Hypothetical Reuse of Belle for SuperB

Tim Gershon
University of Warwick

17 March, 2006

Reminder

- Activity ongoing to plan upgrade of Belle for SuperKEKB
- See talk by T. lijima at SuperBF'05
 - http://www.lnf.infn.it/conference/superbf05/Friday/lijima.pdf

KEK LCPAC meeting March 24-26

Super Belle

From M. Yamauchi seminar at LNF, October 2005

Disclaimer

I am not a detector expert

Features of Detector at Linear SuperB

See S.Playfer at SuperBF'05

http://www.lnf.infn.it/conference/superbf05/Friday/Playfer frascati.pdf

- basic conclusion:

existing B factory detector works quite well

- Features (desirables)
 - Low backgrounds
 - Small boost → good vertexing
 - High hermiticity → high efficiency
 - tracking, PID & calorimetry over a wide solid angle
 - Possible operation at energies below Y(4S)
 - symmetric beam energies
 - low energy µ-identification (if possible)

Current Belle Detector

Belle / BaBar Differences – IP

Beam asymmetry

```
    Belle: 8.0 GeV e<sup>-</sup> on 3.5 GeV e<sup>+</sup> ⇒ βγ = 0.425 (22 mrad)
    BaBar: 9.0 GeV e<sup>-</sup> on 3.1 GeV e<sup>+</sup> ⇒ βγ = 0.56 (head on)
    SuperB: 7.0 GeV e<sup>-</sup> on 4.0 GeV e<sup>+</sup> ⇒ βγ = 0.28 (head on?)
    small (few %) differences in acceptance could be significant for hermiticity of events with ~10 particles
```

- x-angle ⇒ reduced backgrounds
- Crab cavities now being installed/tested at KEK-B

Borrowed from D.Hitlin: Detector Protractor

7.0 on 3.99773 GeV ($\beta \gamma = 0.283768$)

Assume massless particles, head on collisions along z-axis

8.0 on 3.49801 GeV ($\beta \gamma = 0.425519$) Current 0 58 Belle 28 CM frame coverage Detector, 8/3.5 36 steps of 🕏 GeV

7.0 on 3.99773 GeV $(\beta \gamma = 0.283768)$ Current 0 55 Belle 25 CM frame coverage Detector, 7/4 GeV 36 steps of 🕏

Belle / BaBar Differences - Vertexing

Silicon vertex detector / tracker

- Belle: 3 layers; 30 mm → 60 mm from IP (until summer 2003)
- Belle: 4 layers; 20 mm → 88 mm from IP (from summer 2003)
- BaBar: 5 layers; 32 mm → 144 mm from IP

SuperB requires

- 1st layer close to IP (precise vertexing) 10 15 mm?
 - Use striplets/pixels? Maybe not necessary, but helpful. R&D active for Super Belle & others
- last layer far from IP (efficient K_s vertexing)
 150 mm ?
- wide angular coverage (hermiticity)

Tracking

- Expectation that gaseous tracker continues to work OK in SuperB environment
 - fast gas / readout
- Anyway replace innermost layers, where rates highest
- Reuse of existing Belle CDC seems OK
- How to improve angular coverage?
 - Additional forward/backward trackers?
 - Silicon?
 - Does space allow it?
 - Planar geometry → recover low-p, tracking efficiency

Belle / BaBar Differences — Particle ID

• Belle:

- time-of-flight counters (TOF)
- aerogel Cherenkov counters (ACC)

BaBar:

- Cherenkov light internally reflected in quartz bars (DIRC)
- Both also use dE/dx measurements
- BaBar performance better
 - improvements in physics performance

Reuse of Belle PID

- TOF is anticipated to fail in SuperKEKB environment
 - replaced with TOP (time-of-propagation) & aerogel RICH
 - proximity focusing RICH may allow low p, μ-ID (?)
 - TO{F/P} OK for Linear SuperB,
 - assume precise T0 information exists
- ACC should be OK (but maybe replaced)
- PID upgrade would anyway be beneficial for SuperB
- Low momentum PID (e/π/K/p) provided by dE/dx

Belle upgrade – side view

Two new particle ID devices, both RICHes:

Barrel: TOP or focusing DIRC

Endcap: proximity focusing RICH

See talk by Peter Krizan

Calorimeter

- Belle / BaBar have similar calorimeters (ECL / EMC)
 - CsI(TI) crystals
 - BaBar has forward endcap only, Belle also has backward
 - Belle also has extreme forward/backward calorimeter (EFC)
 - BGO crystal arrays
 - luminosity measurement
- Strategy to cope with SuperKEKB rates
 - fast readout
 - Pure CsI in endcaps
- May not be necessary for linear SuperB (?)
- Better calorimeter = better hermiticity

K_I/μ Detection

- Planned upgrade for SuperKEKB:
 - shield radiation from {up/down}stream bending magnets
 - replace RPC with scintillator strips/tiles
- Can K_I detection be improved?

Solenoid

- Assumed to be the same (1.5 T)
- Lower magnetic field may be possible if TOF/ACC replaced by TOP/RICH
 - larger radius drift chamber helps momentum resolution
 - should help low p, PID

Trigger / DAQ / Computing

- Existing triggers should work
- More data, more DAQ
 - existing solutions scaleable?
 - use of GRID

Summary

- Existing Belle detector looks well suited as basis for SuperB
- Some upgrades desirable for physics
- Take advantage of R&D for SuperKEKB

Super B Factory ⇒ Super Flavour Factory

