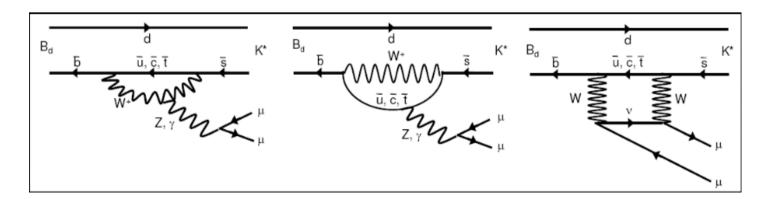


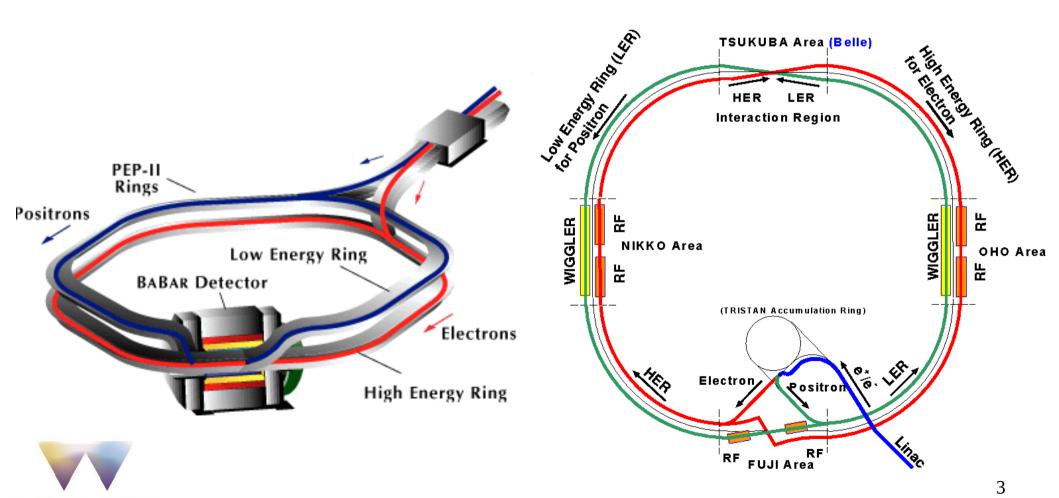
Rare decays at BaBar and Belle

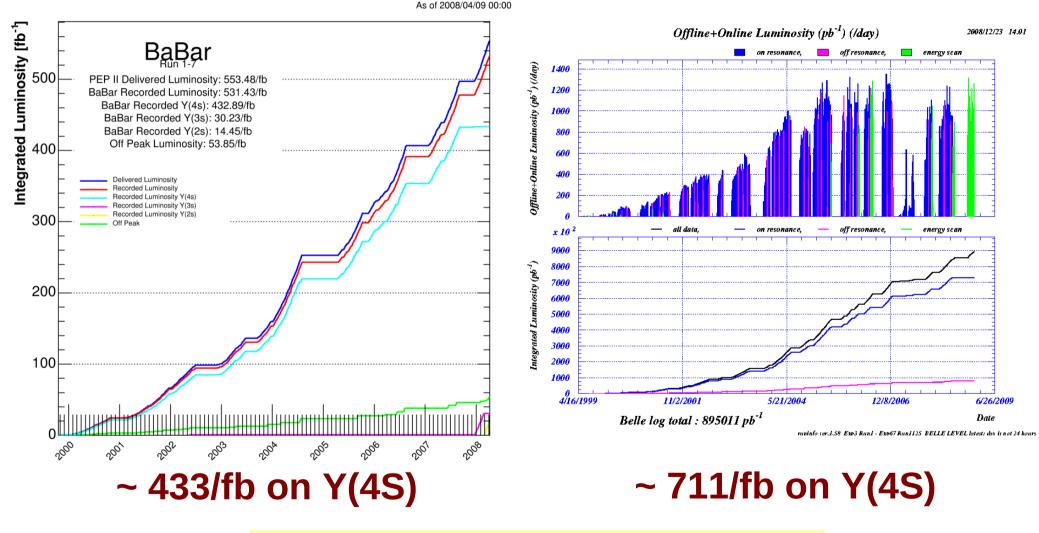

Tim Gershon,
University of Warwick
on behalf of the BaBar & Belle collaborations

CKM2018, 17th September 2018

Outline

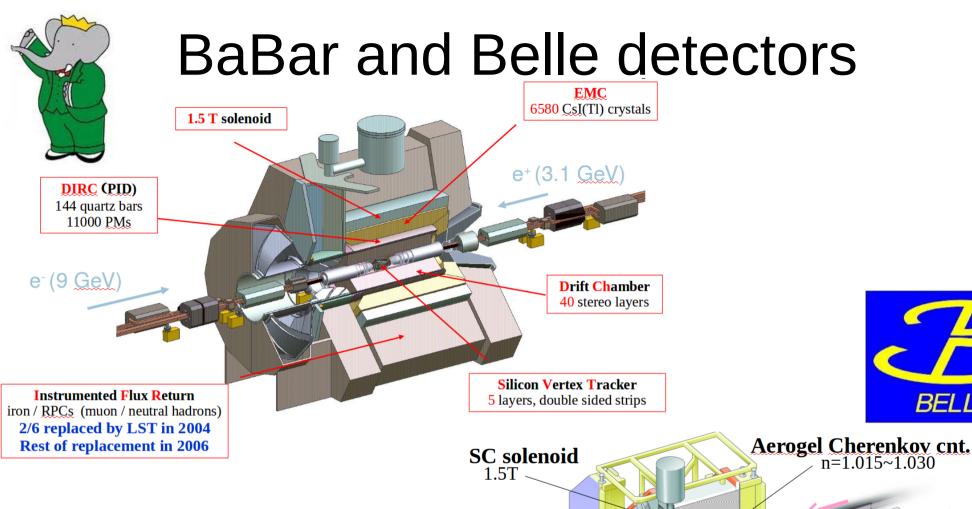
- Flavour-changing neutral current B decays are sensitive to physics beyond the Standard Model
- Various observables can be constructed to test the SM: rates, asymmetries (kinematic, isospin, CP)
 - Results can be used to constrain Wilson coefficients
 - Null tests, such as lepton flavour violation, also possible
- B factories have produced many results in this area
 - Unique datasets which continue to be mined!



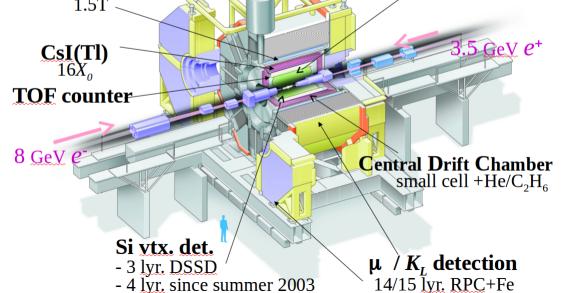

Asymmetric B Factories

PEPII at SLAC

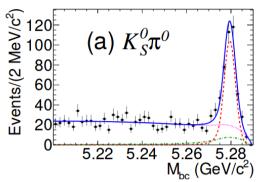
KEKB at KEK 9.0 GeV e^{-} on 3.1 GeV e^{+} 8.0 GeV e^{-} on 3.5 GeV e^{+}

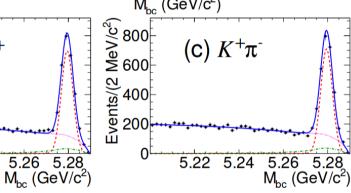


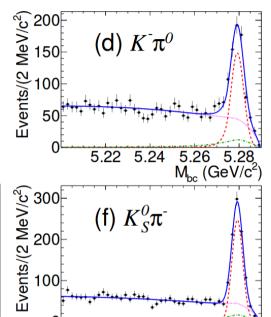
B factories – world record luminosities

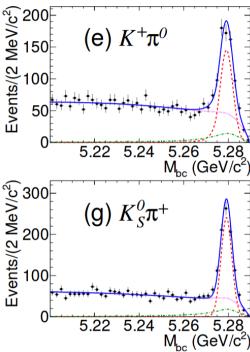


Total over 10⁹ BB pairs recorded plus special runs at other energies




- b → sy transitions excellent probe for physics beyond the Standard Model
 - strong history of measurements of rates and asymmetries from 1st (CLEO, ARGUS) and 2nd (BaBar, Belle) generation B factories
 - but still some observables not fully studied
 - e.g. isospin rate asymmetry Δ_{0+} and ΔA_{CP}
 - Reconstruct K* as K+ π -, K+ π 0, K_S π +, K_S π 0
 - $m(K\pi) < 2.0 \text{ GeV}$
 - $-0.2 < \Delta E < 0.1$ GeV requirement
 - MVA to reject qq background

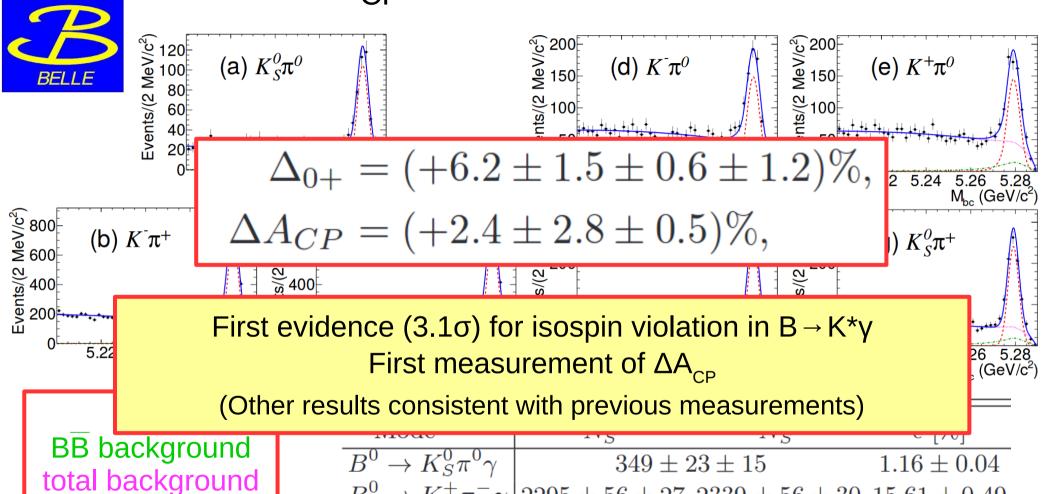



Events/(2 MeV/c²) 009 000 005

5.22 5.24

signal
BB background
total background

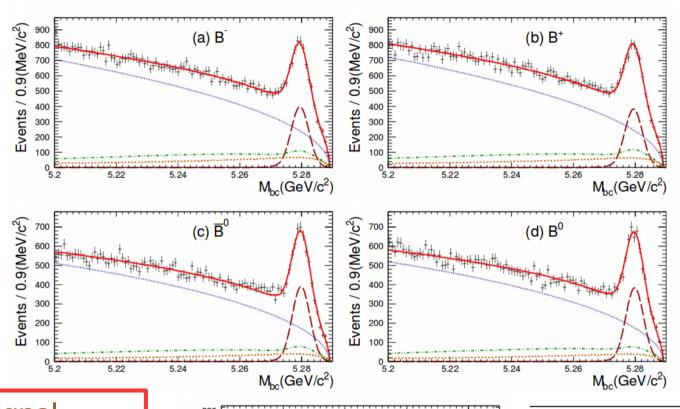
5.24


(b) $K^{-}\pi^{+}$

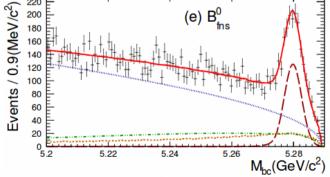
5.22

Mode	$N_S^{ar{B}}$	N_S^B	ϵ [%]
$B^0 \to K_S^0 \pi^0 \gamma$	349 ± 2	23 ± 15	1.16 ± 0.04
$B^0 \to K^+ \pi^- \gamma$	$2295 \pm 56 \pm 27$	$2339 \pm 56 \pm 30$	15.61 ± 0.49
$B^+ \to K^+ \pi^0 \gamma$	$572 \pm 32 \pm 12$	$2339 \pm 56 \pm 30$ $562 \pm 31 \pm 11$	3.66 ± 0.12
$B^+ \to K_S^0 \pi^+ \gamma$	$745 \pm 32 \pm 8$	$721 \pm 32 \pm 9$	5.01 ± 0.14

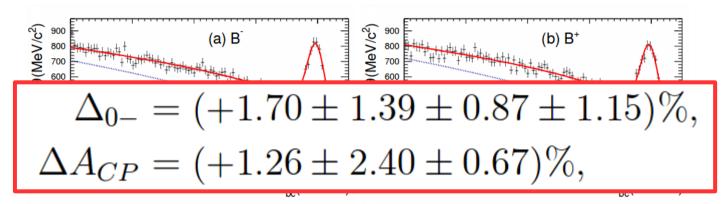
5.26 5.28 M_{bc} (GeV/c²)


Mode	118	118	C [70]
$B^0 \to K_S^0 \pi^0 \gamma$	349 ± 2		1.16 ± 0.04
$B^0 \to K^+ \pi^- \gamma$	$2295 \pm 56 \pm 27$	$2339\pm 56\pm 30$	15.61 ± 0.49
$B^{0} \to K^{+}\pi^{-}\gamma$ $B^{+} \to K^{+}\pi^{0}\gamma$	$572 \pm 32 \pm 12$	$562 \pm 31 \pm 11$	3.66 ± 0.12
$B^+ \to K_S^0 \pi^+ \gamma$	$745 \pm 32 \pm 8$	$721 \pm 32 \pm 9$	5.01 ± 0.14

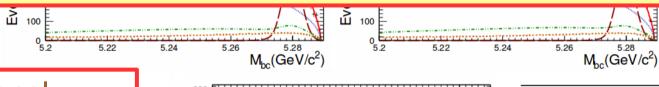
- Rates and CP asymmetries for $\overline B{}^0 \to X_s{}^0 \gamma$ and $B^- \to X_s{}^- \gamma$ should be almost identifical in the Standard Model [PRL 106 (2011) 141801]
 - excellent null tests
 - measurement of Δ_{0-} can reduce theory uncertainty on $B(B \to X_s \gamma)$
- Use "semi-inclusive" (i.e. sum of exclusive) technique
 - many modes studied
 - B+, Bo and Bo flavour-non-specific (fns; *)
 - Expect 56% (74% with K⁰ → K_s) of total X_s rate
 - require
 - $m(X_s) < 2.8 \text{ GeV} + D \text{ veto}$
 - mode-dependent ΔE requirement
 - MVA to reject qq background

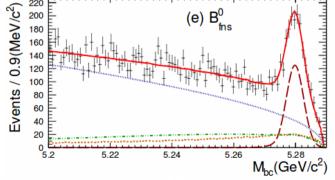


	-1		
Mode ID	Final state	Mode ID	Final state
1	$K^+\pi^-$	20	$K_S^0 \pi^+ \pi^0 \pi^0$
2	$K_S^0\pi^+$	21	$K^{+}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
3	$K^+\pi^0$	22*	$K_S^0 \pi^+ \pi^- \pi^0 \pi^0$
4*	$K_S^0\pi^0$	23	$K^+\eta$
5	$K^{+}\pi^{+}\pi^{-}$	24*	$K_S^0 \eta$
6*	$K_{S}^{0}\pi^{+}\pi^{-}$	25	$K^+\eta\pi^-$
7	$K^{+}\pi^{-}\pi^{0}$	26	$K_S^0 \eta \pi^+$
8	$K_S^0 \pi^+ \pi^0$	27	$K^+\eta\pi^0$
9	$K^{+}\pi^{+}\pi^{-}\pi^{-}$	28*	$K_S^0 \eta \pi^0$
10	$K_S^0 \pi^+ \pi^+ \pi^-$	29	$K^+\eta\pi^+\pi^-$
11	$K^{+}\pi^{+}\pi^{-}\pi^{0}$	30*	$K_S^0 \eta \pi^+ \pi^-$
12*	$K_S^0 \pi^+ \pi^- \pi^0$	31	$K^+\eta\pi^-\pi^0$
13	$K^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	32	$K_S^0 \eta \pi^+ \pi^0$
14*	$K_S^0 \pi^+ \pi^+ \pi^- \pi^-$	33	$K^+K^+K^-$
15	$K^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	34*	$K^+K^-K_S^0$
16	$K_S^0 \pi^+ \pi^+ \pi^- \pi^0$	35	$K^{+}K^{+}K^{-}\pi^{-}$
17	$K^{+}\pi^{0}\pi^{0}$	36	$K^+K^-K^0_S\pi^+$
18*	$K_S^0\pi^0\pi^0$	37	$K^+K^+K^-\pi^0$
19	$K^{+}\pi^{-}\pi^{0}\pi^{0}$	38*	$K^+K^-K^0_S\pi^0$
	·		·



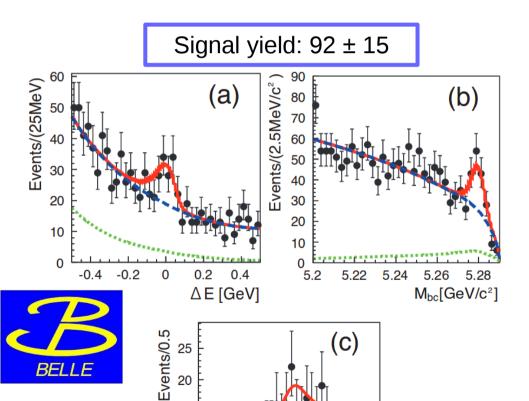
signal
qq continuum
BB background
cross-feed

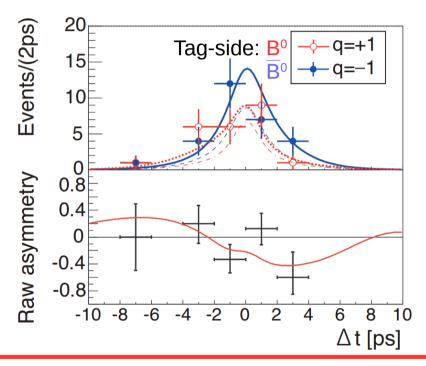

Mode	N_S	$\epsilon \ [\%]$
B^-	3235 ± 82	2.22 ± 0.12
B^+	3105 ± 83	2.22 ± 0.12
$ar{B}^0$	3165 ± 78	2.44 ± 0.14
B^0		2.44 ± 0.14
$B_{ m fns}$	984 ± 42	0.381 ± 0.023

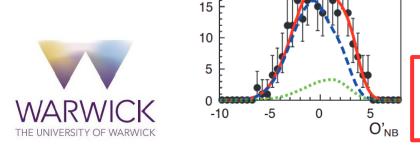


Results consistent with zero, with SM, and with previous BaBar results (PR D72 (2005) 052004, PR D90 (2014) 092001)

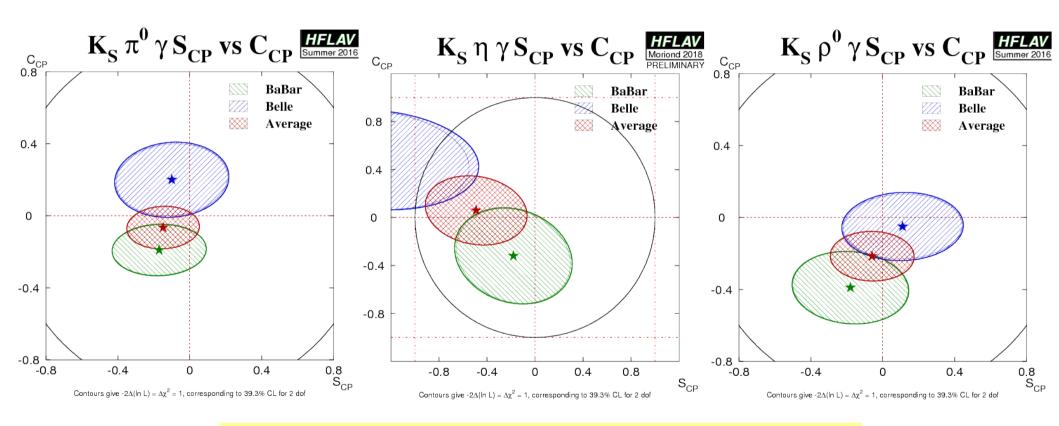
signal
qq continuum
BB background
cross-feed




Mode	N_S	$\epsilon \ [\%]$
B^-		2.22 ± 0.12
B^+		2.22 ± 0.12
$ar{B}^0$	3165 ± 78	2.44 ± 0.14
B^0	3116 ± 78	2.44 ± 0.14
$B_{ m fns}$	984 ± 42	0.381 ± 0.023


Decay-time-dependent CP asymmetry in $B^0 \rightarrow K_s \eta \gamma$

Strong polarisation of emitted y in Standard Model (V–A weak interaction) Expect very small decay-time-dependent CP violation (S)

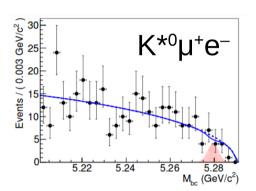


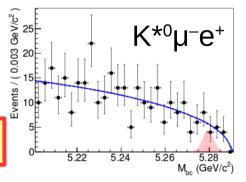
$$S = -1.32 \pm 0.77(\text{stat.}) \pm 0.36(\text{syst.}),$$

 $A = -0.48 \pm 0.41(\text{stat.}) \pm 0.07(\text{syst.})$

BB background total background

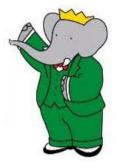
Decay-time-dependent CP asymmetry in b → sy




All results consistent with SM Still much room for improved sensitivity

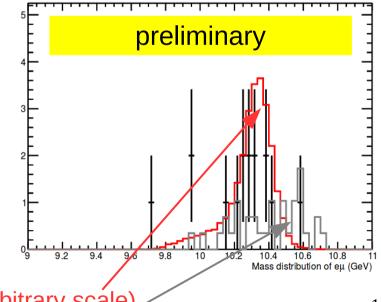
Search for $B^0 \rightarrow K^{*0}\mu e$

- Possible signals of lepton universality violation have become a hot topic
 - R(K^(*)), R(D^(*))
- Models predicting LUV generally also predict LFV
- Require
 - → $|m(K\pi)-m_{K^*(892)}| < 0.1 \text{ GeV}$
 - → |ΔE| < 0.025 GeV
 - → qq and BB backgrounds suppressed with MVAs
 - → veto misreconstructed K*0J/ψ


Both

M_{bc} (GeV/c²)

No signals – most stringent limits to date

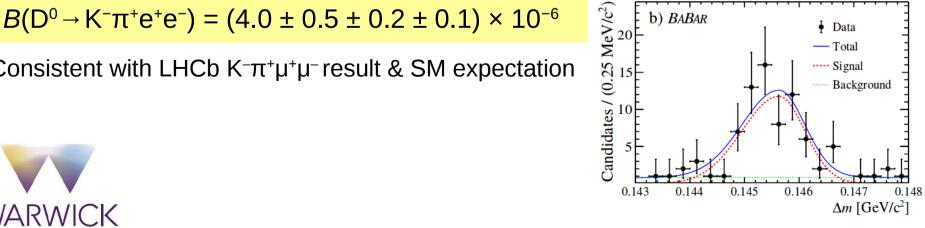

Mode	ε	$N_{ m sig}$	$N_{ m sig}^{ m UL}$	$\mathcal{B}^{ ext{UL}}$
	(%)			(10^{-7})
$B^0 \to K^{*0} \mu^+ e^-$	8.8	$-1.5^{+4.7}_{-4.1}$	5.2	1.2
$B^0 \to K^{*0} \mu^- e^+$	9.3	$0.40^{+4.8}_{-4.5}$	7.4	1.6
$B^{0} \to K^{*0} \mu^{+} e^{-}$ $B^{0} \to K^{*0} \mu^{-} e^{+}$ $B^{0} \to K^{*0} \mu^{\pm} e^{\mp} \text{ (combined)}$	9.0	$-1.18^{+6.8}_{-6.2}$	8.0	1.8

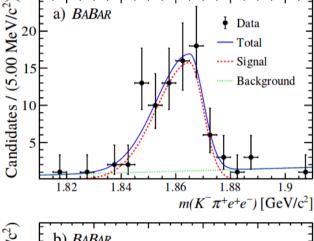

Search for Y(3S) → µe

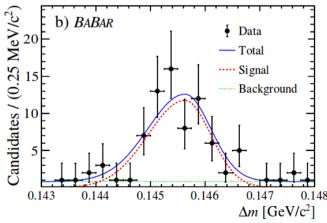
- Exploit the 27 fb⁻¹ data sample collected by BaBar at the Y(3S) resonance
 - corresponds to $(117.7 \pm 1.2) \times 10^6 \text{ Y}(3\text{S})$ produced
- Allows clean search for Y(3S) → µe
 - Two tracks only
 - Must be back-to-back, each with ½ total beam energy
 - Main background from $e^+e^- \rightarrow \mu^+\mu^-$ with μ misID or decay in flight
- After all selection criteria, expect 12.2
 - ± 2.3 background events
 - Estimated from Y(4S) sample
- Observe 15 candidates
- B(Y(3S) $\rightarrow \mu e$) < 3.6 × 10⁻⁷ @ 90% CL
 - First result on this decay mode

WARWICK THE UNIVERSITY OF WARWICK

signal MC (arbitrary scale scaled Y(4S) data

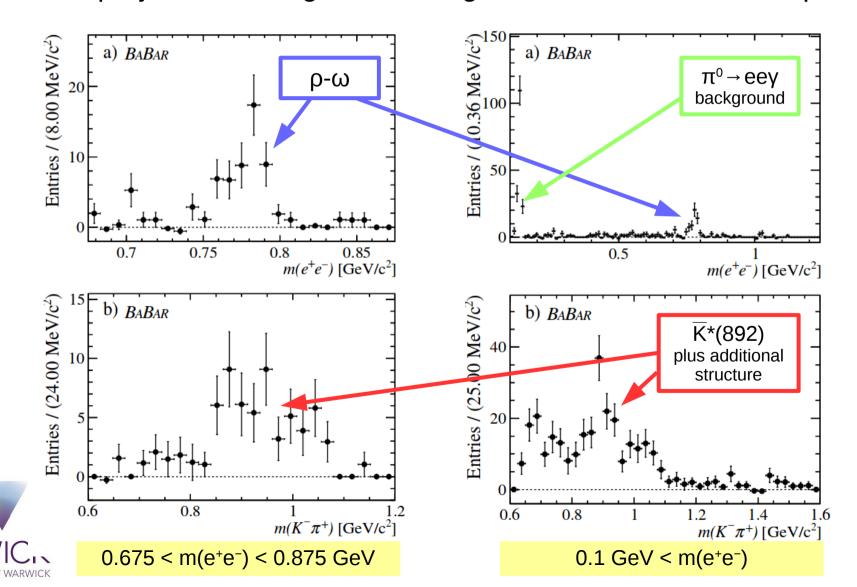

Observation of $D^0 \rightarrow K^-\pi^+e^+e^-$


Also of interest to search for lepton universality violation in charm decays LHCb have recently observed $D^0 \rightarrow K^-\pi^+\mu^+\mu^-$ (PL B757 (2016) 558)

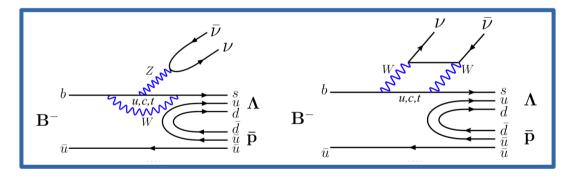

- → look for electron counterpart
- select $D^{*+} \rightarrow D^0\pi^+$ to remove background
- use $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$ for normalisation
- select ρ-ω region
 - $0.675 < m(e^+e^-) < 0.875 \text{ GeV}$ (expected to be dominant)
- signal yield: 68 ± 9

$$B(D^0 \rightarrow K^-\pi^+e^+e^-) = (4.0 \pm 0.5 \pm 0.2 \pm 0.1) \times 10^{-6}$$

Consistent with LHCb $K^-\pi^+\mu^+\mu^-$ result & SM expectation

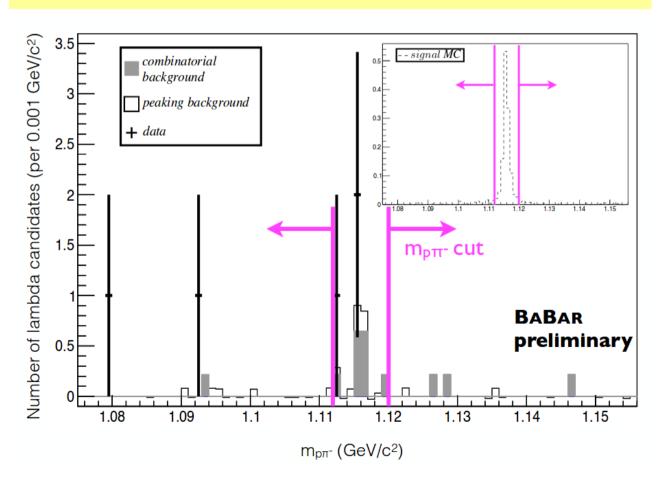


Observation of $D^0 \rightarrow K^-\pi^+e^+e^-$


Check projections using sPlot background-subtraction technique

Search for $B^- \rightarrow \Lambda p \nu \nu$

- FCNC processes with $v\overline{v}$ pairs theoretically clean
 - only Z penguin and W loop diagrams
 - no y penguin, no charm loops, no resonances
- Experimentally highly challenging
 - signature of baryons in final state can help reduce background
 - SM prediction: $B(B^- \to \Lambda \overline{p} \nu \overline{\nu}) = (7.9 \pm 1.9) \times 10^{-7}$ [PR D85 (2012) 094019]
- Exploit Y(4S) → B_{tag}B_{sig}
 - B_{tag}: hadronic decay modes
 - MVA to reduce qq background
 - minimal extra energy
 - residual background level estimated from sidebands + MC



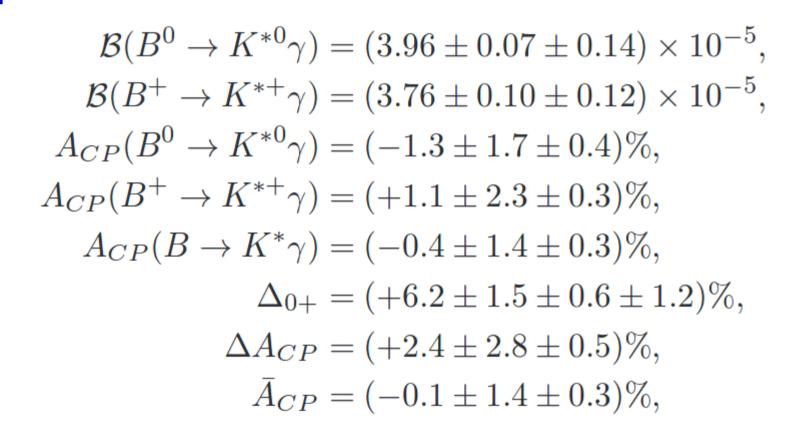
Search for $B^- \rightarrow \Lambda p \nu \nu$

Residual background estimate: $2.3 \pm 0.7 \pm 0.6$

Number of candidates: 3

 $B(B^- \to \Lambda p \nu \nu) < 3.0 \times 10^{-5} @ 90\% CL$

Summary



- Still many interesting new results on rare decays from BaBar and Belle
 - exploiting unique data samples
 - complementing previous measurements and those from other experiments
- All results consistent with the Standard Model

Excellent prospects for further improvements with Belle II

	7	>
~		
I	BELL	.E

Source	$K_S^0 \pi^0$	$K^+\pi^-$	$K^+\pi^0$	$K_S^0\pi^+$	K^{*0}	K^{*+}	Δ_{0+}
photon reconstruction eff.	2.0	2.0	2.0	2.0	2.0	2.0	_
tracking eff.	0.7	0.7	0.4	1.1	0.7	0.8	0.05
K/π identification eff.	_	1.7	0.8	0.8	1.6	0.8	0.38
π^0 reconstruction eff.	1.6	_	1.6	_	0.1	0.5	0.21
K_S^0 reconstruction eff.	0.2	_	_	0.2	< 0.1	0.1	0.05
$\mathcal{O}_{\mathrm{NB}}$ and π^0/η veto eff.	0.6	0.6	0.6	0.6	0.6	0.6	_
ΔE selection eff.	1.1	< 0.1	1.1	0.1	0.1	0.4	0.15
charge asymmetry in eff.	_	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.01
MC stat.	0.4	0.1	0.3	0.2	0.1	0.2	0.11
number of $B\bar{B}$ pairs	1.4	1.4	1.4	1.4	1.4	1.4	_
f_{+-}/f_{00}	1.2	1.2	1.2	1.2	1.2	1.2	1.16
lifetime ratio	_	_	_	_	_	_	0.19
higher kaonic resonance	0.3	0.3	0.3	0.3	0.3	0.3	_
cross-feed	0.2	0.2	0.3	0.2	0.2	0.2	0.03
peaking backgrounds	1.6	1.2	1.2	1.1	1.2	1.1	0.14
background A_{CP} and Δ_{0+}	0.2	< 0.1	< 0.1	0.1	< 0.1	< 0.1	0.03
fixed parameters in fit	3.9	0.1	1.5	< 0.1	0.1	0.2	0.10
fitter bias	2.4	0.2	1.3	0.7	0.2	0.2	0.08
total	5.9	3.5	4.2	3.3	3.5	3.3	1.29

	I							
Source	$K^+\pi^-$	$K^+\pi^0$	$K_S^0\pi^+$	K^{*0}	K^{*+}	K^*	ΔA_{CP}	\bar{A}_{CP}
tracking eff.	_	_	_	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
K/π identification eff.	_	_	_	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
π^0 reconstruction eff.	_	_	_	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
K_S^0 reconstruction eff.	_	_	_	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
charge asymmetry in K/π detection	0.40	0.04	0.41	0.40	0.25	0.28	0.48	0.24
cross-feed	0.02	0.04	0.03	0.02	0.02	0.02	0.02	0.01
peaking backgrounds	0.04	0.06	0.08	0.04	0.06	0.05	0.04	0.05
background A_{CP} and Δ_{0+}	0.10	0.13	0.09	0.10	0.10	0.10	0.05	0.10
fixed parameters in fit	< 0.01	0.13	0.02	< 0.01	0.02	< 0.01	0.02	0.06
fitter bias	0.07	0.16	0.12	0.07	0.09	0.08	0.12	0.06
total	0.42	0.26	0.45	0.42	0.30	0.31	0.50	0.27

BELLE

Source	Δ_{0-}	ΔA_{CP}	A_{CP}^{C}	$A_{CP}^{ m N}$	$A_{CP}^{ m tot}$	$ar{A}_{CP}$
tracking	± 0.02	_	_	_	< 0.01	_
K/π ID	± 0.04	_	_	_	< 0.01	_
π^0/η recon.	± 0.01	_	_	_	< 0.01	_
K_S^0 recon.	± 0.01	_	_	_	< 0.01	_
detection asym.	_	± 0.39	± 0.11	± 0.29	± 0.05	± 0.10
ΔE selection	$^{+0.03}_{-0.06}$	_	_	_	< 0.01	_
f_{+-}/f_{00}	± 1.15	_	_	_	_	_
lifetime ratio	± 0.19	_	_	_	_	_
fragmentation	± 0.58	_	_	_	± 0.01	_
K^* - X_s transition	± 0.12	_	_	_	< 0.01	_
missing fraction	< 0.01	_	_	_	< 0.01	_
background A_{CP}	_	± 0.05	± 0.03	± 0.04	± 0.02	± 0.03
background Δ_{0-}	± 0.01	_	_	_	< 0.01	_
fixed parameters	$^{+0.60}_{-0.47}$	$^{+0.53}_{-0.50}$	$^{+0.27}_{-0.25}$	$^{+0.28}_{-0.29}$	$^{+0.09}_{-0.08}$	$^{+0.08}_{-0.06}$
fitter bias	± 0.08	± 0.11	± 0.02	± 0.09	± 0.02	± 0.03
MC stat.	± 0.03	_	_	_	< 0.01	_
total	$+1.44 \\ -1.39$	$^{+0.67}_{-0.64}$	$^{+0.29}_{-0.27}$	$^{+0.41}_{-0.42}$	$^{+0.12}_{-0.10}$	$^{+0.14}_{-0.12}$

