Quark Flavour Physics

1. Draw Feynman diagrams for decays $\pi^- \to \mu^- \overline{\nu}_{\mu}$ and $K^- \to \mu^- \overline{\nu}_{\mu}$. The branching fractions of two are measured to be $\mathcal{B}(\pi^- \to \mu^- \overline{\nu}_{\mu}) = 0.999877 \pm 0.0000004$ and $\mathcal{B}(K^- \to \mu^- \overline{\nu}_{\mu}) = 0.6355 \pm 0.0011$. Decay rate of each decay is given by

$$\Gamma = |V_{uq}|^2 G_F^2 f_p^2 m_p m_\mu^2 (1 - m_\mu^2 / m_p^2)^2 \tag{1}$$

where $f_{\pi} = (130.41 \pm 0.03 \pm 0.20) MeV$, $f_{K} = (156.1 \pm 0.2 \pm 0.8 \pm 0.2) MeV$ with masses being $m_{\mu} = 105.7$ MeV, $m_{\pi} = 139.57$ MeV and $m_{K} = 493.7$ MeV and lifetimes being $\tau(\pi^{+}) = 2.6033 \times 10^{-8}$ s and $\tau(K^{+}) = 1.2385 \times 10^{-8}$ s. Using this estimate Cabbibo angle.

- 2. Consider pure beam of long lived neutral kaons. As the K^0 and \overline{K}^0 interaction cross section with matter leads to interesting effect known as kaon regeneration. Essence of it is that after pure K_2 beam traverse block of matter, it contains again K_1 component. Denoting K^0 integrated cross section with block of matter as f and \overline{K}^0 as \overline{f} find out amount of K_2 and K_1 component after pure K_2 beam traverses given block of matter.
- 3. Using discussed formalism, verify that $K_L \to 2\pi$ rate is indeed proportional to ϵ .
- 4. Neutral meson mixing is described by equation

$$i\frac{d}{dt} \begin{pmatrix} |B_s(t)\rangle \\ |\overline{B}_s(t)\rangle \end{pmatrix} = \left(\hat{M} - \frac{i}{2}\hat{\Gamma}\right) \begin{pmatrix} |B_s(t)\rangle \\ |\overline{B}_s(t)\rangle \end{pmatrix}.$$

Diagonalization leads to eigenstates with definite masses and lifetimes

$$|B_{sH}^{0}\rangle = p |B_{s}\rangle + q |\overline{B}_{s}\rangle,$$

$$|B_{sL}^{0}\rangle = p |B_{s}\rangle - q |\overline{B}_{s}\rangle,$$

with p and q being complex numbers satisfying $|p|^2 + |q|^2 = 1$. Diagonalise matrix and find two mass states.

- 5. Which of the following decays can show *CP* violation in standard model. Draw Feynman diagrams and decide which type of *CP* violation. Decays to exhibit are:
 - (a) $D^0 \to K^+ K^-$
 - (b) $B^+ \to J/\psi K^+$
 - (c) $B^0 \to J/\psi \rho$
 - (d) $B_s^0 \to \phi \phi$
 - (e) $B^0 \to K^+ \pi^-$

- (f) $B^+ \to [\pi^+\pi^-]_D K^+$ where $[\pi^+\pi^-]_D$ is combination of two pions consistent with originating from D^0 or \overline{D}^0 .
- (g) $B^+ \to [\pi^+ \pi^-]_D K^-$
- (h) $\Lambda_b^0 \to \Lambda_c^+ \pi^-$
- (i) $\Lambda_b^0 \to \Lambda \pi^+ \pi^-$
- 6. What are differences in flavour tagging between e^+e^- machines at $\Upsilon(4S)$ energies and hadron colliders.
- 7. List physics sources of imperfection of flavour tagging. Consider also differences between e^+e^- machines at $\Upsilon(4S)$ energies and hadron colliders.
- 8. Why low energy e^+e^- colliders cannot compete with hadronic machines in studies of time evolution of B_s .
- 9. Imagine that there is a fourth family of quarks (t',b') with m(t') > m(b'), that is decoupled from the three SM families since $V_{t'b'} = 1$. Describe how the b' quark might be detected. If a strongly bound b'b'bar state exists, would it decay and if so, how?
- 10. Draw a Feynman diagram for the leptonic decay $D_s^+ \to \mu^+ \nu$. What property of the CKM matrix can be determined from the measurement of its branching fraction?
- 11. Draw a Feynman diagram for the rare decay $K_L \to \pi^0 \nu \overline{\nu}$. What property of the Unitarity Triangle can be determined from the measurement of its branching fraction?