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What is flavour physics?

“The term flavor was first used in particle 
physics in the context of the quark model of 
hadrons. It was coined in 1971 by Murray 

Gell-Mann and his student at the time,
Harald Fritzsch, at a Baskin-Robbins ice-

cream store in Pasadena. Just as ice cream 
has both color and flavor so do quarks.”

RMP 81 (2009) 1887
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Mysteries of flavour physics
● Why so many fermions?
● What explains

➢ the mixing patterns?
➢ the matter-antimatter 

asymmetries (CP violation)?
● Are there connections 

between quarks and leptons?
Can be studied with leptons and light quarks, 

but the b quark is especially interesting
[which means studies of b hadrons – important role of QCD)]
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The CKM matrix

V CKM=V ud V us V ub

V cd V cs V cb

V td V ts V tb


● A 3x3 unitary matrix
– Encodes relative misalignment of mass and flavour bases that arises in the Standard Model 

following electroweak symmetry breaking (Higgs mechanism)
● Described by 4 real parameters – allows CP violation (KM: Prog.Theor.Phys. 49 (1973) 652)
● Highly predictive

– Describes phenomena at energies from nuclear β decay to top quark decays

… the b quark is especially interesting
[which means studies of b hadrons – important role of QCD)]

https://doi.org/10.1143/PTP.49.652
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Seeing and inferring
● Weak decays of b hadrons involve virtual mediators
● We only “see” the final state particles

– but can “infer” information about the mediators
– advantage: not limited by energy of collisions
– loop processes particularly interesting due to SM structure

● Formally, use effective field theory

B
K*
μ+
μ–

Bs0 Bs0
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The flavour microscope
● Flavour physics provides a wide range of Standard Model tests

– Genuine potential for discovery of physics beyond 
● SM structure is distinctive, and need not be replicated BSM

– Absence of tree-level flavour-changing neutral currents
– V-A structure of the charged current 
– Universality of couplings to different leptons

● Quark mixing (CKM matrix) described by only 4 parameters
– Highly overconstrained → allows powerful consistency tests

● Sensitivity limited by precision
– For theoretically clean channels, this means data sample size

zepto



8Enormous!
Potentially overwhelming 

background; can be overcome 
with precision vertexing ...

… for which the 
high boost helps

Many channels can be 
studied; need excellent 

PID and mass resolution

Heavy flavour production at hadron colliders
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The LHCb Detector
JINST 3 (2008) S08005

Precision primary and secondary 
vertex measurements

Excellent K/π separation 
capability

VELO silicon strips RICH PMTs

The LHCb detector
(2011-18 edition)
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LHCb integrated luminosity
~2010 – 2020

Total sample
2011–18 

9/fb

For ∫Ldt to mean 
anything, it has to 
be multiplied by σ
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LHCb integrated luminosity
~2010 – 2020

9/fb x 500 μb x 2 ~ 1013

Unprecedented samples of charm and beauty
Dependence of production rate on √s means (for LHCb) 
2015+16 ≈ 2 x Run 1 (2011+12); 2017+18 ≈ 2 x 2011–16
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Examples of results obtained with original 
LHCb detector (Run 1 & 2 data; 9/fb)
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B0 and Bs
0 mixing rates

Δms = 17.7683 ± 0.0051 ± 0.0032 ps–1

Nature Phys. 18 (2022) 1
To measure mixing rate, need to 

● Measure flavour (B(s)
0 or B(s)

0) at 
production 
● “flavour tagging”: exploit 

properties of other particles 
produced in the same collision

● Measure flavour at decay
● use flavour-specific decays like 

Bs
0 → Ds

–π+ or Ds
–μ+ν

● Measure time between production 
and decay
● Δz = βγcΔt

Lorentz boost factors, not CKM angles

https://doi.org/10.1038/s41567-021-01394-x
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Digression: B0 and Bs
0 mixing rates

Δms = 17.7683 ± 0.0051 ± 0.0032 ps–1

Nature Phys. 18 (2022) 1Eur. Phys. J. C76 (2016) 412

Δmd = 0.5050 ± 0.0021 ± 0.0010 ps–1

https://doi.org/10.1038/s41567-021-01394-x
https://doi.org/10.1140/epjc/s10052-016-4250-2
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

 VudVub
∗ V cdV cb

∗ V tdV tb
∗ = 0

Three complex numbers add to zero
⇒ triangle in Argand plane

The Unitarity Triangle

Axes are ρ and η:
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sin(2β) from B0→J/ψKS
LHCb-PAPER-2023-013

arXiv:2309.09728

S(ψKS) = 0.717 ± 0.013 (stat) ± 0.008 (syst)
[S(ψKS) ≈ sin(2β)]

Asymmetry corrected 
for tagging dilutionτ(B0) = 1.52 ps

Range of plot 
covers ten B0 

lifetimes!

https://arxiv.org/abs/2309.09728
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γ from B+/– → DK+/–

JHEP 04 (2021) 081 Neutral D meson 
different admixture of 
D0 and D0 depending 

on final state

Suppressed D→Kπ 
mode: enhanced CP 

violation 
(two amplitudes of 

comparable magnitude)

Favoured mode: 
little CP violation 
(but important to 

control systematics)
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γ from B→DK (BPGGSZ)
LHCb, JHEP 02 (2021) 169 

D→KSπ+π– Dalitz plot from
(left) B+→DK+, (right) B–→DK– 

γ = (68.7 +5.2
−5.1)∘

Important input from 
BESIII measurements 

with ψ(3770) data

this plot DD sample only
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The CKM description of CP violation

Partial rate asymmetries in B+/– → DK+/–

Decay-time dependent asymmetry in B0 → J/ψK0

arXiv:2212.03894

All constraints from different measurements overlap!

arXiv:2206.07501

Mixing rates in 
B(s)

0–B(s)
0 

systems

https://arxiv.org/abs/2212.03894
https://arxiv.org/abs/2206.07501
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CP violation in charm oscillations
A null test of the SM

Charm oscillations very slow, so only see ΔmDt dependence instead of sin(ΔmDt)
PRL 127 (2021) 111801

Important input from 
BESIII measurements 

with ψ(3770) data

https://doi.org/10.1103/PhysRevLett.127.111801
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Testing the SM with highly suppressed B(s)
0→μ+μ–

PRL 128 (2022) 041801

See also CMS PL B842 (2023) 137955
and ATLAS  JHEP 04 (2019) 098

c.f. SM:

?

https://doi.org/10.1103/PhysRevLett.128.041801
http://dx.doi.org/10.1016/j.physletb.2023.137955
https://link.springer.com/article/10.1007/JHEP04(2019)098
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Testing the SM with rare B decays
Angular distributions of B0→K*0μ+μ–

 PRL 125 (2020) 011802

Tension (3.3σ) 
with SM prediction

https://doi.org/10.1103/PhysRevLett.125.011802
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Testing the SM with rare B decays
Angular distributions of B0→K*0e+e– at very low q2

JHEP 12 (2020) 081

Strong constraints on the 
polarisation of the virtual photon

https://doi.org/10.1007/JHEP12(2020)081
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New hadrons!
Which are your favourites?
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Charmonium pentaquarks
PRL 115 (2015) 072001
PRL 122 (2019) 222001

Structure in 
m(J/ψp) in 
Λb

0→J/ψpK– 
decays

https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.122.222001
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Tetraquarks with 4 flavours

Tcs and Tcs structures in 
m(D–K+) in B+→D+D–K+ decays
m(Ds

+π) in B→Ds
+πD decays

PR D102 (2020) 112003
PRL 131 (2023) 041902

https://doi.org/10.1103/PhysRevD.102.112003
https://doi.org/10.1103/PhysRevLett.131.041902
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Double charm hadrons
PRL 115 (2015) 072001PRL 119 (2017) 112001

Nature Phys. 18 (2022) 751

Ξcc
++ → Λc

+K–π+π+ Tcc
+ → D0D0π+

https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.119.112001
https://doi.org/10.1038/s41567-022-01614-y
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New hadrons!

What new 
discoveries 
will come 

here?
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LHCb as of today
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LHCb Upgrade I
VELO pixels & thinned RF foil 

→ better vertex resolution

All software trigger
→ better efficiency

Higher instantaneous luminosity
→ more data, more precision

Designed to collect 50 fb–1

→ ×10 data increase vs. today
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Pixel VELO
Identification of displaced vertices crucial to identify B decays at hadron colliders

Commissioning ongoing!
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Data processing at 30 MHz
Traditional HEP trigger model:
 – select interesting events with loose criteria for 
later offline analysis 

At high luminosity, every pp bunch-crossing 
contains a potentially interesting event

Need a new paradigm
 – full software trigger
 – first level trigger (HLT1) implemented in GPUs
 – offline quality reconstruction: calibration and 
alignment performed before HLT2
 – select relevant information in each event to 
store for offline analysis

n.b: 
data rate from LHCb detector (32 Tb/s)
global internet traffic 2022 (997 Tb/s)

    Comput.Softw.Big Sci. 6 (2022) 1

https://doi.org/10.1007/s41781-021-00070-2
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Why stop there?

LHCb Upgrade I 
will get us here

LHCb Upgrade II needed
to fully exploit HL-LHC
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The future … LHCb Upgrade II
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LHCb Upgrade II
Crucial to use 

precision timing 
information to 

separate primary 
vertices in same pp 

bunch crossing

LHCB-TDR-023

Need for radiation 
hardness presents 

significant challenge

Unprecedented data 
rates to be processed 

in real time

http://cdsweb.cern.ch/record/2776420
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The need for timing

● High LHC luminosity achieved by increasing number of pp interactions per bunch crossing
● Large detector occupancies → many possible fake combinations
● But LHC bunches are long (~50 mm); collisions in each bunch crossing occur over ~0.2 ns
● Detection with ~20 ps resolution per track gives new handle to associate hits correctly 
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Vertex detector (VELO)
● Candidate sensors

– thin planar, LGAD, 3D
● Candidate ASICs (28 nm technology)

– VeloPix2, Timespot 
● Mechanical design challenges

– cooling, module replacement, minimisation of 
material (RF foil), vacuum compatibility

● Fast tracking, tagging also important for 
kaon experiments (NA62/HIKE)
– maybe also for neutrino experiments? 

(see EPJ C82 (2022) 465)

https://doi.org/10.1140/epjc/s10052-022-10397-8
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MAPS tracker
● Central region of SciFi tracking 

stations to be replaced with 
silicon detectors

● Use MAPS technology, also for 
Upstream Tracker (UT)
– Can meet radiation requirement 

(3×1015 neq/cm2 at UT)
– First large scale tracking detector 

with this technology
– Building on experience from STAR, 

ALICE, ATLAS and mu3e
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Electromagnetic calorimeter
● LHCb ECAL not replaced (except electronics) in Upgrade I

– in Run 3 will operate at 25× its design luminosity!
● Proposal for crystal fibres (SpaCal) in central region + Shashlik (outer region)

– timing information (σt ~ 20 ps) used to help suppress background
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RICH
● Add timing window to reject out of time hits
● Requires new photon detector (SiPM and MCP devices under test), electronics 

(FastRICH development of FastIC ASIC under development) and optics/mechanics
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TORCH detector
● Highly-polished quartz plate used as Cherenkov 

radiator: 1 cm thick (~10% X0)
● Photons transported by internal reflection + 

focusing optics to photon detectors. Arrival time 
and position of photons measured precisely

● Measured Cherenkov angle is used to correct for 
dispersion in the quartz: TOF+RICH → TORCH

● At ~10m downstream of collision point, require 
per track resolution of 15 ps for 3σ K/π 
separation →  per photon resolution of 70 ps. 

● “Start time” t0 can be determined from timing of 
other tracks from primary vertex
– Associate tracks to correct vertices
– Reject “ghost” tracks

Performance demonstrated in test beam with half-size module: NIM A961 (2020) 163671

https://doi.org/10.1016/j.nima.2020.163671
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LHCb Upgrade II physics impact
LHCB-TDR-023

http://cdsweb.cern.ch/record/2776420
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Summary
● Flavour physics provides a powerful zeptoscope to probe the smallest 

scales
– complementary to Higgs physics and high energy probes

● Enormous progress with breath-taking results from first phase of LHCb 
– some tensions with SM predictions to be understood

● Exciting prospects for 2020s with Belle II and LHCb Upgrade I
● Developing technology for the new eyes of LHCb Upgrade II

– Many opportunities, new collaborators welcome
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Back up



  47

HFLAV world average
2023 (preliminary)

sin(2β) = 0.708 ± 0.011

Precision now an order of 
magnitude better compared to 

first observations of 2001
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Testing the SM with highly suppressed B(s)
0→μ+μ–

PRL 128 (2022) 041801  CMS-PAS-BPH-21-006  JHEP 04 (2019) 098

https://doi.org/10.1103/PhysRevLett.128.041801
https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-21-006/index.html#Sum
https://link.springer.com/article/10.1007/JHEP04(2019)098
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Testing the SM with rare B decays
Lepton universality in B→K(*)l+l– decays

Nature Phys. 18 (2022) 277

Tension (3.1σ) 
with SM prediction

https://doi.org/10.1038/s41567-021-01478-8
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LHCb Upgrade I commissioning
π0→ɣɣ D0→K–π+

J/ψ→μ+μ–

Observations of SM standard candles
Vertexing, tracking, calorimetry and 
particle identification all working well

Resolution will improve with calibration 
and alignment
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