

Quark flavour physics

Michal Kreps

Physics Department

Plan

- Kaon physics and SM construction (bit of history)
- Establishing SM experimentally
- Looking for breakdown of SM
- Hard to cover everything in details in three lectures, some details are offloaded to exercises

Outline – lecture 2

- Discovery of charm and bottom quark
- Basic requirements for CP violation
- Classification of CP violation
- How CKM matrix is experimentally determined
- If time permits, few more words about CP violation in kaon system

Some questions for thinking

- What are implications of observation of CP violation?
- What you would do to confirm Kobayashi-Maskawa mechanism
- If you have answers in terms of experiment, what capabilities experiment has to have?
- How would you determine CKM matrix elements?

Discovery of charm quark

- GIM requires charm quark to work
- Big change, known also as November revolution came in 1974
- Two experiments, one at Brookhaven and other at SLAC announced their discoveries
- Brookhaven experiment led by S. Ting measured cross section for production of e⁺e⁻ pairs in p-Be interactions
- SLAC experiment led by B. Richter studied annihilation of e⁺e⁻
- This was rather unusual moment of discovery by two independent experiments and another confirmation in single edition of journal

What PRL said

THE UNIVERSITY OF WARWICK

VOLUME 33, NUMBER 23

PHYSICAL REVIEW LETTERS

2 DECEMBER 1974

EDITORIAL

Publication of a New Discovery

This issue of Physical Review Letters must certainly be one of the most unusual in our history, with not just one but three extremely stimulating reports of a new discovery. Undoubtedly, the activity which will be aroused will be enormous and we happily join the rest of the physics community in congratulating those involved.

J part (S. Ting)

Michal Kreps - Quark flavour physics 2

(a)

Final word on quarks discoveries

- It took almost 20 years to finish quest for all quarks
- Top quark was discovered at 1995 at Fermilab's Tevatron collider by CDF and D0 experiments
 - As side note, it remained only place to produce top quarks until 2011
- Next we turn back to CP violation to arrive to final conclusion that KM mechanism proposed to explain CPV in K⁰ is right one

CPV formalism

• First, definitions of decay amplitudes (valid for any hadron) $A_f = \langle f | H | M \rangle$ $\overline{A}_f = \langle f | H | \overline{M} \rangle$ $A_{\overline{f}} = \langle \overline{f} | H | M \rangle$ $\overline{A}_{\overline{f}} = \langle \overline{f} | H | \overline{M} \rangle$

For neutral mesons we need in addition

$$i\frac{d}{dt} \begin{pmatrix} |B(t)\rangle \\ |\overline{B}(t)\rangle \end{pmatrix} = \begin{pmatrix} \hat{M} - \frac{i}{2}\hat{\Gamma} \end{pmatrix} \begin{pmatrix} |B(t)\rangle \\ |\overline{B}(t)\rangle \end{pmatrix},$$
$$|B_H\rangle = p |B\rangle + q |\overline{B}\rangle \quad |B_L\rangle = p |B\rangle - q |\overline{B}\rangle$$
$$\begin{pmatrix} \frac{q}{p} \end{pmatrix}^2 = \frac{M_{12}^* - (i/2)\Gamma_{12}^*}{M_{12} - (i/2)\Gamma_{12}}$$

With those definitions, we can start to investigate CP violation

CP violating observables

- In quantum physics we cannot observe directly phases, only phase differences
- In order to have observable CP violation, we need interference of at least two amplitudes
 - If only one amplitude enters (or strongly dominates) no CP violation can be observed
- All CP violation can be described in terms of phase invariant variables:
 - $|\overline{A}_{f} / A_{f}|$ for all hadrons
 - |q/p| and $\lambda_f = (q/p)(\overline{A}_f / A_f)$ in addition for neutral mesons

Types of CP violation

- CP violation in decay (also called direct CPV)
 - IA_f / A_f ≠1
 - Only possible CPV for charged mesons and baryons
 - Measured as

$$A = \frac{\Gamma(M^- \to f^-) - \Gamma(M^+ \to f^+)}{\Gamma(M^- \to f^-) + \Gamma(M^+ \to f^+)} = \frac{|\overline{A}_{f^-}/A_{f^+}|^2 - 1}{|\overline{A}_{f^-}/A_{f^+}|^2 + 1}$$

- CP violation in mixing
 - |q/p|≠1
 - It is difference in rate $M \rightarrow \overline{M}$ and $\overline{M} \rightarrow M$
 - Original CPV discovery in 1964 is of this kind

$$A = \frac{d\Gamma/dt[\overline{M} \to f^+] - d\Gamma/dt[M \to f^-]}{d\Gamma/dt[\overline{M} \to f^+] + d\Gamma/dt[M \to f^-]} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$$

Types of CP violation

- CP violation in interference of decays with and without mixing
 - Im(λ_f)≠0
 - Practically does not exist in kaon system
 - Well visible in B⁰

$$A = \frac{d\Gamma/dt[\overline{M} \to f_{CP}] - d\Gamma/dt[M \to f_{CP}]}{d\Gamma/dt[\overline{M} \to f_{CP}] + d\Gamma/dt[M \to f_{CP}]}$$

- In case of $\Delta\Gamma$ =0 and |q/p|=1 it has simple form of $A(t) = S_f \sin(\Delta m t) - C_f \cos(\Delta m t)$ $S_f = \frac{2Im(\Lambda_f)}{1+|\lambda_f|^2}$ $C_f = \frac{1-|\lambda_f|^2}{1+\lambda_f|^2}$
- Skipping details, KM mechanism explaining small CPV in K⁰ implies large S_f in B⁰

THE UNIVERSITY OF

WAR

Large CPV in B^o

14

$$A = \frac{d\Gamma/dt[\overline{M} \to f_{CP}] - d\Gamma/dt[M \to f_{CP}]}{d\Gamma/dt[\overline{M} \to f_{CP}] + d\Gamma/dt[M \to f_{CP}]}$$
$$A(t) = S_f \sin(\Delta m t) - C_f \cos(\Delta m t)$$

We need two main non-trivial ingrediences

- Resolve time dependence
- Find out whether meson was produced as B or \overline{B}

B⁰ CPV measurement

THE UNIVERSITY OF WARWICK

8

Unitarity triangle

THE UNIVERSITY OF WARWICK

Colourful plot

- Game is to overconstrain unitarity triangle
- If SM is right, everything should be consistent
- If SM is not right, consistency is hopefully broken at some place
- Three widely known fits exist
 - CKMFitter (shown)
 - UTFit
 - Soni and Lungi
- They differ mainly in way how they treat theory uncertainties and frequentist vs. Bayesian interpretation

THE UNIVERSITY OF

CKM matrix magnitudes

THE UNIVERSITY OF WARWICK

theory inputs (eg., lattice calculations) required

ε_κ

THE UNIVERSITY OF WARWICK

 $|\varepsilon_{\kappa}| = C_{\varepsilon} \frac{B_{\kappa} A^2 \lambda^6 \eta}{[-\eta_1 S_0(x_c)(1-\lambda^2/2)+\eta_3 S_0(x_c,x_t)+\eta_2 S_0(x_t) A^2 \lambda^4 (1-\rho)]}$

- Experimentally comes from rate of K_L→2π
- Main theoretical uncertainty comes from hadronic physics (B_κ)
 - Calculated with lattice QCD
- It is loop process (mixing)

- Measured in semileptonic $B \rightarrow X_{u} lv$
- Inclusive approach
 - Cleaner theory
 - Very difficult experimentally
- Exclusive approach
 - Rather easy for experiment
 - Quite some difficulties for theory
- Other option is to use decays B⁺→τv
 - Sensitive to new physics, so no good for determination of SM

$$\Delta m_{d} = \frac{G_{F}^{2}}{6\pi^{2}} m_{W}^{2} \eta_{b} S(x_{t}) m_{B_{d}} f_{B_{d}}^{2} \mathring{B}_{B_{d}} |V_{tb}|^{2} |V_{td}|^{2} =$$
$$= \frac{G_{F}^{2}}{6\pi^{2}} m_{W}^{2} \eta_{b} S(x_{t}) m_{B_{d}} f_{B_{d}}^{2} \mathring{B}_{B_{d}} |V_{cb}|^{2} \lambda^{2} ((1 - \overline{\rho})^{2} + \overline{\eta}^{2})$$

- Sensitive to V_{tq} in mixing box diagram
- Usually for constraint we use $\Delta m_d / \Delta m_s$
 - This assumes unitarity
 - Many theory uncertainties cancel out
 - Very precise experimentally, main limitation in theory at this moment

Tevatron and CDF

- $p\overline{p}$ collisions at $\sqrt{s} = 1.96 \text{ TeV}$
- Peak luminosity \approx 3.5 3.8 · 10³² cm⁻²s⁻¹
- $\scriptstyle \blacksquare$ Collected about $\approx 7 fb^{-1}$

THE UNIVERSITY OF

ICK

WAR

Dav

$\rm B_s$ mixing @ CDF

THE UNIVERSITY OF

Angle β

- S_f is in fact sin(2 β)
- Two-fold ambiguity exists in measurement
- One way to resolve it is to use decays B⁰→J/ψKπ with interference between K^{*} and s-wave Kπ
- Can exclude one of the two solutions at reasonable confidence

Angle α

- α is phase between $V_{tb}^*V_{td}$ and $V_{ub}^*V_{ud}$
- Extracted from b→uud transitions using mixing induced CPV
 - B⁰→ππ, ρρ, πρ
 - As those decays are suppressed, penguin contributions play also role
 - Isospin analysis used to correct for penguin contributions
- Current (2010) value is 89±4.4°

1.5

1.0

Ц

excluded area has CL > 0.95

THE UNIVERSITY OF

 $\Delta m_d \& \Delta m_s$

Angle _γ

- Interference of $B^- \rightarrow D^0 K^- (V_{cb})$ and $B^- \rightarrow \overline{D}^0 K^- (V_{ub})$ when using common final state for D⁰ and \overline{D}^0
- Plays special role as it is extracted from tree level decays
- Provides CKM phase without being significantly affected by new physics
- Three different D final states used
 - GLW: Cabbibo suppressed CPeigenstates (KK, ππ)
 - ADS: Doubly Cabbibo suppressed
 D⁰→K⁺π⁻
 - Dalitz plot: Κ_sππ

Angle _γ

- B⁻ decays are challenging for γ measurement as
 - CP asymmetry is large, but rate is very small (ADS)
 - Rate is reasonable, but CP asymmetry is small (GLW)
 - Only in about last year experiments start to see significant signals
- Other promising decay is $B_s \rightarrow D_s K$
 - But this requires to resolve fast B_s oscillation
 - No experiment capable of measurement up to now

Angle γ

- Most sensitive is GGSZ method with $D^0 \rightarrow K_s \pi^+ \pi^-$
- Belle and Babar made recent updates
- Both experiments see 3.5σ evidence for CPV
- Belle: $\gamma = (78^{+11}_{-12} \pm 4 \pm 9)^{\circ}$
- Babar: $\gamma = (68 \pm 14 \pm 4 \pm 3)^{\circ}$

K Direct CPV

A (K° > TTT) = A (K° > 2TT) assumed up to how what happens if we don't make assumption? A isospin amplitude Si show phase $A(k^{*} - z\overline{u}) = A_{I} \cdot e^{i\delta I}$ $A(\hat{k} \neq \tau \tau) = A_{T}^{*} \cdot e^{i\delta_{T}}$ $k^{\circ} \xrightarrow{\pi} T = 0$ strong onler. $k^{\circ} \xrightarrow{\pi} T = 0$ strong onler. $k^{\circ} \xrightarrow{\pi} T = 0$ strong onler. $k^{\circ} \xrightarrow{\pi} A(k^{\circ} + 2\bar{k}) = \sqrt{2} A_{\circ} e^{i\delta_{\circ}} + \sqrt{2} A_{2} e^{i\delta_{2}}$ $|\pi^+\pi^-\rangle = \frac{1}{13}|2_1\rangle + \frac{2}{3}|0_1\rangle + A(k^-) = \frac{2}{3}A_{0}^{*}e^{i\delta_{0}} + \frac{2}{3}A_{0}^{*}e^{i\delta_{1}}$ | ボガシ= ぼし、の) - ぼうのの)

Wear phase between supli-shong phase between angl. Jirect CPV (decy K.) $A_o = A_o^*$ R \overline{k}) $\neq A(k^{\circ})$ ho bear phase contr. to As, A As , Az d 3 mº I gives weal phase (complex) contributes only to A. (I=0) 40 Tr Ao with comple phase i Az without couple phase 13

Kaon direct CPV

$$M_{oo} = \frac{A(K_L \rightarrow \overline{h^{o} \overline{h^{o}}})}{A(K_S \rightarrow \overline{h^{o} \overline{h^{o}}})} = \xi - 2\xi'$$

Kaon direct CPV

THE UNIVERSITY OF WARWICK = $-\rho_{\omega}$

$$J_{m}(A_{o}) = 0 \qquad A_{o} = |A_{o}| e^{iS_{o}} e^{i\Theta} \qquad \text{assume} \quad S_{o} = -$$

$$A(k^{*} \to \bar{k}^{*}\bar{u}^{*}) = \sqrt{\frac{2}{3}} A_{o} e^{iS_{o}} + \sqrt{\frac{2}{3}} A_{z} e^{iS_{z}}$$

$$A(k^{*} \to \bar{u}^{*}\bar{u}^{*}) = \sqrt{\frac{2}{3}} A_{z}^{*} \bar{e}^{iS_{o}} + \sqrt{\frac{2}{3}} A_{z}^{*} e^{iS_{z}}$$

$$E^{1} = \frac{\sqrt{\frac{2}{3}} A_{o} e^{iS_{o}} + \sqrt{\frac{2}{3}} e^{iS_{z}} - \sqrt{\frac{2}{3}} A_{b}^{*} e^{iS_{o}} - \sqrt{\frac{2}{3}} A_{c}^{*} e^{iS_{z}}$$

$$= \frac{e^{iS_{c}} (A_{z} - A_{z}^{*})}{\sqrt{\frac{2}{3}} A_{o} e^{iS_{o}} + e^{iS_{c}} (A_{z} + A_{z}^{*})} \qquad |\frac{A_{z}}{A_{o}}| \sim 5^{2} G_{o}$$

$$E^{1} \approx \frac{i}{\sqrt{2}} e^{i(S_{z} - S_{o})} \frac{J_{m}(A_{z})}{A_{o}}$$

Experimental observables

$$M_{t-} = \mathcal{E} + \mathcal{E}' = \frac{A(K_{L} \to \overline{u}^{\intercal} \overline{u})}{A(k_{s} \to \overline{u}^{\intercal} \overline{u})}$$

$$M_{oo} = \mathcal{E} - 2\mathcal{E}' = \frac{A(K_{L} \to \overline{u}^{o} \overline{u})}{A(k_{s} \to \overline{u}^{o} \overline{u})}$$

$$\left| \frac{\mathcal{H}_{+-}}{\mathcal{H}_{00}} \right|^{2} = \frac{A\left(k_{L} \rightarrow \overline{u}^{\dagger} \overline{u}^{\dagger}\right)}{A\left(k_{S} \rightarrow \overline{u}^{\dagger} \overline{u}^{\dagger}\right)} \cdot \frac{A\left(k_{S} \rightarrow \overline{u}^{\bullet} \overline{u}^{\circ}\right)}{A\left(k_{L} \rightarrow \overline{u}^{\dagger} \overline{u}^{\dagger}\right)} \cdot \frac{A^{\dagger}\left(k_{L} \rightarrow \overline{u}^{\bullet} \overline{u}^{\dagger}\right)}{A^{\dagger}\left(k_{S} \rightarrow \overline{u}^{\dagger} \overline{u}^{\dagger}\right)} = \frac{A\left(k_{L} \rightarrow \overline{u}^{\dagger} \overline{u}^{\dagger}\right)}{A\left(k_{S} \rightarrow \overline{u}^{\dagger} \overline{u}^{\dagger}\right)} = \frac{A\left(k_{S} \rightarrow \overline{u}^{\dagger} \overline{u}^$$

of K

NA48 @ CERN

F

KTeV @ FNAL

TY OF

Experiment vs Theory

