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KHI is most is

 

the

 

most

 

common

 

and most

 

strong

 

instability

 

in nature. Some examples.

White caps

 

on

 

the

 

water, overturning

 

wave

development

 

of KHI

 

of the

 

jet

 

with

 

two

 

boundaries

 

or

 

cylindrical

 

jet

 

gives

 

formation of

 

vortices

 

on

 

both

 

jet

 

borders -

 

Karman

 

road. Airplane and 
flamethrower

 

jets disappear due to KHI development-

 

diffusive widening.
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Spiral structure of 
atmospheric cyclones, 
heliospheric

 

current layer and 
spiral arms of a galaxies -

 

is 
possible KHI manifestation in 
rotational velocity shear-due 
to sharp change of angular 
velocity

Atlantic 
hurricane

Pacific 
typhoon

Heliosphere

Galaxy spiral arms
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Kelvin-Helmholtz instability

 

(K-H I)

 

develops on a tangential discontinuity 
(TD) -

 

thin boundary between two flows having different velocities.  
Example: wind instability at the surface of a sea. 
Also it is called

 

the velocity shear instability. 
It was described by

 

Helmholtz (1868) and Kelvin (1871). 
Nature of instability: initiation of wing lift by concentration of streamlines 
over random boundary displacement. Increase of dynamic pressure 
according to Bernoulli theorem:  
causes decompression over the displaced boundary 
which forces initial displacement to grow more, 
so initial

 

convexity

 

(and concavity

 

also)

 

increases

 

with

 

time.
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Another

 

close

 

example

 

-

 

the

 

effect

 

of pulverizer. 
When

 

pumping

 

of pear

 

on

 

the

 

neck

 

of

 

the

 

vial,

 

a 
fast

 

flow

 

of air

 

appears, which

 

also

 

due to Bernoulli 
theorem

 

causes

 

the

 

hydrodynamic

 

vacuum,

 

that

 

sucks

 

out

 

a cologne

 

from

 

a bottle. Resulting jet can 
be unstable-

 

as a flame-thrower

 

jet.
What forces can stabilize KHI?
1) capillary

 

action

 

-

 

the

 

surface

 

tension

 

tends

 

to

 

compensate

 

for

 

the

 

increase

 

in accidental

 

bump

 

on

 

the

 

surface

 

of the

 

liquid; The level

 

of the

 

non-

 

wetting

 

liquid

 

in the

 

capillary

 

is

 

lowered.
2) similar stabilizing effect has a longitudinal 
magnetic field -

 

at a bending of border, the 
magnetic field line is stretched like a bowstring, 
causing a restoring force.



Main results of the K-H I linear theory
Kelvin-Helmholtz instability

 

(K-H I)

 

develops on a tangential 
discontinuity (TD) -

 

thin boundary between two flows having different 
velocities. In real conditions because of finite width of TD in common 
case one needs to consider instability of velocity shear layer of finite 
width D>0.  But such a task is hard for analytical description. Last one 
is given by  approximation of TD,

 

considering instability of plane Z=0 
with zero thickness between two homogeneous self-spaces I

 

(Z<0) 
and II (Z>0). At TD all parameters change their values. The velocity 
V0

 

and magnetic field

 

B0

 

vectors

 

change their values and directions, 
being in the plane parallel to the boundary (Vz

 

=Bz

 

=0). 

Consider perturbations on equilibrium parameters in form:

Linearization of MHD equations gives for vertical displacement  and 
total pressure perturbation 
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there is an instability: perturbations grow in time0)Im(  For

}exp{)(1 ttf   and an imaginary part of a frequency  is called a growth 
rate. To have dispersion dependence                    we need to solve the 
system (1). Boundary conditions are obtained by integrating of equations 
(1) for a finite shear layer and taking:               . It gives continuity of full 

pressure and vertical displacement:

Damping decision of (1) is  
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Substitution of (4) in conditions (3) gives a dispersion equation of TD. This 
equation for finite values of

 

magnetosound

 

Mach number 1)2/(  mms cM 
is not derived analytically in common case (here                -velocity 
jump,                           -

 

magnetosound

 

velocity, cs

 

and a-

 

are sound and 
Alfven velocities).
Approximation of incompressible medium:

 

Density change is absent 
(                  ,                ) and index of exponential damping (2) is maximal: 
(=k)-

 

generation of surface perturbations fast damping from boundary.  
Dispersion equation of subsound

 

“incompressible”

 

TD: 

|| III υυ 
)( 22 acc sm 

0/ dtd ,0υdiv


aiffor

constBconstIf

2....0....:

;)(4)()Im(:, 22








B||υ||k

akΔυk

Influence of B0

 

||V0

 

parallel magnetic field: from the equation of motion
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Maxwell tensions are directed opposite to Reynolds tensions and tend to 
stabilize TD (above mentioned analogy with bow string stretching. 
Perturbations perpendicular to magnetic field move field lines free without 
stretching and do not cause recovery force of Maxwell tensions. 
For near -

 

sound velocity jump (M~1) one should take into account 
stabilizing effect of compressibility of medium. Landau (1944), 
hydrodynamics (B=0),                                                        

Syrovatsky

 

(1954):         for oblique perturbations

Parker (1964), MHD,k

 

|| V

 

|| B:

 

for                                    -

 

very narrow 

range, not satisfied in SW.
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Weaknesses of TD-approximation:

1.

 

short-wave boundary of instability is unknown; 
2.

 

effect of compressibility and density jump is overestimated.
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)-addition due to Raleigh –Taylor effect in the gravity field g



•

 

Instability of the water over the oil
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Instability of shear layer of finite

 

width:

 

D=2d;

Profiles of parameters are described by smooth functions:

It is considered a task on eigen

 

function and eigen

 

values of system (1), 
satisfying to smooth exponential damping (4) of perturbations far from 
shear layer: 

New results of taking into account of boundary finite thickness.
For usually considered submagetosound

 

case:
"incompressible”

 

approximation is applicable. 
For perpendicular configuration k||V┴

 

B dependence of dimensionless 
growth rate from dimensionless wavelength kd

 

is shown in Figures 1.

1)2/(  mms cVM

Fig.1 Normalized growth rate                as a function of wave number kd 
for longitudinal perturbations and perpendicular magnetic field 
Morozov and Mishin (1981), Mishin and Morozov (1983); Mishin 1993, 
2003). Parallel magnetic field                 reduces

 

the

 

growth

 

rate

 

and 
narrows

 

the

 

range

 

of instability

 

(Chandra, 1973), like

 

the

 

compressibility

 

effect, firstly studied by Blumen

 

et al, 1970,1975). However, magnetic 
pressure PB reduces value Mms .

ud /~  
0BV||k 0

0BV||k ||0



ud /~  

0BV||k 0

 coscos)/(
~

msmsms McuM 

Decrease of Mms

 

-

 

compressibilty

 

effect means increasing growth rate.I.e. 
perpendicular magnetic field can amplify instability!

Influence of the perpendicular magnetic field                 on the 
dependence of the growth rate ˜ (kd) of supersonic longitudinal 
disturbances when M=u/cs = 2. Curves 1 and 2 correspond to the
following values of the parameter: = 100(Mms = M = 2)
And = 2 (Mms = 1.58). In TD approximation stability is  for M>1.41. More 
temperature is more growth rate- unlike to instability of permeant flux.

Role

 

of oblique

 

disturbances

 

in the

 

instability

 

of a
supersonic

 

shear

 

flow
In the

 

foregoing

 

discussion

 

we

 

have

 

considered

 

the

 

longitudinal
disturbances

 

(k parallel

 

to

 

flow

 

velocity

 

v0

 

, or

 

k = k||). However, within

 

the

 

TD approximation, Syrovatsky

 

(1954)

 

showed

 

that

 

in the

 

case

 

of a 
supersonic

 

velocity

 

difference,

 

even

 

if

 

the

 

Landau

 

stability

 

criterion

 

(Landau, 1944) is

 

satisfied:

 

M>1.41 (which

 

holds

 

for

 

longitudinal

 

disturbances),

 

the

 

oblique

 

disturbances, for

 

which

 

the

 

wave

 

vector

 

k in the

 

plane

 

(x, y) is

 

directed

 

at

 

an

 

angle

 

to

 

the

 

velocity

 

vector

 

v0

 

), can

 

be

 

unstable. This

 

is

 

because

 

the

 

projection

 

of the

 

flow

 

velocity

 

upon

 

the

 

phase

 

velocity

 

direction

 

can

 

become

 

smaller

 

than

 

the

 

effective

 

sound

 

velocity

 

cm

 

, which

 

would

 

lead

 

to

 

a decrease

 

of the

 

“wave”

 

Mach number
. So,

 

for M>1.4 KHI can develop. 
This result obtained by Syrovatsky

 

(1954) in TD approximation, was 
developed in velocity shear layer instability (for finite width D>0) by 
Blumen

 

et al., 1970, 1975 in ordinary hydrodynamics. These authors also 
showed existence of new radiative

 

mode of KHI for supersonic 
perturbations. They have small growth rate (               <0.01) but slow 
dumping in space because index of dumping (2) for them is getting small. 
So, such instability can play an important role in supersonic shear flows 
which usually are considered to be stable. Their results were developed 
by Mishin and Morozov

 

1981, 1983, …2005 for MHD (with external B0

 

) 
with accounting of nonhomogeneity

 

of all plasma parameters for 
supermagnetosonic

 

shear flows in space physics.






Supersonic MHD KHI on oblique 
perturbations



Foullon

 

et al (Astrophys. J. Letts. 729:L8 (4pp), 2011 March1)
Fast coronal mass ejecta

 

erupting from the Sun, with KH 
waves detected on its northern flank.
The Solar Dynamics Observatory/Atmospheric Imaging 
Assembly (SDO/AIA) image, shown in solar centered X 
(increasing toward west) vs

 

Y (increasing toward north) 
coordinates, is taken in 131 Å

 

channel. The overlaid rectangular 
region of interest indicates the northern flank region, where 
substructures, corresponding to the presumed KH waves, are 
detected against the darker coronal background.

Manifestations KHI in spac
e.K-H I

 

in Solar corona
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K-H I

 

in Solar corona

Ofman

 

and Thompson (Astrophys. J. Letts. 734:L11(5pp),2011 
June10) observed vortex-shaped features in coronal images from 
the Solar Dynamics Observatory associated with an eruption 
starting at about 2:30 UT on 2010 April 8. The series of vortices 
were formed along the interface between an erupting (dimming) 
region and the surrounding corona. They ranged in size from 
several to 10 arcsec

 

and traveled along the interface at 6–14 km 
s−1. The features were clearly visible in six out of the seven 
different EUV wave bands of the Atmospheric Imaging 
Assembly. They identified the event as the first observation of 
KHI in the corona in EUV. The interpretation is supported by 
linear analysis and by a nonlinear 2.5-D model of KHI. The 
instability is driven by the velocity shear between the erupting

 

and closed magnetic field of the coronal mass ejection and plays

 

an important role in energy transfer processes in coronal plasma.
Key words: Sun: activity –

 

Sun: corona –

 

Sun: coronal mass 
ejections (CMEs) –

 

Sun: UV radiation



KHI in solar wind

 

Experimental results.

 

1)

 

Near the Earth there are observations of magnetosound

 

waves 
in solar wind. These waves cannot come from the Sun because of 
their fast transformation in Alfven waves. So, it should be 
mechanism of their generation in the solar wind, not near the Sun.

 

2) In solar wind near the Earth supersonic velocity shear flows 
with finite thickness are observed. Because KHI in the TD 
approximation here is known to be stable (Parker, 1964)-his 
condition of instability                   , is not satisfied in

 

SW. 
So, there is problem of their explanation because of absence of 
usual viscosity able to provide rather big observable value of the 
width of shear layers between fast and slow flows. Such shear 
layers have

 

to

 

collapse

 

due

 

to

 

the

 

presence

 

of a large

 

normal

 

component

 

of

 

the

 

velocity

 

with

 

respect

 

to

 

the

 

interfaces.

 

These both problems were explained by Korzhov, Mishin and 
Tomozov (1984), considered KHI of supermagnetosonic

 

jet with 
two boudaries. They had shown that for observable conditions, 
KHI develops rather effectively on oblique perturbations in 
frequency range of observed magnetosonic waves (10-2-10-4 Hz).

 

Also we evaluated the value of effective anomalous viscosity 
resulted from KHI development. Its value

 

is enough to overcome the kinematic steepening and explain 
observable velocity shear layer thickness and

 

the viscosity is sufficient to explain the existence of the finite width 
of the layers to overcome the kinematic steepening due to 
anomalous diffusion resulted from the instability evolution.

scVa 



KHI on the magnetospheric boundary

Magnetosphere is flown around by SW with subsonic velocities 
at dayside and with supersonic velocity at its flanks. At dayside 
KHI is possible in subsonic regime at low-latitude boundary 
layer, where V┴

 

BE. However strong stabilizing effect can be 
occurred by the magnetic field of the magnetosheath. The most 
good situation is for small B there, that is to be for radial IMF. 
By

 

(azimuthal) IMF causes the dawn-

 

dusk asymmetry of the 
magnetosheath

 

magnetic field distribution and KHI growth rate. 
KHI gives generation of surface (fast decreasing from the 
boundary) MHD waves in the range of geomagnetic pulsations. 
Development of instability here can be amplified for a short 
intervals by solar wind impulses that

 

are

 

created

 

by

 

incidence

 

of 
SW inhomogeneities

 

on

 

the

 

magnetosphere. For these 1 min-

 

intervals R-T I can give impulsive generation fo

 

surface 
perturbations on dayside magnetopause not only at low 
latitudes. This KH+RT instability can give also penetration of 
plasma inside the magnetopause (Mishin, 1981, 1993). 
In general, long-term

 

instability

 

on

 

the

 

dayside magnetopause

 

is

 

difficult

 

to

 

excite

 

because

 

of the

 

low

 

flow

 

velocity

 

and large

 

longitudinal

 

Alfven

 

speed.



Instability of the boundary layer of the distant tail  for the velocity 
difference v = 500 km/s (M(z=0)=4.5)  as a function of cos. The case 
of a flow along the magnetic field

 

B||V0.
KHI develops on oblique perturbations at magnetotail boundary not only 
at low latitudes-

 

at all its surface. 
Its frequency range is the same as 10-min registered waves there and on 
the nightside

 

Earth. Low velocity of oblique perturbations is good for 
their nonlinear development. Growth rate is enough to explain wide 
boundary layers existence here and to provide energy and impulse

 

transfer from the SW into the magnetosphere as it supposed in viscous 
mechanism of their interaction (Mishin and Morozov

 

1983, Mishin 
2003, 2005).

CONCLUSION
In collisionless

 

space plasma, KHI at subsonic tangential discontinuities 
(TD) generate low frequency surface waves fast damping in space,

 

not 
causing any diffusion of TDs. At supersonic TD, KHI generate waves 
slow damping outward.  Their evolution results in the flow turbulization, 
forming an anomalous transport coefficients and corresponding diffusive 
TD broadening, and  plays the most important role in their dynamics in 
all space plasma. Accounting only longitudional

 

perturba-tions, 
Miura,1992;1999 concluded about ineffectiveness of supersonic KHI on 
the geotail

 

boundary. After that, majority of authors continue to ignore

 

the

 

oblique

 

disturbances

 

, possibly because of problems of 3D 
modelling. Therefore

 

they simulate

 

KHI

 

only at subsonic

 

velocity shear 
layers in all space obtaining

 

diffusion

 

effects

 

as

 

a result

 

of artificial

 

numerical

 

viscosity, inherent

 

in their

 

algorithms. However, in space

 

plasma

 

realistic

 

collisional

 

viscosity

 

and conductivity

 

are

 

absent.

KHI at distant magnetotail boundary
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