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We consider an interconnected network of stations which for simplicity we
take to form a square grid with nearest neighbour connections. Each station iis
characterised by a capacity Ci being the number of trains it can admit, platform
and despatch per unit time. Arrivals in excess of capacity lengthen the queue
of Qi trains held (just upstream of) each station.

For simplicity we work with a discrete timestep and we assume this absorbs
the transit time between adjacent stations.

We make one further simplifying assumption which could in�uence the re-
sults in more than detail, which is that the outgoing �ux of trains from a given
station at a given timestep is distributed uniformly over neighbour destinations
(rather than allocated according to proor train routings). This greatly simpli�es
computing and interpreting the model.

Detailed Algorithm

At time t each station receives its inbound trains which added to its inbound
queue, give a total load

qj(t) = Qj(t− 1) +
∑

i neighbouring j

Jij(t− 1),

where Jij(t − 1) is the number of trains despatched from i towards j at time
t− 1. Then station j despatches outbound a total number of trains

Jj(t) = min (Cj , qj(t))

leaving a queue of trains held over

Qj(t) = qj(t)− Jj(t).

Finally for the results displayed here we allocate the outgoing trains uniformly
over directions so

Jji(t) = Jj(t)/zj
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where station j is directly connected to zj other stations.
Note that the sum of the loads qj is conserved, being the total number

of trains. Thus the load stage is in practice a convenient starting point in
simulation and we specify the initial condition in terms of station loads which
can be disordered. The system can be made intrinsically disordered through
disorder in the capacities.

Simulation Results with Uniform Capacity

We �rst consider the case where the capacity is uniform and all disorder comes
from the initial loads. Figure 1 shows results from such a simulation where the
mean load was exactly matched to the uniform capacity, exhibiting critical be-
haviour. The cumulative autocovariance is de�ned as ca(r) =

´ r
0
〈q(r′)q(R+ r′)〉 d2R

and the measurements clearly exhibit a regime of power law behaviour consis-
tent with fractal scaling ca(r) ∝ rD and a fractal dimension D ' 0.8. Both
the queues and the loads exhibit the same scaling out to a lengthscale which
increases with time. The amplitudes approach each other at late times and deay
increasingly slowly.

Figures 2 and 3 show the behaviour for mean load to capacity at ratio
1.05 and 0.95 respectively, which we interpret as super- and sub-critical resec-
tively. They both show the fractal scaling extending less far in distance than the
matched load case, which matches the interpretation that they are o�-critical.
They di�er markedly in their later time dependence: the supercritical case ex-
hibits a �xation of the fractal correlations both in terms of spatial pattern and
in terms of amplitude of correlation, whereas in the subcritical case all of the
correlations wash out.

Simulation Results with non-uniform capacity

If we supply �xed disorder through the station capacities then the behaviour
is very di�erent. Fig 4 shows results for a case of matched load to that of
the avergage station capacity, and similar apply when there is mismatch and
when the intial loads are also disordered. O�site correlation is now negative (as
indicated by the negative slope of cumulative correlation), and the coarsenning
process selects a uniform dust. What seems to be happenning is that the lowest
capacity sites have ever growing queus whihc can never be mitigated.

We have also investigated giving the station capacities time dependent white
noise. As shown in �g 5, the bahaviour is much as in the static disorder case
except that there is no coarse graining. Essentially queues are popping up but
then disipating locally everywhere all of the time.
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Figure 1: Results from a 100x100 simulation with disordered inital loads of mean
matched to uniform station capacity. (a) Snapshots of the queue distribution
for times t as labelled. Dark blue corresponds to zero queue. (b) Cumulative
Spatial Autocovarince of the queues for times per the legend, consistent with
fractal scaling rD withD ' 0.8 but amplitude of the correlations decreasing with
time. (c) Cumulative Spatial Autocovariance of the load distribution exhibits
the same spatial scaling.
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Figure 2: Results for a supercritcal simulation with mean load/capacity = 1.05,
and other details as per �gure 1. The autovoariance of the queues (b) shows that
at long times the fractal correlations �xate rather than decaying in amplitude,
but they do extend less far in space (a trend more noticeable at higher excess
load). Note that at late times the loads (c) show the same correlation as the
queues, in both amplitude and exponent.
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Figure 3: Results for a subcritical simulation (a) with mean load/capacity =
0.95, and other details as per �gure 1. Strikingly the non-trivial correlations
wash out at later times. The queue autocovariance (b) shows fractal region per
higher loads limited to shorter distances, as expected for a subcritical problem.
At larger distances the queues exhibit higher apparent correlation dimension
whilst the loads (c) exhibit lower apparent dimension. with perhaps a lower
dimension.
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Figure 4: (a) Simulation with frozen disorder in the station capacities and
uniform initial load. This simulation has mean capacity matched to load, but
moderately mismatched results are similar. The declining cumulative covariance
plots for queues (a) and loads (b) indicate only weak negative correlation at
distance. There is coarsening, but the residual structure is concentrated on a
uniform dust rather than a fractal.
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Figure 5: (a) Simulation as per �gure 4 but with volatile disorder in the station
capacities. Again there is weak negative correlation at distance, but now without
any coarsenning.
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Model with �xed route trains

In this section we re�ne the model such that, after any queueing, each train
moves always in the same direction, meaning that the train keeps a �xed route
which is a stright loop round the periodic boundary condition. Each station
now has four queues, one for each of directions ±x̂, ±ŷ. The total load is
then given by qj =

∑
directions d qjd and the total out�ux then as before by

Jj(t) = min (Cj , qj(t)), which is then repartitioned in proportion to the loads so
that Jjd = Jjqjd/qj . This is not quite FIFO, but shares the feature that if one
direction dominates the total load, then it also dominates the total out�ow.

Figrure 6 shows that whilst the spatial correlation of the queues is signi�-
cantly directed by the route bias of the trains, when the correlation is averaged
over directions the same power law behaviour emerges as in the model with equal
out�uxes. Again the sub- and super-critical trends are as before. It should be
boted that this simulation strictly conserves the number of trains travelling in
each direction along a given track, and this freezes in quite signi�cant �uctu-
ations from the intial condition, of order 10% for L = 100 as simulated here.
Figure 7 shows the resutls of mitigating this by constraining the number of trains
on each track direction to have equal total, so that the frozen �uctuations are
zero.

Theoretical Interpretation

We focus on the case where the disorder lies only in the initial loads, in which
case the key challenge is to understand how an apparently fractal spatial dis-
tribution of queues emerges around matched mean loading, which eventually
�xates for supercritical loading and washes out in the subcritical case. We be-
gin by focussing on the critical case for which mean load is exactly matched
to (uniform and �xed) station capacity. Local uncorrelated �uctuations in the
inital loads lead to the local average load in regions of radius r having devia-
tion from the global mean δρ(r) ' ±r. In a characteristic time τ(r) regions of
small radius r with negative �uctuation can even out and draw down any out-
standing queues within them, whereas their equivalents with positive �uctuation
have �uxes limited by station capacity: these �uxes balance leaving no overall
net e�ux from sites with a queue. We can then make the same argument for
slightly larger regions on correspondingly longer timescale. The result is then
that queues of order unity persist totalling r trains in the originally positive
�uctuation regions of radius r, so at this level we explain a fractal distribution
of queues with fractal dimension D = 1, which is conceivably in correspondance
with the observations of D ' 0.8.

In the supercritical case, there will come a stage where the excess train
density held in queues, ρqueue = Ar(t)D−2 matches the global excess load δρ,
at time given by t = τ(r): the queues then �xate because all stations operate
at capacity. In the critical case there is a diminishing density de�cit which by
time τ(L) is spread uniformaly over the sites without queues. All queues then
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Figure 6: Simulation as per �gure 1 but with trains continuing along �xed lines
rather than being rerouted uniformly at each station. The linear routing clearly
biases the alignment of queues seen in the queue denisty plot (a) but averaged
over orientations the correlations of queues (b) and loads (c) both show the
same radial dependence as before.
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Figure 7: Simulation as per �gure 6 but with equal number of trains trains
travelling along each track direction. As per �gure 1 there is is no longer �xation
but the same fractal dimension can be seen.
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erode at a system size dependent rate ALD−2 leading to the amplitude A(t) of
the fractal correlations decaying with decay time τA ∼ L2−D. In the subcritcal
regime exponential decay of the amplitudes sets in earlier and faster when the
net underloading dominates, leading to τ ∼ |δρ|.

All of these arguments are in good qualitative agreement with observation.
To test them more sharply we introduce further characterisation of the queue
evolution: the weight average queue size Qw(t) =

∑
ij q

2
ij/

∑
ij qij and the ap-

parent correlation length ξ(t) =
´
rCcum(r)dr/

´
Ccum(r)dr.
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