cited <u>146 times</u> in the HEP (SPIRES-SLAC) database. [Full entry] 5) B. Aubert et al., OBSERVATION OF CP VIOLATION IN THE BO MESON SYSTEM. Phys.Rev.Lett.87:091801,2001.	EXCLUSIVE B> K K(S) K- PI+ DECAYS. Phys.Rev.Lett.89:102001,2002., Erratum-Ibid.89:129901,2002. [HEP-EX 0206002] Cited <u>100 times</u> in the HEP (SPIRES-SLAC) database. [Full entry]
[HEP-EX 0107013] Cited <u>335 times</u> in the HEP (SPIRES-SLAC) database. [Full entry] 6) B. Aubert et al., THE BABAR DETECTOR. Nucl.Instrum.Meth.A479:1-116,2002.	6) K. Abe et al., OBSERVATION OF DOUBLE C ANTI-C PRODUCTION IN E+ E- ANNIHILATION AT S**(1/2) APPROXIMATELY 10.6-GEV. Phys.Rev.Lett.89:142001,2002. [HEP-EX 0205104] Cited <u>120 times</u> in the HEP (SPIRES-SLAC) database. [Full entry]
[HEP-EX 0105044] Cited <u>595 times</u> in the HEP (SPIRES-SLAC) database. [Full entry] 7) B. Aubert et al., MEASUREMENT OF CP VIOLATING ASYMMETRIES IN BO DECAYS TO CP EIGENSTATES.	7) K. Abe et al., OBSERVATION OF LARGE CP VIOLATION IN THE NEUTRAL B MESON SYSTEM. Phys.Rev.Lett.87:091802,2001. [HEP-EX 0107061] Cited 349 times in the HEP (SPIRES-SLAC) database. [Full entry]
Phys.Rev.Lett.86:2515-2522,2001. [HEP-EX 0102030] Cited <u>138 times</u> in the HEP (SPIRES-SLAC) database. [Full entry]	8) K. Abe et al., A MEASUREMENT OF THE BRANCHING FRACTION FOR THE INCLUSIVE B -> X(S) GAMMA DECAYS WITH BELLE. Phys.Lett.B511:151-158,2001. [HEP-EX 0103042]

OBSERVATION OF A NARROW MESON DECAYING TO D+(S) PIO

Quickly confirmed by Belle (& CLEO):

OBSERVATION OF A NARROW CHARMONIUM–LIKE STATE

Spectroscopy – possible medallists

- glueballs
 - possible production in B, D, J/ ψ , ... decay
- exotic states:
 - 4-quarks, 5-quarks, molecules, hybrids, ...
- low energy spectroscopy
 - $^-$ eg. $\pi\pi$ S-wave studies via Dalitz plot analyses
- undiscovered states

– eg. η_{b} – the lowest energy bb bound state (!)

Tools for spectroscopy @ SuperB

- Production
 - ISR
 - γγ
- Decay
 - B, D, charmonia decays
 - hadronic, semileptonic, radiative decays
 - т decays
- (Different processes related by Watson's theorem)

Hadronic B decay spectroscopy

- Example from charmed B decays
 - $B^+ \rightarrow D^{(*)} \pi^+ \pi^+$
- Belle, PRD 69 (2004) 112002

Operation in the Y region

- Primary operation at the Y(4S)
- Operation also at Y(5S) (B $_{_{S}}$ physics) and $\psi(3770)$ also discussed
- Other CM energies
 - Y(1S) [small energy spread very beneficial]
 - production of $\eta_{_{b}}$ via $Y(1S) \rightarrow \eta_{_{b}}\gamma$ (?)
 - Y(2S), Y(3S) ...
 - above Y(5S)
 - $\rm B_{_{\rm c}}$ production and decay

B_{c} physics

- Interest in ${\rm B}_{\rm _c}$ mesons for various reasons
 - QCD : both quarks quite heavy
 - CP violation : several interesting channels
 - $B_{c}^{+} \rightarrow DD_{s}^{+}$ is equivalent of $B_{u}^{+} \rightarrow DK^{+}(\gamma)$
 - sensitivity depends on $\rm r_{_B}$ ~10% ($\rm B_{_u})$ \Rightarrow ~100% ($\rm B_{_c})$
- B_c production quite suppressed at LHC
 - what about (near) threshold $e^+e^- \rightarrow B_c^+B_c^-$?
 - clean environment \rightarrow many more available channels

Electroweak physics

- Possibility to measure sin²θ_w in e⁺e⁻ → μ⁺μ⁻ discussed (by W.Bartel) in SuperKEKB Lol
 – hep-ex/0406071
- For higher luminosity SuperB, $e^+e^- \rightarrow M^+M^-$ (M= π ,K,D) also possible
- "Simple" measurement of forward-backward asymmetry, but sensitivity of $O(10^{-3})$ required

Figure 4.54: Scale dependence of $\sin^2 \Theta_W$. The full symbols show the current situation, while the open symbols with error bars for the proposed experiments QWEAK, SLAC E-158 and Belle are placed at the correct cm energy with arbitrarily chosen vertical positions. The previous measurements are determinations from atomic parity violation (AVP) [349], deep inelastic neutrino scattering (NuTeV), and from Z-pole asymmetries (LEP/SLC).

In the electro-weak process $e^+e^- \rightarrow \mu^+\mu^-$ the values for $\sin^2\Theta_W$ and ρ are derived from a fit to the angular distribution (Θ^*) of μ pairs with respect to the axis of the incoming positron in the e^+e^- center of mass system [350].

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} (C_1 (1 + \cos^2 \Theta^*) + C_2 \cos \Theta^*)$$
(4.96)

with the following definitions:

$$C_1 = 1 + 2v_e v_\mu \chi + (v_e^2 + a_e^2)(v_\mu^2 + a_\mu^2)\chi^2, \qquad (4.97)$$

$$C_2 = -4a_e a_\mu \chi + 8v_e a_e a_\mu \chi^2, \qquad (4.98)$$

$$v_{e,\mu} = -1 + 4\sin^2\Theta_W, \quad a_{e,\mu} = -1.$$
 (4.99)

The quantity χ may be written in two different ways, as a function of $\sin^2\Theta_W$ or as a function of ρ

$$\chi = \frac{1}{16\sin^2 \Theta_W \cos^2 \Theta_W} \frac{s}{(s - M_Z^2)}$$
(4.100)

 $O\Gamma$

$$\chi = \frac{\rho G_F M_Z^2}{8\pi \alpha \sqrt{2}} \frac{s}{(s - M_Z^2)}$$
(4.101)

where s is the square of the center of mass energy.

Summary

- The core of the physics program is well established and well motivated
 - addresses "big questions" of particle physics
- However, it is important that SuperB has potential in numerous other areas
- The most interesting results are often surprises!

Super B Factory ⇒ Super <u>Fl</u>avour Factory

