
Trigonometric Functions

1 Introduction: Right-Angled Triangles

The most common definitions of trigonometric functions is done via a right-angled triangle (from which
the functions take their name). Consider the triangle ABC. We take the angle α to be the angle of interest.
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In that case the side a is called the opposite, b is the hypotenuse, and c is
the adjacent. With these three numbers we can define six ratios, or three
pairs of reciprocals. These ratios are independent of the actual size of the
triangle but solely depend on the angles. In a right-angled triangle one angle
is always known (the right angle) and the other two are linked by α+β = 90◦

and as a result we only need to specify one angle, let’s say α. In this case
the six ratios become a function of α: as we change the angle the ratios
will change in a defined manner. We now give these ratios the names sine,
cosine, tangent, cosecant, secant, and cotangent and define them as:

sinα =
a

c
; cosα =

b

c
; tanα =

a

b
;

cscα =
c

a
; secα =

c

b
; cotα =

b

a
.

Note that the functions in the second row are the reciprocals of the function immediately above. With
these functions we can perform many operations on right-angled triangle, the most prominent function is
in a process called triangulation which is commonly used to survey landscapes. It relied on knowing two
sides of a right-angled triangle and one angle. With this information, using the appropriate trigonometric
function, the third side or distance can be determined. However, currently we are limited to values of α
between 0 and 90◦.

2 The Unit Circle

Let’s examine the definition of the functions above, take the sine as an example. In the case of c = 1
we find directly that sinα = a, i.e. the sine of an angle α is just the length of the opposite. If we
fix the point A of the triangle in space and the length of the hypotenuse c we can change the angle
α to an arbitrary value and complete the triangle such that we have a right-angle at C. This allows
us to extend the definition of the sine function. The point B of the triangle will move around A on
a fixed distance of 1, forming a circle around A. Now, define A to be at the origin of a Cartesian
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Figure 1: Visualisation of the sine and cosine
for three different angles on the unit circle.
The functional values correspond to the length
of the red and blue segments, respectively.

coordinate system, then the circle described by B will be
a circle of radius 1 around the origin and the hypotenuse,
always of length 1, will be a line connecting any point on
the circle to the origin, like a spoke in a wheel.

By completing the right-angled triangle with the x-
axis of the coordinate system, the length of the opposite
will be the value of sinα. This corresponds to the y-
coordinate of the point B. With this we have defined the
function sinα for any angle.

We can use the technique above for any of the func-
tions by choosing the correct side of a right-angled tri-
angle to be of unit length. In the case of the cosine it is
equally the hypotenuse that needs to be of length 1 and
then the x-coordinate of the point B is the cosine of the
angle α.

For the tangent we require the adjacent to be of unit
length. For this purpose we draw a vertical line intersect-
ing the x-axis at 1. This means that this line is a tangent
to the circle (hence the name for the corresponding func-
tion). Now, the y-coordinate of the intersection of the
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extended hypotenuse of the triangle with this tangent gives the value of tanα. This shows that tan 90◦

is undefined as the hypotenuse becomes parallel to the tangent and we cannot construct a triangle. For
angles larger than 90◦ the tangent intersecting the x-axis at -1 has to be used to determine the functional
value.
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Figure 2: Visualisation of the tangent and
cotangent for three different angles on the unit
circle. The functional values correspond to the
length of the red and green segments, respec-
tively. The blue lines are the tangents of the
circle. Tangent and cotangent are omitted for
the larger angles.

Equivalent definitions can be found for the other three
trigonometric functions.

The definition on the unit circle is superior to the
right-angled triangle definition as is enables the definition
of the functions for any argument. Moreover it highlights
the connection between an angle in degrees and radians,
as the length of the arc from the x-axis to the hypotenuse
is just the value of the angle.

3 Trigonometric Functions and
Complex Numbers

Complex numbers of the form z = a + ib, where i is the
imaginary unit defined as i2 = −1, can be visualised in
the complex plane using an Argand diagram. In this case
the coordinates (a; b) specify the real and imaginary parts
of the number z. Moreover, we can construct a pointer
connecting the number z to the origin. This pointer will
have a length r and an angle with the real axis, call it θ.
If we require r = 1 the number will be part of the unit
circle and its coordinates will be given as (cosα; sinα).
But these have to be equivalent to (a; b) (it’s the same
number). And hence, z = cosα+i sinα. If we now define
the complex conjugate of z as z∗ = cosα− i sinα we find

that,

cosα =
z + z∗

2
= <(z); sinα =

z − z∗

2i
= =(z).

This, itself, is not particularly useful. However, we will now postulate that cosα + i sinα = eiα, i.e. we
can express any complex number as a complex exponential. This is Euler’s Formula, one of the most
useful and beautiful equations in modern Mathematics. Then,

cosα =
eiα + e−iα

2
; sinα =

eiα − e−iα

2i
; tanα =

sinα

cosα
=

eiα − e−iα

eiα + e−iα
.

While this may on first examination not be particularly useful, it allows us to derive nearly all trigonomet-
ric identities without memorising them, as the rules on how to manipulate exponentials are particularly
simple. We will make use of these when defining the derivatives of trigonometric functions.

4 Analytics of Trigonometric Functions

With the definitions of the trigonometric functions so far, we can now plot the graphs for real numbers,
x, or angles, α. We will from now on only use angles in radians (x). The conversion to degrees is
straightforward by introducing factors of 180◦/π.

Due to the definition of the functions on the unit circle and the repetition of angles in multiples of
2π the functions will be of periodic nature. Using the unit circle definition, we see that for the sine we
start off at a functional value of 0 which will be passed through at every multiple of π with the graph
repeating itself every 2π. Similar for the cosine, however the passing through 0 will no occur at every
odd multiple of π/2. In fact, cosine and sine are identical bar a shift along the x-axis of π/2. This is
called a phase and we can see that cos(x+ π/2) = sin(x).
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Figure 3: Functional graphs for sin(x) (red), cos(x) (blue), tan(x) (green), csc(x) (red dashed), sec(x)
(blue dashed), and cot(x) (green dashed).

As all trigonometric functions are periodic, they have either no roots (cosecans and secans) or infinitely
many (the others) with a given periodicity. As can be seen the tangent shares its roots with the sine
function ad multiples of π and the cotangent with the cosine at odd multiples of π/2. Further more, all
trigonometric functions are odd with exception of the cosine and secant, which are even. Apart from the
sine and cosine every function has poles, or values at which the function is not defined. For the tangent
and secant these are at odd multiples of π/2, for the tangent and sine they are ar multiples of π.

As sine, cosine,... are functions we can find their derivatives. Using differential quotients we find,

d

dx
sinx = lim

δx→0

sin(x+ δx)− sinx

δx
.

We now need to understand how to manipulate sin(x + δx). To this end take sin(x + y) and rewrite it
using the exponential expressions above as,

sin(x+ y) =
ei(x+y) − e−i(x+y)

2
=

eixeiy − e−ixe−iy

2

=
1

2i
[(cosx+ i sinx)(cos y + i sin y)− (cosx− i sinx)(cos y − i sin y)]

=
1

2i
[cosx cos y+i sinx cos y+i cosx sin y − sinx sin y− cosx cos y+i sinx cos y+i cosx sin y + sinx sin y]

=
1

2i
[2i sinx cos y + 2i cosx sin y] = sinx cos y + cosx sin y.

Hence, for our differential,

d

dx
sinx = lim

δx→0

sinx cos δx+ cosx sin δx− sinx

δx
,

we can separate the fraction into three terms,

d

dx
sinx = lim

δx→0

[
sinx cos δx

δx
+

cosx sin δx

δx
− sinx

δx

]
,

where we can consider each term separately. First the middle term,

lim
δx→x

cosx sin δx

δx
= cosx lim

δx→0

sin δx

δx
= cosx,

as we will show below. Then the first term,

lim
δx→0

sinx cos δx

δx
= sinx lim

δx→0

cos δx

δx
= lim
δx→0

sinx

δx
,
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and putting it all together then gives,

d

dx
sinx = lim

δx→0

[
sinx

δx
+ cosx− sinx

δx

]
= cosx.

We can find equivalent results for the other functions. We then find:

sinx = − d

dx
cosx = − d2

dx2
sinx =

d3

dx3
cosx =

d4

dx4
sinx = . . .

Integration of the sine and cosine is then also rather simple. Integrating the other functions heavily relies
on trigonometric identities. Below is a table of simple derivatives and integrals. Note that the constant
of integration is omitted. ∫

f(x)dx f(x) df/dx
− cos(x) sin(x) cos(x)
sin(x) cos(x) − sin(x)

ln | secx| tan(x) sec2(x)
ln | secx+ tanx| sec(x) tan(x) sec(x)
− ln | cscx+ cotx| csc(x) − csc(x) cot(x)

ln | sinx| cot(x) − csc2(x)

5 Series Definition

Having the derivatives of the trigonometric functions we can now find the Taylor expansions of these
functions, for instance for the sine function as,

sinx = sin 0 +
d sinx

dx

∣∣∣∣
x=0

x+
1

2!

d2 sinx

dx2

∣∣∣∣
x=0

x2 +
1

3!

d3 sinx

dx3

∣∣∣∣
x=0

x3 +
1

4

d4 sinx

dx4

∣∣∣∣
x=0

x4 + . . .

= 0 + x cos 0− x2

2!
sin 0− x3

3!
cos 0 +

x4

4!
sin 0 +

x5

5!
cos 0 + . . .

= x− x3

3!
+
x5

5!
− x7

7!
+ . . . ,

which is an infinite series with some regularities: firstly, only the powers that are odd in x survive and
secondly they have alternating sign. We can then set this series up as an infinite series:

sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

convince yourself that this is correct: the factor of (−1)n ensures that we have an alternating sign,
starting with a + and the term (2n + 1) makes sure that we only have odd numbers. We can, in fact,
use this endless series as a definition for the sine function and can find equivalent series for the other
trigonometric functions. However, the definitions of the tangent, secant, cosecant, and cosecant, contain
special numbers that we will not consider further here.

cos(x) =

∞∑
n=0

(−1)n
x2n

(2n)!
.
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Figure 4: Series approximations to sin(x). With increasing number of terms in the series (here up to 4)
the expansion becomes more accurate over a larger domain.

With these, we can prove Euler’s Formula:

cosx+ i sinx =

∞∑
n=0

(−1)n
x2n

(2n)!
+ i

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
=

∞∑
n=0

i2n
[
x2n

(2n)!
+ i

x2n+1

(2n+ 1)!

]

=

∞∑
n=0

[
(ix)2n

(2n)!
+

(ix)2n+1

(2n+ 1)!

]
=

∞∑
k=0

(ix)k

k!
= eix.

.

6 Definition via Differential Equations

Sine and cosine are the functions that solve the differential equation,

y′′ = −y,

as we can see by making using the trial function y = eλx which results in,

λ2eλx = −eλx,

giving the equation λ2 = −1 which solves as λ = ±i. This then gives the solution,

y(x) = Aeix +Be−ix.

To obtain sin(x) we impose the boundary conditions y(0) = 0 and y′(0) = 1 which results in A = −B = 2i,
i.e.

y(x) = 2i
(
eix − e−ix

)
= sin(x),

and for cos(x) we use the boundary condition that y(0) = 1 and y′(0) = 0, giving A = B = 2, i.e.

y(x) = 2
(
eix + e−ix

)
= cos(x).
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