
Soft Condensed Matter

Michaelmas 2017

Due: 5pm Thursday Week 5

1. Coagulation
The interaction energy between spherical silica particles in a stable colloidal sus-
pension at pH 7 in an aqueous NaCl solution is shown here.
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(a) Explain the factors that determine the shape of the curve.

(b) Explain why each of the following actions may lead to coagulation of the silica
colloid.

• increasing the NaCl concentration

• adding a divalent electrolyte

• adding methanol to the solution (at constant [NaCl])

• reducing the pH (note: the isoelectric point of silica is around pH 2)

• adding a soluble, non -adsorbing polymer, e.g. polyethylene oxide (PEO).
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2. Sedimentation

(a) Calculate the van der Waals interaction between two 1µm diameter silica
spheres (A11 = 6 × 10−20 J) separated by 100 nm in a vacuum and com-
pare this value with the thermal energy of the particles at room temperature.
Repeat the calculation for silica in water, where A131 = 0.8× 10−20 J.

(b) Sufficiently small particles do not sediment under gravity. The barometric
height distribution for the particle density n as a function of height is given by

n(h) = n(0) exp (−∆ρV gh/kBT ) ,

where h is the height of the particle w.r.t. the bottom of the container, g is
the acceleration due to gravity, ∆ρ is the difference in density between the
particle and solvent, and V is the volume of the particle. Calculate the decay
length (or gravitational length) of the exponential function (i.e. the height at
which n(h)/n(0) = e−1) for polystyrene particles of diameter 0.1 µm, 1 µm,
and 10 µm in water at 300 K. Comment on the values you obtain. Note that
the density of polystyrene is 1.05 g cm−3.

3. Wetting
When octane is placed in a quartz vessel, the octane wets the walls of the vessel.
Within a continuum model, the energy, U , per unit area of a film of octane of
thickness, D, due to van der Waals interactions is given by,

U = − A

12πD2
,

where the Hamaker constant is A = −7×10−21 J. The gravitational potential energy
per unit area of the film at a height, h above the liquid surface is given by,

U = ρghD,

where ρ is the density of the liquid and g = 9.81 m s−2 is the acceleration due to
gravity.

(a) Sketch the form of each of these two potentials (for A < 0), and of their sum,
as a function of D.

(b) Evaluate the equilibrium thickness of the film at h = 1 cm (ρ = 703 kg m−3).
The Hamaker constant for water interacting with itself across a vacuum is
Aww = 3.7× 10−20 J while for a typical hydrocarbon oil, Aoo = 5.1× 10−20 J.

(c) Estimate the Hamaker constant, Awo, for water interacting with oil across a
vacuum.

(d) Determine the sign of the Hamaker constant for a film of oil on water in air
(note the combining relation for medium 1 interacting with medium 2 across
medium 3: A123 ≈ A12 + A33 − A13 − A23).

(e) Hence predict whether oil will spread on water.
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4. Van der Waals Interactions
Show that the van der Waals interaction per unit area between two plates of finite
thickness T at a separation h can be written as,

U = − A

12π

[
1

h2
− 2

(h+ T )2
+

1

(h+ 2T )2

]
.

For h >> T or T/h << 1 we can expand the above expression. Comment on the
resulting 1/h4 dependence you obtain.

5. Polymers
A polymer brush is characterised by four parameters:

• N the number of monomers per chain

• a3 the volume per monomer

• L the thickness of the brush

• Γ(= 1/s2) the number of chains per unit area (s is the mean separation between
chains)

(a) Sketch the polymer brush and indicate the relevant length scales.

(b) For random-flight polymers in the semi-dilute regime, the osmotic pressure Π
scales as kBTφ

2/a3, where φ is the volume fraction of the polymer. Write
down an expression for φ in terms of N, a, L, and s and hence obtain a scaling
expression for Π.

(c) The free energy of a single polymer chain is 3kBTL
2/2Na2. Calculate the

elastic force on a single chain of length L (recall that the force is the negative
derivative of the free energy) and hence the force per unit area that resists an
increase in L.

(d) By balancing the osmotic and stretching pressures on the brush, determine
how L scales with N, a and s.

(e) Comment on the exponent of N in light of the scaling behaviour in solution.

(f) Explain why polymer brushes give rise to a repulsion between two surfaces
coated with brushes.

6. Capillaries

(a) Calculate the capillary rise h of water in a glass capillary with radii of 1 µm
and 1 mm. If the capillary would have been made from gold, what will change?

(b) What overpressure is needed to force water through Teflon holes of 1 µm and
1 mm?

(c) Consider again a narrow glass capillary in water. Sketch the capillary rise h as
a function of the surfactant concentration and explain.

Max Marcus 3 of 10 Michaelmas 2017



Soft Condensed Matter Hertford College

7. Interfaces
Consider a horizontal glass tube, with a diameter of 1 mm, which contains water and
mercury forming a water/mercury interface. Water displays complete wetting on
the glass, whereas the contact angle between the mercury-air interface and glass is
128◦. All interfaces can be described by (part of) a sphere. The interfacial tensions
are γH2O/air = 73 mN/m, γHg/air = 472 mN/m and γHg/H2O = 375 mN/m.

(a) Draw the water/air and mercury/air interface in the tube.

(b) Calculate the radius of curvature of the water/mercury interface.

(c) Draw the water/mercury interface in the tube and indicate its contact angle
with the tube.

8. Surface Tension
The surface tension, γ, of the non-ionic surfactant, C12H25(OCH2CH2)2OH (known
as C12E2) as a function of concentration, c, at 300 K is given in the table below.

106 c / mol dm−3 1.7 3.2 5.6 10 18 32 56 100
γ / mN m−1 64 59 52 45 38 31 29.5 29.0

Plot a graph of γ against ln c. Account qualitatively for the shape of this graph and
estimate (i) the critical micelle concentration (cmc) for C12E2 and (ii) the minimum
area per molecule in a monolayer of C12E2 at the air/water interface.

9. Surfactants
The surface coverage, Γ, at the cmc (or the solubility limit in the case of dodecanol
(m = 0)) for the family of surfactants C12Em is given in the table below for various
values of m. Comment on these values.

m 0 2 3 4 5 6 8 12
Γ / 10−6 mol m−2 7.9 5.3 4.6 3.8 3.3 3 2.7 2.3

(a) Estimate the area (∼ πRg2) that would be occupied by the head group of
C12E12, treating it as a random flight polymer with segment length, l = 0.38
nm, and compare this prediction with the experimental value of the area per
molecule, a = (NAΓ)−1.

(b) For a liquid alkane near its freezing point, the volume per CH2 group is 29 Å3

and the volume per CH3 group is ∼ 35 Å3. The extended chain length per CH2

group is 1.27 Å; for a CH3 group one adds ∼ 1.5 Åto account for the terminal
CH bond. Estimate υ and lc and hence calculate the ratio υ/a0lc for each value
of m above.

(c) Predict the shape of aggregates in the bulk solution.

(d) Estimate the aggregation number, N , for micelles of C12E8 and C12E12.
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(e) Many members of the family of surfactants C12Em exhibit a cloud point: on
heating, a solution changes from clear to cloudy as a result of the formation
of large aggregates with a smectic structure (i.e. parallel bilayers). The mi-
croscopic origin is dehydration of the polyethylene glycol head groups with
increasing temperature. Explain why this microscopic change causes the ob-
served phase transition.

10. Depletion Interaction

(a) Derive an expression for the depletion interaction between two spherical par-
ticles of radius a, at center-to-center separation R in a sea of polymers with
radius of gyration RG and osmotic pressure Π. See the figure below - the
volume of a spherical cap, which you will need, is indicated.

R

a

RG

s

V = 1
3
πh2(3s− h)

h

(b) Calculate the osmotic pressure using van’t Hoff’s law for a suspension of poly-
mers at a concentration of 5 kg m−3. The polymer’s Mw = 2000 kg mol−1.

(c) Using your expression and the pressure obtained above calculate the interaction
energy at contact (R = 2a) when RG = a/2, a, 2a. The colloid’s radius is
a = 100 nm. Repeat your calculation, but now at a separation of R = 2a+RG.
Compare to the thermal energy and comment on your results.

11. Polymers
Describe ways in which polymers can either stabilise or destabilise suspensions of
colloidal particles.

12. Carnahan-Starling Equation
The virial pressure of the hard sphere fluid equals

P

ρkT
= 1 + 4φ+ 10φ2 + 18.365φ3 + 28.24φ4 + 39.5φ5 + 56.5φ6 + . . . . (1)

Carnahan and Starling noted that this expansion is almost represented by,

P

ρkT
= 1 +

∞∑
n=0

(n2 + 3n)φn, (2)
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which is easy to verify. Using
∑∞

n=0 φ
n = 1

1−φ (differentiate both sides of the equation

twice w.r.t. φ) show that the above equation can be written as,

P

ρkT
=

1 + φ+ φ2 − φ3

(1− φ)3
, (3)

which is the Carnahan-Starling equation of state. Note that the equation was orig-
inally derived via this route.

13. Hard Sphere Crystal
From our Statistical Thermodynamics course we remember that the partition func-
tion Q of an ideal gas of N particles can be written as,

Q =
1

N !λ3N
V N , (4)

with λ the thermal de Broglie wavelength and V the total volume. Here V is nothing
else than the available volume V ∗ for each particle. In a dense suspension of hard
spheres a similar relation holds, but the available volume is much less than V . If
we take a hard sphere crystal, it is easy to see that each sphere can roughly rattle
around in a cage with volume,

V ∗ =
4π

3
(r − d)3, (5)

which is indeed its available volume.

d

r

r − d

Although r is in principle a very complicated function, we know that at close packing,
where the volume fraction of spheres φ ≡ N π

6
d3/V is equal to φcp, r will be equal to

d. This means that we assume the following scaling relation to be true: d3φcp = r3φ.
This provides us with an expression for r and thus for V ∗. Writing the partition
function in terms of V ∗, i.e. Q = 1

N !λ3N
(V ∗)N , allows us to calculate the pressure
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P . Make use of F = −kT lnQ and P = −(∂F/∂V )T,N to show that

P

ρkT
=

1

1− (φ/φcp)1/3
. (6)

We can simplify this result by expanding φ around φcp, i.e. write φ as φcp − ε, with
ε a small parameter. Show that this leads to,

P

ρkT
=

3

1− φ/φcp
, (7)

which is indeed a very accurate expression for the pressure of a hard sphere crystal.
At which volume fraction does the pressure diverge and does this make sense?

14. Protein Diffusion

(a) Derive an equation for the time it takes for a spherical colloid of radius a to
diffuse over its own diameter. Calculate this time for a colloid with a = 1 µm
(assume room-conditions and water as the solvent).

(b) A spheroidal protein with characteristic radii a = 500 nm and b = 20 nm, is
synthesized in the middle of a spherical cell of radius 10 µm. It need to reach
the cell’s membrane. How long does this take when the ellipsoid is somehow
only moving sideways? And when it is moving lengthways? You may want to
look in D & B to obtain the relevant friction coefficients.

15. Diffusion
In this question we will derive an expression for the mean-square displacement in
a different manner than shown in lectures. To that end we will follow Langevin’s
original paper (see the translation by D. S. Lemons and A. Gythiel, Am. J. Phys.
65, 1079 (1997)). We will start with the Langevin equation in only one dimension:

m
d2x

dt2
= −ξdx

dt
+ f. (8)

Multiply both sides by x and show that this can be written as

m

2

d2x2

dt2
−m

(
dx

dt

)2

= −ξ
2

dx2

dt
+ fx. (9)

We now take the ensemble average and apply the equipartition theorem, m
〈(

dx
dt

)〉
=

kT ,
m

2

〈
d2x2

dt2

〉
− kT = −ξ

2

〈
dx2

dt

〉
. (10)

With z = 〈dx2/dr〉 the above differential equation can be solved by the method of
variation of constants, but more easily by as simple separation of variables. Solve
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the equation above to obtain,

z =
2kT

ξ
+ x exp

(
−ξt
m

)
. (11)

Note that the constant c does not depend on t. For long times, i.e. t � τ , the
above equation can be solved to obtain the mean square displacement along the
x-direction as, 〈

x2
〉

=
2kT

ξ
t = 2Dt. (12)

Derive the last equation.

16. Colloids (from 2015 Part IB paper)
Consider a spherical colloidal particle of radius R separated by a distance x from a
wall made of the same material as the colloidal particle (1), dispersed in a solvent
(3).

11

3

x 2R

Relevant parameters are given in the table below.

R / µm A131 / J η / mPa s T/K
1.5 5× 10−20 1 298

The friction coefficient for a sphere is ξ = 6πηR.

(a) Show that the time τD for a sphere to diffuse over a distance x along one
dimension is given by,

τD =
3πηR

kT

〈
x2
〉
. (13)

[4]

(b) Using this expression calculate the time it takes for a colloidal particle to
diffuse to the wall, when the initial separation x is equal to 0.5 µm, ignoring
any possible interactions with the wall. [3]

The colloidal particle and the wall interact vie the van der Waals interaction, given
by,

UvdW(x) = −A131R

6x
. (14)

Max Marcus 8 of 10 Michaelmas 2017



Soft Condensed Matter Hertford College

(c) Briefly explain the origin of the van der Waals interaction. Include in your
answer a statement about the sign of A131 as well as any possible relation
between A131 and A313. [4]

The van der Waals interaction gives rise to a force FvdW acting on the particle,
causing it to move towards the wall. The resulting velocity v = dt/dt of the particle
leads to a frictional force, ξv, opposing the van der Waals force.

(d) Assuming steady-state conditions, such that |FvdW| = ξ dx
dt

, show that for an
initial separation x, the time τvdW for the colloidal particle to reach the wall is
given by,

τvdW =
12πηx3

A131

. (15)

[6]

(e) Calculate τvdW when x = 0.5 µm and compare to your answer from part (b).
Comment on the fact that the particle’s diffusion has been ignored in the
calculation of part (d). [4]

To modify the interaction between the particle and the wall polymers are grafted
onto the surface of the particle.

(f) Explain how the grafted polymers modify the particle-wall interaction and
sketch the resulting overall particle-wall interaction. [4]

17. Interfaces (from 2014 Part IB paper)
A glass tube with radius r is partly immersed in a bath of water as shown in the
diagram below. The pressure exerted by the hydrostatic column of height h is ρgh,
where ρ is the mass density and g the acceleration due to gravity. The pressure
difference across the water-air interface is 2γwa/R, with 1/R the curvature of the
meniscus (see diagram) and γwa the surface tension between water and air.

h

C D

BA

θ

r

R

(a) By considering the pressures at points A, B, C, and D in the diagram, construct
a pressure balance to derive the following equation for the capillary rise h:

h =
2γwa cos θ

∆ρgr
, (16)
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where ∆ρ is the mass density difference between water and air, and θ is the
contact angle between water and glass. [7]

(b) A second glass tube with twice the radius of the first glass tube is also partly
immersed in the same water bath. Sketch the relative heights of the menisci
in both tubes, explaining your reasoning. [3]

(c) Given that the height difference between the menisci the two tubes is 1.4 cm,
calculate the contact angle, θ, between water and glass. The temperature is
298 K, γwa = 72.8 mN m−1, r = 0.50 mm, ∆ρ = 103 kg m−3 and g = 9.81 m
s−2. [6]

The relation between the contact angle, θ, and the surface tensions of the glass-air,
water-glass, and water-air interfaces (γga, γwg, and γwa) is given by Young-Dupré’s
law,

cos θ =
γga − γwa
γwa

. (17)

(c) Use your value for θ from part (c) to calculate the difference in surface tension
between the glass-air and water-glass interfaces. If you did not find a value for
θ in part (c), then use θ = 15◦. [2]

(d) The temperature dependence of the water-air surface tension is (empirically)
described by,

γwa = γ0

[
1−

(
T

TC

)] 11
9

, (18)

where the critical Temperature, TC , is 647.3 K. Assuming that the γga and γwg

do not depend on the temperature, calculate the temperature at which water
completely wets the glass. Use the value of γwa from (c). [7]
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