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Figure 1. A possible mechanism for excitation of kink
oscillations of coronal loops by a coronal blast wave
excited by a flare.

and Shrijver et al. (2002). In particular, it was found
that the kink oscillations do not always have a simple
form of a principle (or global) mode and there can
be higher spatial harmonics observed.

The event on 14th of July (Aschwanden et al., 1999;
Nakariakov et al. 1999) may be considered as a typi-
cal example of kink oscillations of coronal loops. The
analysis of the loop displacement shows that the os-
cillations are almost harmonic with the period of
about 256 s (the frequency about 4 mHz). About
three periods of oscillation were observed. The pe-
riod remains almost constant during these oscilla-
tions. This result is confirmed by the analysis with
the use of the wavelet technique, presented in Fig-
ure 2. The same conclusion was reached by Ireland
& De Moortel (2002).

Displacement amplitudes are several Mm for the dis-
tance between the loop footpoints estimated to be
about 83 Mm. The displacement amplitude is sev-
eral times larger than the loop cross-section radius,
which is about 1 Mm. The oscillations show evidence
of strong damping. Simultaneously, similar quasi-
periodic oscillations were observed in several other
loops at the distance of several Mm to 60-70 Mm
from the flare epicentre (Aschwanden et al. 1999).
All these observational findings suggested the oscilla-
tions to be interpreted as a kink global standing mode
of the loop.

Taking the observed periods P and loop lengths L,
and applying that the wavelength of a global stand-
ing mode is double the length of the loop, we estimate
the phase speed required as

⌅

k
=

2L

P
⇥ 1020± 132km/s. (1)

Then, neglecting the e�ect of the loop curvature,
we consider the kink modes as the eigenmodes of
a straight magnetic cylinder, which have been inves-
tigated in great detail (see, e.g. Roberts 1991, 2001,
2003). According to the theory, the fast kink magne-
toacoustic modes of a magnetic cylinders do not have
dispersive cut-o�s and exist for all wavenumbers. In
general, the phase speed of these modes is described
by a complicated transcendental dispersion relation,

Figure 2. The wavelet analysis of the oscillatory
coronal loop displacement for the event on 14th of
July, 1998.

which includes modified Bessel functions and their
derivatives. But, we may significantly simplify the
analysis, using the fact that the wave length of the
observed kink oscillations is very long, much larger
than the loop cross-section diameter. Indeed, the
observed width of the loop is about 1 Mm, while
the loop length may be estimated as 261 Mm, for
the distance between the footpoints of about 83 Mm
(Nakariakov & Ofman, 2001). In this limit, the phase
speed of fast kink modes waves approaches a so-
called kink speed,

Ck �
�

2
1 + ⇤e/⇤0

⇥1/2

CA0, (2)

where ⇤e and ⇤0 are respectively the densities of
the plasma outside and inside the loop, CA0 =
B0/(4⇥⇤0)1/2 is the Alfvén speed in the loop and
B0 is the magnetic field inside the loop. Here we
assumed that the magnetic field is equal inside and
outside the loop, because the parameter � is believed
to be very small in the EUV corona.

3. DETERMINATION OF THE MAGNETIC
FIELD

The expression for the kink speed (2) contains two
unknown parameters, the Alfvén speed CA0 and the
density ratio ⇤e/⇤0. Observationally measuring Ck

and considering the density ratio as a parameter, we
can determine the Alfvén speed in the loop. Fortu-
nately, for small ⇤e/⇤0, the dependence of the kink
speed on the density ratio is weak and it allows us
to neglect this parameter in equation (2). Assuming
⇤e/⇤0 = 0.1, we obtain CA = 756 ± 100 km/s for
the kink speed of 1020± 132 km/s, for the event on
14th July, 1998. For the event on 4th July 1999, we
estimate the kink speed as 1030 ± 410 km/s. (See
Nakariakov & Ofman 2001 for detail).

The Alfvén speed is defined by the magnetic field
strength and the density of the medium. Conse-
quently, we can estimate the value of the magnetic

B = 13 ± 9G
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where

m2
α =

(k2C2
sα − ω2)(k2C2

Aα − ω2)
(C2

sα + C2
Aα)(k2C2

Tα − ω2)
, (3)

where ω and k are the frequency and the longitudinal wave
number, respectively; the indices α = 0, e are for internal
and external media, respectively; Im(x) and Km(x) are
modified Bessel functions of order m; the prime denotes
the derivative of a function with respect to its argument.
For the trapped modes, which are evanescent outside the
tube, the condition me > 0 has to be fulfilled. The number
m determines the mode structure, and for the kink modes
considered m = 1. In addition, there exist a dispersionless
torsional Alfvén mode propagating with the Alfvén speed.

In the observational examples mentioned above, only
the global mode was seen, with the longitudinal wave-
length of double the loop lengths. For the observed loop
widths which are much smaller then loop lengths, it makes
ka ≪ 1, which allows us to simplify the dispersion rela-
tion.

There are two kink (m = 1) modes in the limit ka ≪ 1:
slow and fast. The slow kink mode has the phase speed
about

ω

k
≈ CT0 ≡ Cs0CA0

(C2
s0 + C2

A0)1/2
· (4)

The phase speed of the fast kink mode is

ω

k
≈ Ck ≡

(
2

1 + ρe/ρ0

)1/2

CA0, (5)

where Ck is a so-called kink speed.

4. Determination of the magnetic field

The speed of slow waves, CT0 is below both the Alfvén
CA0 and the sound Cs0 speeds. For the coronal loop tem-
perature of a few 106 K, we estimate the sound speed
as Cs0[kms−1] = 152 T 1/2[106 K] < 300 kms−1, we con-
clude that CT0 < 300 km s−1 and, consequently, the slow
mode has to be excluded from the consideration. However,
the fast wave can have the required phase speed, and it
was concluded (Nakariakov et al. 1999) that we observed
the standing global kink fast magnetoacoustic mode. The
third MHD wave mode, the Alfvén one, is in this geometry
a torsional wave confined to the small scale of the loops’
cross-section, and cannot be detected by TRACE.

Expression for the kink speed (5) contains two un-
known parameters, the Alfvén speed CA0 and the den-
sity ratio ρe/ρ0. Considering the density ratio as a pa-
rameter, we can determine the Alfvén speed in the loop.
Fortunately, this dependence is weak and it allows us to
minimize the uncertainty in the density ratio. For the
quite wide range of possible density ratios, from 0 to 0.3,
the maximum error in determination of the Alfvén speed
is just 7%. Assuming ρe/ρ0 = 0.1, we obtain CA =
756± 100 km s−1 for the kink speed of 1020± 132 km s−1,
for the event on 14th July, 1998.

Fig. 2. The magnetic field inside a coronal loop as function of
plasma density inside the loop. The external to internal density
ratio is 0.1. The solid curve corresponds to the central value of
the kink speed Ck = 1030 ± 410 kms−1 (for the event of the
4th of July, 1999), and the dashed curves correspond to the
upper and the lower possible values of the speed. The vertical
dotted lines give the limits of the loop density estimation using
TRACE 171 Å and 195 Å images.

The Alfvén speed is defined by the magnetic field
strength and the density of the medium. Consequently, we
can estimate the value of the magnetic field in the loop:

B0 = (4πρ0)1/2CA0 =
√

2π3/2L

P

√
ρ0(1 + ρe/ρ0). (6)

The determination of the magnetic field is weakly sensitive
to errors in the determination of the density, because the
magnetic field is proportional to the square root of the
density. Figure 2 shows the dependence of the magnetic
field on the density for different values of the kink speed
and shows that for a quite wide range of plasma densities,
from 1× 109 to 6× 109 cm−3, the magnetic field is in the
range from 4 to 30 G.

We have used TRACE 171 Å and 195 Å images of
the loop taken on July 4th, 1999 at about 8:41 UT to
determine the loop’s temperature and emission measure
using the TRACE data analysis routines. We found
that the loops’ temperature is about 1.01 × 106 K
near the loop top, and about 1.05 × 106 K midway
between the loop top and the flare site. We have used
the emission measure at these location to determine the
loop density assuming that the loop width is 4 pixels
(1.44 × 108 cm) and the filling factor is 1.0, and found
that the density is 109.3±0.3 cm−3 at the loop top
and 109.2±0.3 cm−3 in the midway section. According
to the TRACE Data Analysis Guide (Bentley, R.D., 2000,
http://umbra.nascom.nasa.gov/bentley/guides/tag/)
the emission measure determined with this technique is
known to a factor of 4. Thus the above values of the
density are determined to a factor of two, which produces
the error bar of 0.3 in the exponent. Using the above
values of the density we get the magnetic field in the
range B = 13 ± 9 G (see Fig. 2). Future improvement in
the accuracy of the density determination will provide
better estimates of the field with this technique.
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the loop taken on July 4th, 1999 at about 8:41 UT to
determine the loop’s temperature and emission measure
using the TRACE data analysis routines. We found
that the loops’ temperature is about 1.01 × 106 K
near the loop top, and about 1.05 × 106 K midway
between the loop top and the flare site. We have used
the emission measure at these location to determine the
loop density assuming that the loop width is 4 pixels
(1.44 × 108 cm) and the filling factor is 1.0, and found
that the density is 109.3±0.3 cm−3 at the loop top
and 109.2±0.3 cm−3 in the midway section. According
to the TRACE Data Analysis Guide (Bentley, R.D., 2000,
http://umbra.nascom.nasa.gov/bentley/guides/tag/)
the emission measure determined with this technique is
known to a factor of 4. Thus the above values of the
density are determined to a factor of two, which produces
the error bar of 0.3 in the exponent. Using the above
values of the density we get the magnetic field in the
range B = 13 ± 9 G (see Fig. 2). Future improvement in
the accuracy of the density determination will provide
better estimates of the field with this technique.

L54 V. M. Nakariakov and L. Ofman: Determination of the coronal magnetic field by coronal loop oscillations

Consequently, we can determine the unknown physical
parameters of the corona.

The main advantages of the MHD coronal seismology
with the EUV imaging telescopes over other methods are:
(1) the precise relation of the measurement to a specific
coronal structure, and consequent high spatial resolution
(less than 1′′), (2) both on-the-limb and off-limb measure-
ments are possible, (3) determination of the absolute value
of the coronal magnetic field strength that includes all
three components.

In this letter, we discuss the possibility for determi-
nation of the Alfvén speed and magnetic field through
the analysis of flare-generated coronal loop oscillations ob-
served with TRACE on 14th of July, 1998 and 4th of July,
1999.

2. Observations of flare-generated loop
oscillations

2.1. 14th of July, 1998

The movies generated with 171 Å bandpass TRACE im-
ages taken on 14th of July, 1998 (Aschwanden et al. 1999;
Nakariakov et al. 1999) show kink-like decaying quasi-
periodic displacement of several coronal loops shortly
after a flare (at 12:11 UT, in the adjacent active re-
gion AR8270). The observational sequence with the ca-
dence time of about 75 s and the exposure time of
about 16.4 s included all stages of the oscillations. The
analysis of the intensity variation in four neighbouring
perpendicular slits near the loop apex showed synphase
transversal displacement. Considering the averaged loop
displacement as a function of time and approximating the
observationally determined dependence with an exponen-
tially decaying harmonic function, the period of the oscil-
lations was found to be about ∼256 s (Nakariakov et al.
1999). The distance between the loop footpoints was esti-
mated as ∼8.3 × 109 cm, which, for a semi-circular loop
gives the loop length of ∼1.3× 1010 cm.

2.2. 4th of July, 1999

The second example of the flare-generated loop oscilla-
tions, reported by Schrijver & Brown (2000), was less
complete. The flare was occurring at 8:20 UT, 14th of
July, 1999, when TRACE was passing through the South
Atlantic Anomaly. Unfortunately, the TRACE 171 Å ob-
servations had a gap between 8:17 and 8:33 UT and only
the very last stage of the loop oscillations was registered.
Figure 1 shows the temporal evolution of the intensity
across an oscillating loop. Three neighbouring slits taken
near the loop apex behave almost identically, suggesting
that we deal with the kink oscillations. For the elapsed
time greater then 600 s the loop displacement is not seen.
It is possible to roughly estimate the period of the decay-
ing oscillations, assuming that we observe one full cycle.
The estimation gives the period of ∼360 s. The distance
between the footpoints is ∼330 pixels. For the pixel size

Fig. 1. Evolution of the emission intensity across a coronal
loop for the event on July 4th, 1999. The observation starts at
8:33 UT.

∼360 km, it gives the loop diameter along the major axis
of ∼1.2× 1010 cm. Assuming the loop is semi-circular, we
obtain the loop length ≈1.9× 1010 cm.

2.3. Global kink modes

The natural interpretation of these phenomena is that
the loops experience kink global mode MHD oscillations.
As the main amplitude of the displacement is observed
near the loop apecis and the displacement is synphase,
we conclude that the oscillations are the global standing
mode of the loop, with the wave length double the loop
length. Taking the observed periods P and loop lengths
L (256 s and 1.30 × 1010 cm for 14th of July, 1998; 360 s
and 1.9 × 1010 cm for 4th of July, 1999), we estimate the
phase speed required as

ω

k
=

2L

P
≈

{
1020± 132 km s−1 (14th July, 1998),
1030± 410 km s−1 (4th July, 1999). (1)

Possible errors of these measurements are discussed in
Sect. 5.

3. MHD modes of coronal loops

The theory of MHD modes of magnetic structures is well
developed (see, e.g. Roberts 1991). Considering a coro-
nal loop as a straight magnetic cylinder of width a, one
can connect properties of MHD modes of the cylinder
with physical conditions inside and outside the cylinder
through the dispersion relation:

ρe(ω2 − k2C2
Ae)m0

I ′m(m0a)
Im(m0a)

+ρ0(k2C2
A0 − ω2)me

K ′
m(mea)

Km(mea)
= 0, (2)

long wavelength limit:

slow fast

k = π/L

Nakariakov & Ofman (2001)

TRACE observation 14 July 1998



Kink oscillations excited by coronal mass ejections (CMEs)

4

• Kink mode = transverse oscillation of loop 

• 76% of oscillations associated with CMEs 
observed in white light emission 

• 98% accompanied by lower coronal 
eruptions

Model of Zimovets & Nakariakov (2015)

3D simulation by Pascoe & Nakariakov

Front view Side view

Fundamental kink 
standing mode



• Mode coupling studied by Hollweg & Yang (1988), Goossens et al. (1992) etc. 

• Ruderman & Roberts (2002) considered in the context of the rapid damping of coronal loop 
oscillations observed by TRACE 

• Modelled damping of kink modes is due to resonant absorption, acting in the inhomogeneous 
regions of the tube 

• Transfer of energy from kink mode to Alfvén (azimuthal) oscillations within inhomogeneous layer 

• Only loops with small inhomogeneous layers are able to support coherent oscillations

Resonant absorption as a damping mechanism

equation (66) imply that the second term in the square
brackets and the terms proportional to v0 and v1 on the
right-hand side of equation (65) can be neglected in compar-
ison with the first term in the square brackets for t4!!1

k . As
a result, we rewrite equation (65) in the following approxi-
mate form:

v ¼ ! ie!!t

a"#!
<

(

Se!i!kt

Z t#!

0
exp

!
i#!1

A ðr! rAÞs sgnD

þ s!=#! ! s3=3
"
ds

)

: ð68Þ

Let us estimate the ratio of the third and second terms in the
exponent in equation (68). We have

s3=3

s!=#!
& t2#3!

3!
' t2

8( 103!3
kR

!1

3ð‘=aÞ!k
' 3( 104t2!2

kR
!1 : ð69Þ

Now we consider times t such that !!1
k 5 t5 10!2!!1

k R1=2.
Note that 10!2R1=2 ' R1=3 for R ' 1012. Then, in accord-
ance with equation (69), we can neglect the term s3=3 in the
exponent in equation (68) in comparison with the term
s!=#!, and the integral in equation (68) is easily calculated.
As a result we arrive at

v ) ! i

a"
<

(
Se!i!kt

! þ iDðr! rAÞ=ð2!kÞ

( exp iðr! rAÞDt=ð2!kÞð Þ ! e!!t½ +

)

: ð70Þ

Using equation (60b), we obtain the estimate v ' u0a=‘,
valid for te!!1 (note that !!15 10!2!!1

k R1=2 for R4106).
Hence, during the characteristic time !!1 of the global-
mode damping, the amplitude of the wave motion in the dis-
sipative layer increases from a value of order u0 to a value of
order u0a=‘. This increase occurs because of the energy flux
from the global motions into the dissipative layer. Then the
amplitude remains of the same order of magnitude at least
up to the time satisfying t5 10!2!!1

k R1=2.
Note that, in accordance with equation (70), the charac-

teristic scale of variation of v in the dissipative layer
decreases as 1=t. This decrease corresponds to phase mixing
of Alfvén oscillations that occurs because !A depends on r
and the neighboring magnetic field lines oscillate with differ-
ent frequencies (e.g., Heyvaerts & Priest 1983; Wright
1992a, 1992b;Mann,Wright, & Cally 1995).

The behavior of v given by equation (68) was studied by
Ruderman & Wright (2000). It was shown that, in the case
where !4!kR!1=3, jvj takes its maximum value at r ¼ rA
when t ¼ tm ) 3!!1 lnð!=#!Þ. Since #! ' 20!ða=‘ÞR!1=3, we
obtain tm ) 15!!1 for a=‘ ' 0:1 and R ¼ 1012 1014. This
maximum value is of the order of au0=‘. After reaching its
maximum value, jvj exponentially decreases on the charac-
teristic timescale !!1

k R1=3. Phase mixing continues until a
time of order ð!=#3!Þ ' 10!2!!1

k R1=2. At this time the char-
acteristic spatial scale is of order 102‘R!1=2, while the ampli-
tude of oscillations is already exponentially small.

The analysis of this section is based on the estimate
Re1012 obtained with the use of Braginskii formulae for
the viscosity coefficients. However, the coronal viscosity can
be enhanced orders of magnitude by, for example, turbu-

lence. In that case it is quite possible that, instead of the
!!15!R1=3, we would have !!1

e!R1=3. Then the dissipa-
tive layer would be quasi-stationary and described by the
same formulae as in the case of stationary resonant absorp-
tion (e.g., Mok& Einaudi 1985).

7. APPLICATION TO CORONAL LOOP OSCILLATIONS

Formula (56) gives the calculated decay rate of oscilla-
tions in the kink mode. Its use may be conveniently illus-
trated by taking the density profile in the annulus in the
form

"ðrÞ ¼ "i
2

ð1þ $Þ ! ð1! $Þ sin %ð2rþ ‘! 2aÞ
2‘

# $
;

a! ‘ < r < a ; ð71Þ

where $ ¼ "e="i. Using equation (47), we obtain
rA ¼ a! ‘=2 and "A ¼ "ið1þ $Þ=2. Then it follows from
equations (50) and (56) that

! ¼ !k‘ð1! $Þ
4að1þ $Þ : ð72Þ

In terms of the period & ¼ 2L=ck of the fundamental kink
mode with wavenumber k ¼ %=L and kink speed ck
(=!k=k), we obtain an oscillation decay rate &decay (=!!1) of

&decay ¼
2

%

a

‘

"i þ "e
"i ! "e

& : ð73Þ

We consider this result in relation to the observational data
reported by Nakariakov et al. (1999). These authors
reported a coronal loop oscillation with frequency
!k ) 0:024 s!1 (& ¼ 256 s) and decrement ! ) 0:0011 s!1

(&decay ¼ 870 s). Taking "i ¼ 10"e, we obtain from equation
(72) that ‘=a ) 0:23.

It follows from equation (72) (and more generally from
eq. [56]) that the condition !5!k is equivalent to ‘5 a. It
can be shown that, in the general case where the density
varies through the whole tube cross section, the condition
!5!k is equivalent to jDj4!2

k=a. This inequality means
that the characteristic scale of the density variation near the
resonant position is much smaller than the tube radius.
When this condition is not satisfied, all solutions to the dis-
persion equation corresponding to the kink oscillations
have imaginary parts of the same order as real parts. As a
result all tube perturbations damp aperiodically or almost
aperiodically, and an external perturbation does not cause
pronounced tube oscillations.

Hollweg & Yang (1988) also discussed damping of the
kink mode by resonant absorption, in the ideal case. Their
analysis was for a plane, but they applied it to a cylinder by
replacing the perpendicular wavenumber by 1/a. Surpris-
ingly, their procedure gives results identical to equations
(56) and (73). They concluded that under coronal conditions
‘‘ the waves are very effectively damped with an e-folding
time of only two wave periods.’’

8. DISCUSSION AND CONCLUSIONS

In this paper we have studied the plane-polarized kink
oscillations of a straight cylindrical magnetic tube with the
footpoints embedded in a dense immovable plasma. We
have assumed that the equilibrium plasma density varies
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In accordance with Beaufumé, Coppi, & Golub (1992),
coronal loops may be divided into three types: small,
medium, and large. Typical number densities in these
three types of loop are 1016, 3! 1015, and 1015, respec-
tively, with corresponding typical magnetic field strengths
of perhaps 300, 150, and 50 G. For a coronal tempera-
ture of 2! 106 K, we then obtain a plasma beta
!d5! 10"4. In fact, the magnitudes of magnetic fields in
the corona are usually obtained by extrapolating from
photospheric magnetic sources (which are themselves
measured with the Zeeman effect in photospheric lines).
Recently, however, Nakariakov (2001) has reported esti-
mates of magnetic field strengths in coronal loops based
on observations of loop oscillations. The lower limit for
the magnetic field strength that follows from his analysis
is 4 G. Thus, even if we take the number density equal to
the largest value observed in coronal loops, at 1016 m"3

and a high coronal temperature of 3! 106 K, we obtain
! # 0:14. These estimates allow us to employ the cold
plasma approximation (! ¼ 0) in what follows. This
approximation corresponds to the sound speed tending to
zero. This is just opposite to the incompressible plasma
approximation, which corresponds to the sound speed
tending to infinity.

Finally, we note that propagating compressive waves have
also been detected in coronal loops (Berghmans & Clette
1999; De Moortel, Ireland, & Walsh 2000; Robbrecht et al.
2001; O’Shea et al. 2001) and in polar plumes (Ofman et al.
1997; Ofman, Nakariakov, & DeForest 1999; DeForest &
Gurman 1998). Furthermore, prominences are also
observed to oscillate and indeed may exhibit decaying oscil-
lations (Molowny-Hobas et al. 1999; Terradas, Oliver, &
Ballester 2001) that have some similarity to the decaying
coronal loop oscillations discussed here. It may be that an
interpretation of the decay in prominence oscillations can
be given along lines similar to those proposed here for
coronal loops.

The resonant absorption considered in this paper is
not the only mechanism that might explain the damping
of magnetic tube oscillations. Another possible damping
mechanism is radial wave leakage (e.g., Cally 1986;
Stenuit, Keppens, & Goossens 1998; Stenuit et al. 1999).
Such wave leakage occurs when the solution in the envi-
ronment of a tube has the form of a propagating wave.
However, this mechanism is not applicable to the particu-
lar case of kink oscillations of a coronal loop. This is
because the leakage can only happen if the phase speed
of the loop oscillation is larger than the Alfvén speed
outside the loop. However, as we will see in what follows,
if the plasma density in the magnetic tube is larger than
the density outside the tube, as in coronal loops, then
this inequality is not satisfied. Hence, kink oscillations of
a coronal loop are always nonleaky.

Our paper is organized as follows. In the next section we
formulate the problem and in x 3 derive the governing equa-
tion for the perturbation of the magnetic pressure, obtain-
ing the solution to this equation in the form of a Bromwich
integral. This solution is used in x 4 to study the fundamen-
tal global mode of oscillation of a magnetic tube. In x 5 the
asymptotic state of the oscillation in the magnetic tube
boundary is studied for times much larger than the period of
the global mode. In x 6 the wave motion in the dissipative
layer embracing the ideal resonant position is studied. In x 7
we compare our theoretical results with the observations of

damped oscillations of coronal loops, presenting our con-
clusions in x 8.

2. FORMULATION

We consider oscillations of a magnetic tube in a cold vis-
cous plasma. We aim to apply our results to the oscillations
of solar coronal loops. In accordance with the classical
Braginskii’s expression for the viscosity tensor in a magne-
tized plasma (Braginskii 1965), under typical coronal condi-
tions, the coefficient of the shear viscosity is at least 10
orders of magnitude smaller than that of the compressional
viscosity. However, in the problem of oscillations of coronal
loops, dissipation is only important in an Alfvénic dissipa-
tive layer embracing an ideal resonant magnetic surface.
Numerical studies by Ofman et al. (1994) and Erdélyi &
Goossens (1995) have shown that in Alfvénic dissipative
layers only the shear viscosity is significant, all other terms
in Braginskii’s tensorial expression being neglected. This
fact enables us to write the viscous force in the momentum
equation in a simplified form "#r2v, where v is the velocity,
" the plasma density, and # the kinematic viscosity.

Inside the flux tube the plasma density is "i, and outside it
is "e. The two regions are connected by a thin layer,
a" ‘ < r < a with ‘5 a, where the plasma density varies
monotonically from "i to "e, with "i > "e. The equilibrium
magnetic field B is everywhere uniform and in the z-
direction, B ¼ Bẑz (see Fig. 1). The nonuniformity in plasma
density "ðrÞ produces a nonuniform Alfvén speed, allowing
resonant wave effects to occur. It is in such nonuniform
layers that viscous effects are likely to be most important.

In what follows we adopt the cylindrical coordinates r, ’,
and z with the z-axis aligned with the equilibrium magnetic
field. In the dissipative layer, there are large gradients in the
radial direction only. This observation enables us to use the
approximation #r2v # #@2v=@r2. Then the linearizedMHD

z

B

l a

r

ρ ρ
i e

ϕ

Fig. 1.—Sketch of the equilibrium state, showing a magnetic flux tube
with plasma density "i embedded in a plasma with density "e. The equili-
brium magnetic field everywhere has strength B. The equilibrium density
varies in the annulus region a" ‘ < r < a from "i to "e. The dashed lines
show the perturbedmagnetic tube in its kinkmode of oscillation.
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equation (66) imply that the second term in the square
brackets and the terms proportional to v0 and v1 on the
right-hand side of equation (65) can be neglected in compar-
ison with the first term in the square brackets for t4!!1

k . As
a result, we rewrite equation (65) in the following approxi-
mate form:

v ¼ ! ie!!t
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<
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Se!i!kt

Z t#!

0
exp

!
i#!1

A ðr! rAÞs sgnD
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Let us estimate the ratio of the third and second terms in the
exponent in equation (68). We have

s3=3
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& t2#3!
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' t2
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Now we consider times t such that !!1
k 5 t5 10!2!!1

k R1=2.
Note that 10!2R1=2 ' R1=3 for R ' 1012. Then, in accord-
ance with equation (69), we can neglect the term s3=3 in the
exponent in equation (68) in comparison with the term
s!=#!, and the integral in equation (68) is easily calculated.
As a result we arrive at

v ) ! i

a"
<

(
Se!i!kt

! þ iDðr! rAÞ=ð2!kÞ

( exp iðr! rAÞDt=ð2!kÞð Þ ! e!!t½ +

)
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Using equation (60b), we obtain the estimate v ' u0a=‘,
valid for te!!1 (note that !!15 10!2!!1

k R1=2 for R4106).
Hence, during the characteristic time !!1 of the global-
mode damping, the amplitude of the wave motion in the dis-
sipative layer increases from a value of order u0 to a value of
order u0a=‘. This increase occurs because of the energy flux
from the global motions into the dissipative layer. Then the
amplitude remains of the same order of magnitude at least
up to the time satisfying t5 10!2!!1

k R1=2.
Note that, in accordance with equation (70), the charac-

teristic scale of variation of v in the dissipative layer
decreases as 1=t. This decrease corresponds to phase mixing
of Alfvén oscillations that occurs because !A depends on r
and the neighboring magnetic field lines oscillate with differ-
ent frequencies (e.g., Heyvaerts & Priest 1983; Wright
1992a, 1992b;Mann,Wright, & Cally 1995).

The behavior of v given by equation (68) was studied by
Ruderman & Wright (2000). It was shown that, in the case
where !4!kR!1=3, jvj takes its maximum value at r ¼ rA
when t ¼ tm ) 3!!1 lnð!=#!Þ. Since #! ' 20!ða=‘ÞR!1=3, we
obtain tm ) 15!!1 for a=‘ ' 0:1 and R ¼ 1012 1014. This
maximum value is of the order of au0=‘. After reaching its
maximum value, jvj exponentially decreases on the charac-
teristic timescale !!1

k R1=3. Phase mixing continues until a
time of order ð!=#3!Þ ' 10!2!!1

k R1=2. At this time the char-
acteristic spatial scale is of order 102‘R!1=2, while the ampli-
tude of oscillations is already exponentially small.

The analysis of this section is based on the estimate
Re1012 obtained with the use of Braginskii formulae for
the viscosity coefficients. However, the coronal viscosity can
be enhanced orders of magnitude by, for example, turbu-

lence. In that case it is quite possible that, instead of the
!!15!R1=3, we would have !!1

e!R1=3. Then the dissipa-
tive layer would be quasi-stationary and described by the
same formulae as in the case of stationary resonant absorp-
tion (e.g., Mok& Einaudi 1985).

7. APPLICATION TO CORONAL LOOP OSCILLATIONS

Formula (56) gives the calculated decay rate of oscilla-
tions in the kink mode. Its use may be conveniently illus-
trated by taking the density profile in the annulus in the
form

"ðrÞ ¼ "i
2

ð1þ $Þ ! ð1! $Þ sin %ð2rþ ‘! 2aÞ
2‘

# $
;

a! ‘ < r < a ; ð71Þ

where $ ¼ "e="i. Using equation (47), we obtain
rA ¼ a! ‘=2 and "A ¼ "ið1þ $Þ=2. Then it follows from
equations (50) and (56) that

! ¼ !k‘ð1! $Þ
4að1þ $Þ : ð72Þ

In terms of the period & ¼ 2L=ck of the fundamental kink
mode with wavenumber k ¼ %=L and kink speed ck
(=!k=k), we obtain an oscillation decay rate &decay (=!!1) of

&decay ¼
2

%

a

‘

"i þ "e
"i ! "e

& : ð73Þ

We consider this result in relation to the observational data
reported by Nakariakov et al. (1999). These authors
reported a coronal loop oscillation with frequency
!k ) 0:024 s!1 (& ¼ 256 s) and decrement ! ) 0:0011 s!1

(&decay ¼ 870 s). Taking "i ¼ 10"e, we obtain from equation
(72) that ‘=a ) 0:23.

It follows from equation (72) (and more generally from
eq. [56]) that the condition !5!k is equivalent to ‘5 a. It
can be shown that, in the general case where the density
varies through the whole tube cross section, the condition
!5!k is equivalent to jDj4!2

k=a. This inequality means
that the characteristic scale of the density variation near the
resonant position is much smaller than the tube radius.
When this condition is not satisfied, all solutions to the dis-
persion equation corresponding to the kink oscillations
have imaginary parts of the same order as real parts. As a
result all tube perturbations damp aperiodically or almost
aperiodically, and an external perturbation does not cause
pronounced tube oscillations.

Hollweg & Yang (1988) also discussed damping of the
kink mode by resonant absorption, in the ideal case. Their
analysis was for a plane, but they applied it to a cylinder by
replacing the perpendicular wavenumber by 1/a. Surpris-
ingly, their procedure gives results identical to equations
(56) and (73). They concluded that under coronal conditions
‘‘ the waves are very effectively damped with an e-folding
time of only two wave periods.’’

8. DISCUSSION AND CONCLUSIONS

In this paper we have studied the plane-polarized kink
oscillations of a straight cylindrical magnetic tube with the
footpoints embedded in a dense immovable plasma. We
have assumed that the equilibrium plasma density varies
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oscillation with



Ubiquitous propagating kink waves

• Ubiquitous transverse velocity perturbations propagating along field lines 

• Broadband power spectrum centred on 5 minutes 

• Strongly damped

6
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• Finite wave energy in system (“kick” given by the 
CME) so kink wave damps as Alfvén wave grows 

• Alfvén wave is difficult to observe (incompressible, 
weak Doppler signal) so only damped kink wave is 
seen

Wave energy being localised by resonance

7

Doppler shifts



Damping of kink waves by resonant absorption

8

• The inhomogeneous layer provides a continuous range of Alfvén speeds, 
and resonance occurs where the Alfvén speed equals the kink speed 

• Resonant absorption transfers energy from kink mode (collective motion) to 
Alfvén mode (localised, unresolved motion) 

• Kink mode impulsively excited so transfer of wave energy to Alfvén mode 
causes damped kink oscillations

Alfvén speed

Density

Transverse structure of coronal loop



• Original application to coronal loops describes exponential damping 
envelope for kink oscillation: 

• Seismological inversion problem is ill-posed since τd (one observable) 
depends on density contrast ratio and ε (two unknowns) 

• Inversion problem has infinite solutions, though bounding values can 
be estimated (e.g. Arregui & Asensio Ramos 2014)

What is the kink mode damping envelope?

9

Ruderman & Roberts (2002) 
Goossens et al. (2002)

Arregui et al. (2007) 
Goossens et al. (2008)

856 M. Goossens et al.: Analytic approximate seismology

Fig. 1. Analytic inversion (solid lines) and corrected numerical inver-
sion (filled circles) in the (ζ, l/R, τA,i)-space for loop oscillation event #5
in Table 1.

at the numerical ζ ≃ 20. We have also calculated zmin = 1/C for
the events studied by Arregui et al. (2007) and the results agree
well with the corresponding values of (l/R)min in their Table 1.

As an illustration that any of the three seismic quantities can
be used as parameter we take z as the parameter. We let z vary
and compute for each value of z the corresponding value of ζ by
the use of the function G2 defined in (29),

ζ =
9.81z + 1
9.81z − 1

· (33)

Subsequently we compute the corresponding value of y by the
use of the function F1 defined in (26),

y =
1√
2

(
ζ

ζ + 1

)1/2

· (34)

Of course, we can only compute ζ and y for discrete values
of z. The results of our computations are summarised on Table 2
and graphically represented in Fig. 1. Recall that the functions
F1,G1, F2,G2 (see Eqs. (26) and (29)) are monotonically in-
creasing (F1,G1) or monotonically decreasing (F2,G2) and have
concave graphs (F1) and convex graphs (F2,G1,G2) respec-
tively. This implies f.e. that y = τA,i/T is a strictly increasing
function of ζ and a strictly decreasing function of z and con-
versely that z is a strictly decreasing function of both ζ and τA,i.
Inspection of the second order derivative of a given quantity with
respect to one of the two remaining quantities can tell us that the
graph is either concave or convex. For example the graphs of
y and of z as function of ζ are respectively concave and con-
vex. The monotonic variation of ζ, y, z and the concave or con-
vex appearance of their graphs predicted by our analytic seismic
inversion agrees exactly with the behaviour of the numerical in-
version. Furthermore, Fig. 1 displays an amazing quantitative
agreement between analytic and numerical inversion results.

We have not re-analysed in detail loop oscillation event #10
that was examined by Arregui et al. (2007). The inversion for
that loop event is shown on their Fig. 3b. A striking property
of the solutions is the non-monotonic behaviour of the seismic

Table 2. Analytic seismic inversion results for loop #5.

z = l/(2R) ζ y = τAi/T
0.105 67.67 0.702
0.110 26.32 0.694
0.120 12.30 0.680
0.125 9.85 0.674
0.150 5.24 0.648
0.175 3.79 0.629
0.200 3.08 0.617
0.225 2.66 0.603
0.250 2.38 0.593
0.275 2.18 0.585
0.300 2.03 0.579
0.325 1.91 0.573
0.350 1.82 0.568
0.375 1.75 0.564
0.400 1.68 0.560
0.425 1.63 0.557
0.450 1.59 0.554
0.475 1.55 0.551
0.500 1.51 0.549
0.525 1.48 0.546

variables. This is clearly reflected in the pronounced minimum
of τA,i as function of ζ and as function of l/R. The decreasing
part of τA,i as function of ζ and the increasing part of τA,i as
function of l/R cannot be recovered by the analytical seismic
inversion scheme based on the TTTB-approximation. The ana-
lytical TTTB-approximation predicts monotonic variation of the
seismic variables and cannot approximate multi-valued solutions
with two pairs of (ζ, l/R) corresponding to the same value of τA,i.
The fact that the analytical seismic inversion fails for this loop
oscillation event is not disturbing since this event is characterised
by extremely heavy damping with T/τd = 0.92 which we antic-
ipated would fall out of the application range of the analytical
scheme anyway.

5. Conclusion

In this paper we have presented an analytic approximate
seismic inversion scheme based on the TTTB-approximation
for computing the period and the damping time. In the
TTTB-approximation the period is computed for a uniform loop
model in the long wavelength or zero radius approximation. The
damping time is computed for relatively weak damping corre-
sponding to thin non-uniform layers. The advantage of this an-
alytical seismic inversion is that it is formulated with the aid of
two functions F1 and F2 (and their inverse functions G1 = F−1

1
and G2 = F−1

2 ) which are given by simple closed expressions.
The practical implementation of the inversion scheme is stun-
ningly simple. The calculations required to obtain solutions can
even done with the use of a hand calculator. This analytical
scheme seismic inversion clearly shows that the inversion prob-
lem has infinitely solutions in the (ζ, y, z)-space as first pointed
out by Arregui et al. (2007). It also reveals that the allowable val-
ues of y (or Alfvén travel time) are confined to a narrow range.
When applied to a loop oscillation event with heavy damping as
f.e. loop oscillation event #5 with T/τd = 0.32 the analytic in-
version scheme produces remarkably accurate results. Not only
does it recover the overall appearance of the solution curve with
the corresponding monotonic behaviour of the seismic variables.
In addition, it recovers for a prescribed range of values of ζ the
corresponding values of y (or τA,i) and z (or l/R).

equation (66) imply that the second term in the square
brackets and the terms proportional to v0 and v1 on the
right-hand side of equation (65) can be neglected in compar-
ison with the first term in the square brackets for t4!!1

k . As
a result, we rewrite equation (65) in the following approxi-
mate form:
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i#!1

A ðr! rAÞs sgnD

þ s!=#! ! s3=3
"
ds

)

: ð68Þ

Let us estimate the ratio of the third and second terms in the
exponent in equation (68). We have

s3=3

s!=#!
& t2#3!

3!
' t2

8( 103!3
kR

!1

3ð‘=aÞ!k
' 3( 104t2!2

kR
!1 : ð69Þ

Now we consider times t such that !!1
k 5 t5 10!2!!1

k R1=2.
Note that 10!2R1=2 ' R1=3 for R ' 1012. Then, in accord-
ance with equation (69), we can neglect the term s3=3 in the
exponent in equation (68) in comparison with the term
s!=#!, and the integral in equation (68) is easily calculated.
As a result we arrive at

v ) ! i

a"
<

(
Se!i!kt

! þ iDðr! rAÞ=ð2!kÞ

( exp iðr! rAÞDt=ð2!kÞð Þ ! e!!t½ +

)

: ð70Þ

Using equation (60b), we obtain the estimate v ' u0a=‘,
valid for te!!1 (note that !!15 10!2!!1

k R1=2 for R4106).
Hence, during the characteristic time !!1 of the global-
mode damping, the amplitude of the wave motion in the dis-
sipative layer increases from a value of order u0 to a value of
order u0a=‘. This increase occurs because of the energy flux
from the global motions into the dissipative layer. Then the
amplitude remains of the same order of magnitude at least
up to the time satisfying t5 10!2!!1

k R1=2.
Note that, in accordance with equation (70), the charac-

teristic scale of variation of v in the dissipative layer
decreases as 1=t. This decrease corresponds to phase mixing
of Alfvén oscillations that occurs because !A depends on r
and the neighboring magnetic field lines oscillate with differ-
ent frequencies (e.g., Heyvaerts & Priest 1983; Wright
1992a, 1992b;Mann,Wright, & Cally 1995).

The behavior of v given by equation (68) was studied by
Ruderman & Wright (2000). It was shown that, in the case
where !4!kR!1=3, jvj takes its maximum value at r ¼ rA
when t ¼ tm ) 3!!1 lnð!=#!Þ. Since #! ' 20!ða=‘ÞR!1=3, we
obtain tm ) 15!!1 for a=‘ ' 0:1 and R ¼ 1012 1014. This
maximum value is of the order of au0=‘. After reaching its
maximum value, jvj exponentially decreases on the charac-
teristic timescale !!1

k R1=3. Phase mixing continues until a
time of order ð!=#3!Þ ' 10!2!!1

k R1=2. At this time the char-
acteristic spatial scale is of order 102‘R!1=2, while the ampli-
tude of oscillations is already exponentially small.

The analysis of this section is based on the estimate
Re1012 obtained with the use of Braginskii formulae for
the viscosity coefficients. However, the coronal viscosity can
be enhanced orders of magnitude by, for example, turbu-

lence. In that case it is quite possible that, instead of the
!!15!R1=3, we would have !!1

e!R1=3. Then the dissipa-
tive layer would be quasi-stationary and described by the
same formulae as in the case of stationary resonant absorp-
tion (e.g., Mok& Einaudi 1985).

7. APPLICATION TO CORONAL LOOP OSCILLATIONS

Formula (56) gives the calculated decay rate of oscilla-
tions in the kink mode. Its use may be conveniently illus-
trated by taking the density profile in the annulus in the
form

"ðrÞ ¼ "i
2

ð1þ $Þ ! ð1! $Þ sin %ð2rþ ‘! 2aÞ
2‘

# $
;

a! ‘ < r < a ; ð71Þ

where $ ¼ "e="i. Using equation (47), we obtain
rA ¼ a! ‘=2 and "A ¼ "ið1þ $Þ=2. Then it follows from
equations (50) and (56) that

! ¼ !k‘ð1! $Þ
4að1þ $Þ : ð72Þ

In terms of the period & ¼ 2L=ck of the fundamental kink
mode with wavenumber k ¼ %=L and kink speed ck
(=!k=k), we obtain an oscillation decay rate &decay (=!!1) of

&decay ¼
2

%

a

‘

"i þ "e
"i ! "e

& : ð73Þ

We consider this result in relation to the observational data
reported by Nakariakov et al. (1999). These authors
reported a coronal loop oscillation with frequency
!k ) 0:024 s!1 (& ¼ 256 s) and decrement ! ) 0:0011 s!1

(&decay ¼ 870 s). Taking "i ¼ 10"e, we obtain from equation
(72) that ‘=a ) 0:23.

It follows from equation (72) (and more generally from
eq. [56]) that the condition !5!k is equivalent to ‘5 a. It
can be shown that, in the general case where the density
varies through the whole tube cross section, the condition
!5!k is equivalent to jDj4!2

k=a. This inequality means
that the characteristic scale of the density variation near the
resonant position is much smaller than the tube radius.
When this condition is not satisfied, all solutions to the dis-
persion equation corresponding to the kink oscillations
have imaginary parts of the same order as real parts. As a
result all tube perturbations damp aperiodically or almost
aperiodically, and an external perturbation does not cause
pronounced tube oscillations.

Hollweg & Yang (1988) also discussed damping of the
kink mode by resonant absorption, in the ideal case. Their
analysis was for a plane, but they applied it to a cylinder by
replacing the perpendicular wavenumber by 1/a. Surpris-
ingly, their procedure gives results identical to equations
(56) and (73). They concluded that under coronal conditions
‘‘ the waves are very effectively damped with an e-folding
time of only two wave periods.’’

8. DISCUSSION AND CONCLUSIONS

In this paper we have studied the plane-polarized kink
oscillations of a straight cylindrical magnetic tube with the
footpoints embedded in a dense immovable plasma. We
have assumed that the equilibrium plasma density varies
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• Numerical simulations of kink oscillations in low density contrast loops discovered 
Gaussian damping regime:

What is the kink mode damping envelope?

10 Pascoe et al. (2012, A&A, 539, A37)

Analytical theory 
(2002)

Gaussian envelope



• New analytical solution (Hood et al. 2013) 
gives accurate envelope for all times: 

• Integro-differential equation allows precise 
testing of numerical simulations 

• Gaussian profile describes initial state of the 
system 

• Exponential damping profile describes 
asymptotic state of the system 

• Inconvenient for seismological inversions for 
observations (solved numerically → slow)

New theoretical damping envelope

11

A&A 551, A39 (2013)

changes the coefficient of the Gaussian term at small Z and re-
sults in too much damping. However, it still remains Gaussian in
nature. For larger Z, Approximation 1 is more or less parallel to
the numerical solution to Eq. (47). Approximation 2 damps sig-
nificantly faster. Approximation 3 includes the inhomogeneous
term but the simplifying assumption of taking η̃ outside the inte-
gral predicts a slower damping rate at large Z. However, it does
have the correct behaviour for small Z.

The best approach in understanding the spatial damp-
ing of the kink mode through mode coupling to the Alfvén
mode in the transition layer, is to solve Eq. (47) numerically.
Keeping in mind the results shown in Fig. 3, the error in using
Approximation 3 is not too significant. It has the advantage of
having a solution in a closed analytical form. The functions Si
and Ci are rapidly obtained from computer algebra packages,
such as Maple, and it is easy to use a package to numerically
integrate the terms in Eq. (54). The small Z expansion, using
Eq. (54) gives the correct Gaussian behaviour.

5. Comparison with numerical results

The numerical solution to the linear MHD equations remains
the most accurate description of the damped kink mode. In this
section, the approximate solutions derived (and the methods il-
lustrated) in the previous section are compared with the actual
numerical results. Two different numerical codes are used, a
second order Lax-Wendroff scheme and a fourth order, finite
difference method. The numerical results obtained with the two
different methods are consistent and indicate that the results ob-
tained are not dependent on the method used to solve the linear
MHD equations. We consider two examples for a small tran-
sition layer, namely small ϵ (ϵ < κ < 1) and a small density
contrast (κ < ϵ < 1).

Figure 4 shows the results for a period of 36 s, a width of
the transition layer to radius ratio of 0.2 and a density contrast of
1.3. Thus, we have ϵ = 0.2 and κ ≈ 0.13 and the small κ Eq. (47)
is appropriate. The solution to Eq. (47), namely the amplitude
of the kink mode, is shown as a dashed curve, while the solid
curve is the full numerical solution for the kink mode, ξr , on the
axis, r = 0. The agreement is extremely good for all distances
apart from the leading initial wavelength. To illustrate the actual
form of the damping the logarithm of the absolute value of ξr is
also shown. What is clear is how the behaviour of the damping is
Gaussian for small distances, as shown in Sect. 4, and switches
to almost linear for larger distances. Despite having ϵ = 0.2,
the TTTB equation provides an extremely good fit to the full
solution. This is because the density ratio is only 1.3 and the
important parameter κ is small. Thus, the damping is weak and
Eq. (47) provides a good approximation.

Next we consider the situation where the period is 24 s,
which is just long enough for the long wavelength limit to apply,
the width of the transition layer to radius ratio is small (ϵ = 0.05)
and the density contrast is 2 (κ = 1/3). Note that the value of κ is
still quite small and we expect Eqs. (48) and (49) to give a good
approximation. The comparison is shown in Fig. 5. As above, the
dashed curve in Fig. 5 outlines the amplitude of the kink mode,
by solving Eq. (47). In addition, the solid curve is the result of
the small ϵ expansion given by Eq. (48). Both of the approxi-
mations match with the numerical solution to the linear MHD
equations, showing that, although the small κ equation has a rel-
atively simple form, the solution provides excellent agreement
with the numerical solution.

Finally, we show the results for a density contrast of 10, pe-
riod of 48 s and ϵ = 0.05 in Fig. 6. For these parameters, the thin

Fig. 4. Amplitude of η = ξr and logarithm of the modulus of η at the
centre of the tube shown as functions of distance z. The solid curve
represents the numerical solution, the dashed curve is the numerical so-
lution of (47). The period is 36 s, the ratio of the width of the transition
layer to the radius is 0.2 and the density ratio, ρi/ρe = 1.3.

tube, thin boundary analysis is still appropriate. However, what
is not so clear is whether the small κ description is still relevant.
From Sect. 4.1, we expect the form of the Gaussian profile to be
unaffected by the large density contrast, since the approximation
given by Eq. (42), is accurate to better than 2% for this choice.
Hence, the initial Gaussian part still provides an excellent ap-
proximation. In addition, at large z, the damping will approach
the limit predicted by Terradas et al. (2010) and, with the small
and large z limits fixed, the approximation given by the solution
to Eq. (47) continues to give an excellent fit to the numerical
results.

6. Conclusions

So which approximations should one use in analysing observa-
tions of propagating kink modes? For the magnetic flux tube
considered in this paper, if the density contrast is large, then the
full damped kink mode equation, Eq. (27), is used. However, if
the density contrast is smaller than about 3, then solutions to the
small κ equation, Eq. (47), agree with the full numerical results.
The solution to Eq. (47) can be approximated by the analytical
solution of Approximation 3, Eq. (54), where the Sine Integral,
S i, is readily computed in various computer algebra packages.

The different approximations used in solving Eq. (47) show
clearly that the Gaussian behaviour for small distances is not just
due to the form of driving on the boundary. It appears in the ho-
mogeneous kink mode equation as well, when the radial profile
of ξr on z = 0 is completely ignored. However, the form of the
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Hence, the second order derivative can be neglected to leading order in κ and the weak

density variation assumption κ ≪ 1 leads to

dη̃

dZ
=

ϵ

2

{

a(1 − cosZ)

Z
−
∫ Z

0
η̃(u)

sin(Z − u)

Z − u
du

}

. (48)

Eq. (48) is the important equation that can be used to investigate the spatial damping

of the the propagating kink mode, whenever the density contrast is not too large. For

example, good agreement is found with the numerical solutions (see Section 5) whenever

ρi/ρe ≤ 3 or equivalently κ ≤ 1/2. The advantage of Eq. (48) over the full expression in

Eq. (27) is its relative simplicity. This equation can be solved numerically. We can use it

also to investigate how some standard approximations compare with the full solution. In

addition, the inhomogeneous term in Eq. (48) is derived directly from the imposed form

of the photospheric driver. Changing the driver changes this one term. However, as we

will see below, neglecting this term does not change the conclusion that the damping is

Gaussian in nature over the first few wavelengths. It is just that the rate of the Gaussian

damping is different.

4.3.1. Expansion in powers of ϵ

Next, we can expand η̃ in powers of ϵ and obtain

η̃ = a +
ϵa

2

{

∫ Z

0

1 − cosu

u
du −

∫ Z

0

∫ u

0

sin s

s
ds du

}

.

Evaluating the integrals, we have

η̃ = a +
ϵa

2
{γ + 1 + lnZ − Ci(Z) − ZSi(Z) − cosZ, } (49)

where γ ≈ 0.5772 is Euler’s constant and Ci(Z) and Si(Z) are the Cosine and Sine

integrals respectively (Abramowitz and Stegun, http://www.nr.com/aands/). We can

approximate η̃ by

η̃ =

⎧

⎨

⎩

a − ϵa
2

(

Z2

4 − Z4

288 + Z6

21600

)

+ · · · Z < 4,

a − ϵa
2

(

πZ
2 − lnZ − 1 − γ + cos Z

Z2

)

+ · · · Z > 4,
(50)

where the appropriate asymptotic expansions for Ci(Z) and Si(Z) have been used. Note

that the logarithm of η̃, when ϵ is small, is simply

ln(η̃) = ln a +
ϵ

2
{γ + 1 + lnZ − Ci(Z) − ZSi(Z) − cosZ} . (51)

This form is used when comparing with the numerical solution for small ϵ in Section 5

below. From Eq. (50), we expect ln η̃ to behave like −ϵπZ/4 + (ϵ lnZ)/2 for large Z, so

that the Terradas et al. (2010) results will slightly over-estimate the damping rate due

to the neglect of the logarithmic term. The behaviour for small Z is again the same as

the real part of Eq. (39).

We remind the reader that, for large Z, the expansion in powers of ϵ will break down

whenever the magnitude of η̃−a becomes of order unity. The small Z expansion, however,

will remain valid for small ϵ and κ.

ln |A| 

A 



• Time of switch depends on density contrast ratio: 

• small density contrast (~2) → slow switch → mostly Gaussian envelope 

• large density contrast (~10) → quick switch → mostly exponential envelope 

• If we detect both envelopes we have two damping times (well-posed inversion problem)             
→ unique solution for density contrast ratio and transition layer width

Approximate damping envelope for seismology

12
Hood et al. (2013) 

Pascoe et al. (2013)

time (sec)

time of switch

A 

Numerical 
simulation of a kink 
mode showing both 
Gaussian and 
exponential 
damping regimes



• Same physical mechanism applies to standing modes 

• For standing kink modes, a large density contrast is usually assumed (typically 10, e.g., 
Nakariakov et al. 1999; Ruderman & Roberts 2002; Goossens et al. 2002) 

• This density contrast is consistent with an exponential damping profile (Gaussian profile for ~ 
1.2 oscillations only)

Gaussian damping regime for standing kink modes

13

Pascoe et al. (2013)

Ruderman & Terradas (2013)



Evidence of Gaussian damping regime from TRACE

14

• De Moortel et al. (2002) and Ireland and De Moortel (2002) analyse standing kink 
oscillations 

• Shape of damping envelope taken to be a fitted parameter 

• 14 July 1998:  

• 25 October 1999: 

• 21 March 2001: 

• Large errors due to low temporal resolution and noise for TRACE



Strongly damped kink oscillations

15

SDO/AIA

TRACE

0.6 arcsec/pixel 
(full disk) 

12 second 
cadence

0.5 arcsec/pixel 

~75 second 
cadence



Evidence of Gaussian damping regime from SDO

16

• Catalogue of 121 kink oscillations (Zimovets & Nakariakov 2015; Goddard et al. 
2015) observed by SDO 

• 48 exponential profiles measured, 21 possible Gaussian profile 

• Pascoe et al. (2016, A&A, 585, L6) looked at 6 loops in detail 

• 3 Gaussian, 2 exponential, 1 inconclusive

A&A 585, A137 (2016)

Appendix A: Table

Table A.1. 120 coronal loop kink oscillations detected with SDO/AIA and their measured parameters.

Event Loop Slit position Date Time Period Length Disp amp Osc amp N Cyc Damping time Damping
ID ID [x1, y1, x2, y2] (arcsec) UT (min) (Mm) (Mm) (Mm) (min) profile
1 1 −940, −321, −964, −308 2010-Aug-02 04:22:49 3.42± 0.06 232 5.1 1.7 3 5.34± 1.12 E
1 2 −962, −313, −997, −322 2010-Aug-02 04:22:13 4.11± 0.05 78 7.0 1.2 3 10.76± 2.79 E
2 1 672, −259,711, −223 2010-Oct-12 19:13:07 6.64± 0.06 156 2.0 4.8 3.5
3 1 −977, −383, −988, −368 2010-Nov-03 12:13:48 2.46± 0.03 213 1.4 4.7 8 8.8± 1.8 E, NE
3 2 −970, −416, −1001, −393 2010-Nov-03 12:14:35 3.62± 0.08 262 4.4 9.7 3 4.12± 0.47 E, NE
3 3 −978, −466, −1027, −411 2010-Nov-03 12:14:23 4.04± 0.1 311 4.1 8.9 2
4 1 912, 405, 889, 433 2011-Feb-09 01:30:02 2.29± 0.03 183 2.9 4.4 4.5 7.18± 1.5 E, NE
4 2 969,231,974,278 2011-Feb-09 01:31:54 3.47± 0.03 181 1.4 1.2 3 7.44± 1 E
5 1 1089, 375, 1050, 423 2011-Feb-10 04:43:38 7.03± 0.06 438 4.5 3.0 3 NE
6 1 1089, 349, 1057, 398 2011-Feb-10 06:44:22 8.05± 0.26 430 3.8 0.5 2
7 1 983, 330, 970, 342 2011-Feb-10 06:57:46 1.69± 0.02 162 2.9 3.2 6 7.23± 1.3 E, NE
8 1 1007, 280, 1021, 305 2011-Feb-10 12:35:01 3.74± 0.07 207 1.2 1.6 3 10± 1 E, NE
9 1 983, 348, 947, 414 2011-Feb-10 13:43:37 5.14± 0.17 264 3.0 4.3 3 5.09± 0.98 E
9 2 942,431,934,461 2011-Feb-10 13:46:31 8.95± 0.14 326 3.6 3.2 2.5 11.83± 4.76 E
10 1 1106, 168, 1133, 214 2011-Feb-11 08:07:07 11.46± 0.17 397 4.7 8.9 2.5 8.02± 1.09 E, NE
10 2 1039, 313, 1041, 334 2011-Feb-11 08:08:17 8.48± 0.16 279 5.9 6.0 2
11 1 −41, −162, −43, −146 2011-Feb-13 17:34:28 3.96± 0.07 78 3.5 4.4 3
11 2 −49, −132, −51, −108 2011-Feb-13 17:34:50 3.85± 0.11 95 3.7 2.1 3
11 3 −64, −334, −69, −316 2011-Feb-13 17:37:13 2.6± 0.05 118 3.1 3.7 6 8.84± 1.5 E
11 4 −41, −334, −54, −322 2011-Feb-13 17:33:52 3.81± 0.04 125 2.9 5.4 5
11 5 −24, −359, −44, −336 2011-Feb-13 17:33:42 5.09± 0.06 135 1.9 6.3 2
11 6 −98, −430, −89, −394 2011-Feb-13 17:38:33 6.13± 0.21 160 11.2 11.1 2
12 1 −282, −37, −309, −47 2011-Feb-13 20:19:17 5.56± 0.07 148 1.9 1.8 2
15 1 202, 313, 175, 371 2011-May-27 10:47:58 7.64± 0.37 174 6.3 6.2 1.5
16 1 1014, 235, 991, 257 2011-Aug-11 10:17:19 2.62± 0.04 242 3.3 3.1 3
16 2 988, 229, 1026, 229 2011-Aug-11 10:10:22 2.35± 0.07 146 17.4 3.2 2 2.69± 0.64 E
16 3 1031, 205, 1067, 241 2011-Aug-11 10:10:54 5.23± 0.19 318 25.5 5.2 2.5
17 1 231, 215, 216, 263 2011-Sep-06 22:20:15 2.07± 0.04 153 9.5 3.4 3.5 9.99± 4.59 E
18 1 −931,431, −960,472 2011-Sep-22 10:35:08 7.18± 0.32 289 15.8 10.0 2.5
18 2 −911,457, −884,476 2011-Sep-22 10:26:59 9.52± 0.11 284 1.4 1.7 3.5 12.2± 3.47 E
18 3 −1093,290, −1060,320 2011-Sep-22 10:30:32 13.02± 0.17 393 4.9 9.5 4 NE
19 1 −954,158, −998,134 2011-Sep-23 23:51:45 9.73± 0.2 123 4.7 2.9 2
19 2 −938, −31, −992, −12 2011-Sep-23 23:51:57 11.27± 0.12 348 7.5 10.0 2 16.55± 1.44 E
20 1 −676, −12, −682,62 2011-Nov-14 07:21:12 5.36± 0.23 253 2.6 3.7 3 16.19± 7.67 E, NE
20 2 −616, −171, −665, −161 2011-Nov-14 00:05:04 13.43± 0.67 4.3 4.0 2
21 1 920, 693, 907, 725 2011-Nov-16 14:08:19 7.15± 2.01 499 1.8 3.8 2
22 1 995, 340, 1004, 332 2011-Nov-16 14:56:05 2.7± 0.11 288 1.6 1.8 3
23 1 827,662,813,699 2011-Nov-17 22:28:37 15.36± 0.4 365 6.4 4.3 3 19.19± 1.55 E
23 2 920, 744, 856, 729 2011-Nov-17 22:32:49 28.19± 0.51 12.1 4.9 2.5
24 1 −881, −588, −910, −549 2011-Nov-18 07:34:59 17.86± 0.3 432 14.5 15.6 3 27.43± 4.26 E
24 2 −848, −608, −901, −572 2011-Nov-18 07:29:42 16.45± 0.28 427 21.8 23.6 3
24 3 −814, −673, −894, −645 2011-Nov-18 07:36:02 20.46± 0.58 538 31.8 26.6 2 35.01± 6.44 E
25 1 316, −221,321, −195 2011-Dec-22 01:59:34 5.13± 0.11 156 2.0 3.0 3 8± 5 E, NE
25 2 272, −141,332, −92 2011-Dec-22 01:59:39 7.3± 0.16 264 1.8 2.5 2.5
26 1 1098, 13, 1126, 51 2012-Jan-16 00:08:28 11.95± 0.13 473 2.5 9.2 4.5 18.71± 4.5 E, NE
26 2 1028, −68,1025, −33 2012-Jan-16 00:11:27 12.51± 0.19 185 2.3 6.6 4 NE
27 1 1042, 93, 1072, 146 2012-Apr-09 01:19:52 15.28± 0.4 244 4.3 3.2 3
29 1 −633,339, −628,380 2012-May-08 13:05:46 3.71± 0.05 154 7.4 5.3 6 7.83± 0.62 E
31 1 964,289,945,325 2012-May-26 20:36:47 7.67± 0.04 162 19.6 9.4 6 24.22± 2.02 E
31 2 944, 259, 944, 284 2012-May-26 20:36:27 9.59± 0.09 138 13.0 9.1 5 17.57± 2.35 E, NE
31 3 1116,286,1112,330 2012-May-26 20:39:53 11.56± 0.12 532 4.5 2.7 2.5
32 1 −973, −366, −988, −342 2012-May-30 08:58:57 4.28± 0.02 234 2.2 8.8 8 15.55± 1.22 E
32 2 −972, −388, −989, −370 2012-May-30 08:56:52 3.38± 0.02 233 4.0 5.3 5 19.11± 4.85 E
33 1 807, −608,840, −591 2012-Jul-06 23:06:45 4.69± 0.08 314 7.0 8.6 2.5
33 2 867, −101,874, −45 2012-Jul-06 23:05:07 6.52± 0.1 407 8.5 7.7 3 E
34 1 −1053, −142, −1076, −129 2012-Aug-07 00:59:34 9.95± 0.27 333 15.4 7.4 2.5 16.7± 1.03 E

Notes. The event ID corresponds to the events catalogued in Zimovets & Nakariakov (2015), and the loop ID distinguishes the different loops in
each event (which does not correspond to those in the cited paper). The position of the slit used to produce each time-distance map is given in
arcsec, along with the date and oscillation start time in UT. The period and error obtained from fitting the loop oscillation are given, as well as
the estimated loop length. The column “Disp Amp” lists the estimated initial loop displacement, and “Osc Amp” is the estimated initial amplitude
of the oscillation. The number of cycles that were observed is listed in “N Cyc”. Finally, the exponential damping time and error from fitting the
damping profile and the form of the damping profile (exponential (E), non-exponential (NE), or a combination of both), are listed in the final two
columns.
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Table A.1. continued.

Event Loop Slit position Date Time Period Length Disp amp Osc amp N Cyc Damping time Damping
ID ID [x1, y1, x2, y2] (arcsec) UT (min) (Mm) (Mm) (Mm) (min) profile
35 1 −1024, −148,-1037, −110 2012-Aug-07 01:34:47 8.78± 0.13 327 1.9 3.0 3
35 2 −1033, −185, −1070, −185 2012-Aug-07 01:33:52 5.77± 0.1 312 1.4 2.8 2.5
36 1 −1018, −152, −1039, −112 2012-Aug-07 03:03:46 6.68± 0.1 282 1.3 3.8 4
37 1 −1110,66, −1103,87 2012-Oct-15 21:52:17 8.27± 0.22 358 2.3 3.8 2.5
38 1 −1046, −180, −1046, −159 2012-Oct-19 19:01:00 3.04± 0.03 224 2.7 1.6 4
38 2 −1061, −201, −1065, −174 2012-Oct-19 19:01:44 5.2± 0.08 270 3.0 2.1 3 15.23± 5.5 E, NE
38 3 −1121, −189, −1142, −175 2012-Oct-19 19:03:00 13.08± 0.21 424 5.2 4.9 2
38 4 −1139, −194, −1162, −185 2012-Oct-19 19:01:08 10.74± 0.18 478 5.0 5.8 2
39 1 −1093, −124, −1140, −107 2012-Oct-19 21:04:19 10.79± 0.1 402 6.5 4.1 4.5 NE
39 2 −1088, −185, −1095, −157 2012-Oct-19 21:01:34 10.68± 0.12 334 2.0 1.9 5 NE
39 3 −1095, −204, −1120, −172 2012-Oct-19 21:03:44 12.57± 0.36 376 2.3 3.5 3.5
39 4 −1127, −168, −1161, −179 2012-Oct-19 21:00:40 14.3± 0.17 454 3.7 3.5 4 NE
40 1 −1025, −63, −1037, −47 2012-Oct-20 18:07:36 5.68± 0.06 171 1.4 1.7 4
40 2 −1077, −121, −1065, −96 2012-Oct-20 18:09:33 5.61± 0.03 347 9.6 4.4 7 24.83± 3.41 E, NE
40 3 −1073, −136, −1058, −120 2012-Oct-20 18:11:36 5.92± 0.7 325 2.6 3.0 4
40 4 −1045, −114, −1020, −110 2012-Oct-20 18:10:08 5.53± 0.04 258 3.6 2.5 6 7.32± 1.08 E, NE
40 5 −1056, −122, −1043, −115 2012-Oct-20 18:12:55 5.42± 0.02 297 3.9 4.7 6
40 6 −1095, −123, −1079, −101 2012-Oct-20 18:09:59 6.93± 0.04 425 6.2 3.5 11 NE
40 7 −1107, −153, −1094, −121 2012-Oct-20 18:11:11 5.72± 0.06 353 3.1 3.4 12 14.17± 2.73 E, NE
40 8 −1036, −217, −1066, −194 2012-Oct-20 18:08:39 4.33± 0.08 238 10.3 12.1 4.5 9.01± 2.16 E, NE
40 9 −1109, −438, −1117, −399 2012-Oct-20 18:11:45 6.18± 0.05 473 12.5 13.7 3.5 13.15± 2.66 E
40 10 −962, −430, −982, −453 2012-Oct-20 18:12:21 6.27± 0.03 238 2.2 2.1 10 NE
40 11 −978, −404, −999, −418 2012-Oct-20 18:11:29 4.76± 0.04 220 1.6 1.3 4
43 1 933,615,894,615 2013-Jan-07 06:37:38 7.14± 0.07 363 8.0 16.3 5 7.53± 1.45 E
43 2 874,598,890,613 2013-Jan-07 06:37:50 3.6± 0.03 241 9.7 3.1 5 9.44± 0.92 E
43 3 828,659,816,708 2013-Jan-07 06:39:19 8.35± 0.08 368 2.1 12.7 3.5 15.04± 1.81 E
43 4 829,606,826,620 2013-Jan-07 06:37:01 5.16± 0.03 222 3.9 3.5 4
43 5 801,608,812,631 2013-Jan-07 06:37:11 4.5± 0.02 260 1.3 2.2 5.5 14± 2 E, NE
44 1 829,644,820,687 2013-Jan-07 08:48:37 7.23± 0.06 295 2.8 12.3 5 15.75± 3.09 E
44 2 979,637,940,676 2013-Jan-07 08:48:17 9.78± 0.19 512 15.8 13.4 3 14.62± 4.96 E, NE
44 3 886,644,936,622 2013-Jan-07 08:47:19 6.95± 0.14 352 17.2 4.8 4 9± 3
44 4 869,575,879,587 2013-Jan-07 08:48:53 2.41± 0.05 202 2.9 2.8 4
45 1 −396,367, −409,379 2013-Feb-17 15:45:42 2.48± 0.04 92 0.7 3.1 3.5 7.82± 1.66 E
46 1 −1024, −281, −1038, −268 2013-May-24 18:55:12 12.07± 0.23 430 1.5 4.4 2.5
46 2 −1102, −389, −1080, −363 2013-May-24 18:53:58 10.99± 0.11 498 2.4 3.7 5 NE
46 3 −1032, −332, −1054, −327 2013-May-24 18:54:34 9.9± 0.1 384 2.5 3.8 6 NE
47 1 207, −251,223, −243 2013-May-27 01:53:28 5.27± 0.14 225 0.6 1.6 3
47 2 237, −197,270, −188 2013-May-27 02:02:59 5.02± 0.12 222 2.9 1.6 3
48 1 −1076,77, −1044,111 2013-Jul-18 17:59:56 15.28± 0.16 540 12.3 22.0 3.5 21.98± 15.6 E, NE
48 2 −1134,36, −1069,99 2013-Jul-18 17:59:01 15.76± 0.12 588 25.4 27.4 5 26.64± 2.17 E, NE
48 3 −1153,41, −1102,112 2013-Jul-18 17:58:34 16.08± 0.21 597 19.9 23.7 4 15.76± 3.09 E
48 4 −1084, −59, −1069, −33 2013-Jul-18 17:56:10 9.23± 0.23 426 7.7 7.6 4
48 5 −1139, −15, −1102,42 2013-Jul-18 17:57:31 15.83± 0.21 471 17.9 13.0 3.5
49 1 −1041,93, −1117,118 2013-Oct-11 07:12:01 15.12± 0.47 484 13.6 22.9 2
49 2 −1030, −126, −1058, −106 2013-Oct-11 07:15:17 7.73± 0.14 197 3.6 6.4 3
49 4 −1044,409, −1082,429 2013-Oct-11 07:13:30 10.45± 0.17 386 17.9 8.0 3 15.38± 2.58 E
49 5 −1020, −76, −1071, −51 2013-Oct-11 07:15:51 8.03± 0.18 191 10.4 13.0 3 9.37± 1.22 E
52 1 −710,65, −721,113 2014-Jan-04 15:32:47 5.93± 0.12 183 3.0 12.5 3
53 1 1101, −296,1136, −291 2014-Jan-06 07:42:35 9.48± 0.22 420 1.5 8.4 1.5
54 1 1115,220,1143,254 2014-Feb-10 21:00:57 8.33± 0.07 408 1.3 3.2 3
54 2 1118,55,1134,82 2014-Feb-10 21:01:06 7.46± 0.1 400 4.2 8.0 3
54 3 1062,110,1078,106 2014-Feb-10 21:02:02 2.32± 0.05 238 1.0 0.9 3
54 4 1108,29,1138,43 2014-Feb-10 20:58:27 3.77± 0.13 355 7.5 3.0 2
54 5 1076, −6,1091,1 2014-Feb-10 20:59:10 4.8± 0.1 257 3.6 2.9 4.5 19.72± 3.23 E, NE
55 1 1123,231,1143,244 2014-Feb-10 22:48:05 8.63± 0.24 405 5.9 3.7 2.5
55 2 1167,190,1203,192 2014-Feb-10 22:44:59 6.54± 0.17 477 1.9 2.8 3
56 1 1124, −8,1186,1 2014-Feb-11 13:28:08 9.07± 0.14 403 9.3 7.8 4 20.71± 4.71 E, NE
56 2 1068, −39,1130, −6 2014-Feb-11 13:28:13 11.88± 0.13 314 17.8 27.6 5 19.62± 2.96 E
56 3 1027,82,1043,54 2014-Feb-11 13:26:19 3.22± 0.16 205 16.5 9.2 2.5
56 4 1062,397,1122,348 2014-Feb-11 13:27:33 14.38± 0.34 501 16.2 23.2 2
56 5 1026,332,1004,354 2014-Feb-11 13:28:38 13.5± 0.16 431 6.9 10.7 4.5 24.17± 5.13 E
56 6 998,318,979,345 2014-Feb-11 13:28:49 7.59± 0.2 392 3.6 3.8 2.5
56 7 1068,427,1023,456 2014-Feb-11 13:31:32 14.16± 0.55 457 4.9 15.0 3 13.64± 3.93 E, NE
56 8 1015,384,990,419 2014-Feb-11 13:30:19 10.64± 0.15 379 3.5 9.0 4
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Gaussian examples



Evidence of Gaussian damping regime from SDO
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• Morton & Mooroogen (2016, A&A, in press) — statistical analysis of one of the 
previous loops supports Gaussian damping profile 

• Model comparison: 

• Kolmogorov—Smirnoff test (Morton & Mooroogen 2016) 

• Bayesian inference (e.g. Arregui et al. 2013, ApJ, 765, L23)



• Time of switch depends on density contrast ratio: 

• small density contrast (~2) → slow switch → mostly Gaussian envelope 

• large density contrast (~10) → quick switch → mostly exponential envelope 

• If we detect both envelopes we have two damping times (well-posed inversion problem)             
→ unique solution for density contrast ratio and transition layer width

Approximate damping envelope for seismology

19
Hood et al. (2013) 

Pascoe et al. (2013)

time (sec)

time of switch

A 

Numerical 
simulation of a kink 
mode showing both 
Gaussian and 
exponential 
damping regimes



• New method uses shape of damping envelope as well as damping rate to obtain structure information 

• Envelope shape is characterised by the switch time between Gaussian and exponential damping regimes:

Animation shows 
some of the 
transverse loop 
profiles which give 
the same damping 
rate (of 90% 
attenuation after 6P)

For each structure 
the shape of the 
kink mode damping 
envelope is different



Pascoe et al. (2016, A&A, 589, A136)21

General damping envelope fit to SDO data
Time-distance map
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Pascoe et al. (2016, A&A, 589, A136)
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General damping envelope fit to SDO data

Absolute values of extremaDetrended time seriesTime series

SDO/AIA image Time-distance map



• Two damping regimes (Gaussian and exponential) used to calculate the transverse loop 
structure 

• Three loops from catalogue of Goddard et al. (2016) analysed in detail:

23

Seismology of coronal loop transverse structure

Seismological inversion

Loop density profile

Pascoe et al. (2016, A&A, 589, A136)



• Damping profile seismology gives 

• Forward modelling intensity profile and fitting to data gives l and R separately 

• This method ensures same definition of l and R used in forward modelling as 
damping model

24

Forward modelling intensity profile

Pascoe et al. (2016, A&A, 589, A136)

Forward modelling fit

Gaussian profile fit
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Forward modelling TD maps



• Improved estimates of Alfvén speed by calculating actual density contrast ratio:

General spatial damping profile seismology

26 Pascoe et al. (2016, A&A, 589, A136)
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Coronal loop

CME/flare

Kink wave

Alfvén 
wave

Dissipation

impulsive 
perturbation

mode coupling 
(ideal process)

phase mixing 
generates small 
spatial scales

footpoint 
motions(?)

ubiquitous 
perturbation

Doppler shifts 
due to 

upwards 
propagating 
kink waves

Phase mixing



Phase mixing
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• Alfvén wave generated inside inhomogeneous medium with continuous variation in 
local Alfvén speed — large gradients generated (e.g. Heyvaerts & Priest 1983; 
Cally 1991; Hood et al. 2005; Soler & Terradas 2015) 

• Seismological method for determining density profile allows us to estimate phase 
mixing timescale 

• Simulations: Mann et al. (1995): 

• Observations: Based on Mann & Wright (1995):

Pascoe et al. (2016)

Pascoe et al. (2010)



• See next talk by Paolo Pagano for more details of heating 

• simulations including effects of resistivity, thermal conduction, radiative losses 

• Cargill et al. (2016, ApJ, 823, 31) — wave damping creates fine structure 

• Magyar & Van Doorsselaere (2016, ApJ, 823, 82) — waves destroy fine structure 

• (Mode coupling does not require symmetrical loops e.g. Terradas et al. 2008; Pascoe 
et al. 2011)

Heating

29
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Pascoe et al. (2016, A&A, in press

Second harmonic standing kink mode



Seismology of longitudinal structuring using period ratios
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• Standing kink modes usually in long wavelength limit (dispersionless) but… 

• Effect of density stratification (e.g. Andries et al. 2005; Safari et al. 2007; McEwan 
et al. 2008) 

• Effect of Loop expansion (Verth & Erdélyi 2008, A&A, 486, 1015) 

• Compare models using Bayes factors (e.g. Arregui et al. 2013, ApJ, 765, L23)



• Kink oscillations of coronal loops are damped by coupling of energy to Alfvén waves 

• Numerical simulations and analytical theory predict: 

• Gaussian damping envelope for low density contrast loops 

• Exponential damping envelope for high density contrast loops 

• Evidence of Gaussian damping regime recently discovered in SDO/AIA data 

• Observation of both damping envelopes has allowed the transverse loop structure 
to be seismologically calculated for the first time 

• Transverse structure essential for understanding corona e.g. improved estimates of 
magnetic field strength, heating rate based on phase mixing

Summary
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