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Chapter 1

Introduction

Feedback effects are unavoidable in fusion plasmas: Maxwell’s equations, describing
the evolution of electromagnetic fields, involve the charge and current densities of
the particles. In turn, particles trajectories are modified by the fields through the
equations of motion. Then the cumulative effect of this feedback loop can lead to
plasma deconfinement.

In this work we address the problem of improving plasma confinement by con-
trolling turbulent transport and in particular we explore the opportunity of barrier
formation. Self-consistent fluctuations of electromagnetic fields and particle densi-
ties lie at the origin of plasma instabilities 1 and turbulent transport phenomena. In
order to understand their underlying mechanisms we study non-collisional plasma
dynamics by applying Hamiltonian tools.

From a general point of view, plasma dynamics can be studied at different levels:
in particular, kinetic and fluid. Both of these admit a Hamiltonian formulation.
In the first case for example, a canonical Hamiltonian structure appears while con-
structing guiding-center model for particle motion in a six dimensional (p,q) phase
space. Such a model permits us to study particle dynamics in an external electro-
magnetic field and does not take into account field-particle retroaction. The second
approach, dual to the previous one2, studies the evolution of the particle distri-
bution function in 6 dimensional phase space. Here a non-canonical Hamiltonian
formulation is possible for retroactive Maxwell–Vlasov model. Finally Hamiltonian
structures are known for the group of fluid models of the evolution of a distribution
function in 3 dimensional phase space. The use of the Hamiltonian approach implies
that viscosity and other mechanisms of dissipations are not taken into account, for
example this is a case of Charney–Hasegawa–Mima, two fluid model.

1Instabilities characterize by out of equilibrium state with exponential growth of fluctuations
2Here we imply Eulerian-Lagrangian particle-fluid description duality
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CHAPTER 1. INTRODUCTION

1.1 Particle dynamics: guiding center approach

Fusion plasma represents a system withN ∼ 1023 particles, each of them governed by
the fundamental equation of dynamicsmdv/dt = e (E+ v ×B). Obviously tracking
the trajectory of each particle is totally out of reach. This is why a dynamical
description at a particular level is of interest for simplified models when neither
interaction between particles nor between fields and particles is taken into account.
Then the motion of a single particle (test-particle) in an external fields is considered.
We will see that such a simplified model allows us to study some concrete physical
effects. This is the case for example of the guiding-center model.

The strong magnetic field approach is relevant for fusion plasmas, this is why at
the first approximation one can neglect fluctuations of magnetic field and consider
only the electrostatic turbulence case. In this approach particle motion is multi-
scale: it consists of a fast gyration around magnetic field lines and the slow drift
mainly across the magnetic field lines. The guiding-center approach arises from the
separation of the fast dynamics component from its slow one. Such an approach
provides the idea of dynamical reduction.

Below we illustrate how the E × B drift model, that is often used by physi-
cists, arises from the Hamiltonian description for single particle motion inside the
electromagnetic field, which is represented by the electromagnetic potentials (A, V ).

E×B model

In canonical variables the autonomous Hamiltonian of the particle in external elec-
tromagnetic fields is given by:

H =
(P− eA(q, τ))2

2m
+ eV (q, τ) +W (1.1)

Then the canonical Poisson bracket has a following expression:

{f, g} = ∂f

∂P
· ∂g
∂q
− ∂f

∂q
· ∂g
∂P

+
∂f

∂W
∂g

∂τ
− ∂f

∂τ

∂g

∂W
(1.2)

It was remarked that such a variables are not very practical in use. In fact, canonical
momentum P is not a physical variable of the particle, because it contains coupling
with electromagnetic field. The following transformation permits us to pass from
canonical variables to particle local variables (v,x).

x = q (1.3)

v =
1

m
(P− eA(q, t)) (1.4)

W = K, τ = t (1.5)

(1.6)
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1.1. PARTICLE DYNAMICS: GUIDING CENTER APPROACH

Due to such a transformation, the field-particle coupling will be incorporated inside
the Poisson bracket, which is no longer canonical:

{f, g} =
1

m

(∂f
∂v
· ∂g
∂x
− ∂f

∂x
· ∂g
∂v

)
− eB

m2
·
(∂f
∂v
× ∂g

∂v

)
+
∂f

∂K
∂g

∂t
− ∂f

∂t

∂g

∂K
(1.7)

In order to pass from (1.2) to (1.7) we have used chain rule:

{f, g}new =
∑
ij

∂f

∂zi

{
zi, zj

}
old

∂g

∂zj
(1.8)

where zi = (x,v,K, t) denotes new phase space variables. The expressions for
{zi, zj}old are obtained by using the expression for the canonical Poisson bracket:

{xi,vj} = − 1

m
δij (1.9)

{vi,vj} = − e

m2

(∂Ai

∂qj
− ∂Aj

∂qi

)
= − e

m2
ϵijkBk (1.10)

{K, t} = 1 (1.11)

Here the magnetic field, that supposed to be constant and uniform is decomposed
as follows: B ≡ Bb̂. The general case of non-uniform magnetic geometry will be
discussed in Chapter 4. In order to decouple the fast dynamics from the slow one
we produce the following decomposition for the particle position x. This induces

./Cercle.ps

Figure 1.1: Guiding center

the second change of variables:

X = x− m

eB
b̂× v

u = v (1.12)

K = W , t = τ

3



CHAPTER 1. INTRODUCTION

Note that the ratio m/eB ≡ ϵ here plays the role of a small parameter because
of considering strong magnetic field approach.

Then the Poisson bracket (1.7) transforms into:

{f, g} =
1

m
b̂b̂ :

(∂f
∂u

∂g

∂X
− ∂f

∂X

∂g

∂u

)
+

∂f

∂W
∂g

∂t
− ∂f

∂t

∂g

∂W
− eB

m2
b̂ ·
(∂f
∂u
× ∂g

∂u

)
+

1

eB
b̂ ·
( ∂f
∂X
× ∂g

∂X

)
(1.13)

Where we have used tensor analysis notation ab : cd ≡ b · c d · a. The relations for
the elementary brackets between new phase space variables (1.12) are obtained by
using the noncanonical Poisson bracket (1.7):

{Xi,Xj} = − 1

eB
ϵijkb̂k (1.14)

{Xi,uj} = − 1

m
b̂ib̂j (1.15)

{ui,uj} = −eB
m2

ϵijkb̂k (1.16)

{W , t} = 1 (1.17)

Here ρ ≡ m
eB
b̂×v denotes the part of the particle position perpendicular to magnetic

field that explicitly depends of fast gyroangle and X denotes the remaining part of
the particle position, which is also called the guiding-center. Let us now consider
one simple case when magnetic field is constant uniform and parallel to z direction
B = Bez. The expression for the Poisson bracket (1.13) becomes:

{f, g} = 1

eB

( ∂f
∂X

∂g

∂Y
− ∂f

∂Y

∂g

∂X

)
− eB

m2

( ∂f
∂ux

∂g

∂uy
− ∂f

∂uy

∂g

∂ux

)
− 1

m

( ∂f
∂Z

∂g

∂uz
− ∂f

∂uz

∂g

∂Z

)
+

∂f

∂W
∂g

∂t
− ∂f

∂t

∂g

∂W
(1.18)

Note that in this simple case with b̂ = ez the final expression for the Poisson bracket
is canonical. The canonically conjugate variables are (X,Y ), (ux, uy), (Z, uz) and
(t,W). Then the equations of motion in the perpendicular to magnetic field plane
become:

Ẋ = {H,X} = − 1

B

∂V (X, Y, t)

∂Y
(1.19)

Ẏ = {H,Y } = 1

B

∂V (X, Y, t)

∂X
(1.20)

Note that here only the first term of the Poisson bracket (1.18) is used in order to
obtain dynamical equations.
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1.1. PARTICLE DYNAMICS: GUIDING CENTER APPROACH

Such a dynamics can be rewritten by introducing E = −∇V as follows:(
Ẋ

Ẏ

)
=

E×B

B2
(1.21)

This is the E × B drift model that permits us in the electrostatic turbulence ap-
proximation to consider one of the possible mechanisms for plasma deconfinement.
The fact that such a model possesses Hamiltonian structure gives us the possibility
to implement Hamiltonian control tools in order to study barrier formation for re-
duction of such a drift motion and therefore to improve plasma confinement. It will
be implemented in Chapter 2 while studying barrier formation.

Idea of dynamical reduction

On the other hand considering test particle motion in the electromagnetic field is
of interest because of possibility to explicitly illustrate dynamical reduction related
to elimination of the fast scale motion. At the first approximation, we neglect fast
dynamics dependence inside the electric potential:

H =
1

2
mu2 + eV

(
X+ ϵ b̂× u; t

)
+W → H̃ =

1

2
mu2 + eV (X; t) +W (1.22)

By separating directions parallel and perpendicular to magnetic field, and by intro-
ducing the coordinates:

µ = m
u2
x + u2

y

2B
(1.23)

ζ = arctan
ux
uy

(1.24)

we can rewrite the perpendicular velocities part of the Poisson bracket as

−eB
m2

( ∂f
∂ux

∂g

∂uy
− ∂f

∂uy

∂g

∂ux

)
→ e

m

(∂f
∂µ

∂g

∂ζ
− ∂f

∂ζ

∂g

∂µ

)
(1.25)

The variables µ and ζ are canonically conjugate: {µ, ζ} = e
m

(up to a constant
factor).

The reduced Hamiltonian is given by:

H̃ =
1

2
µB +

1

2m
u2
z + eV (x, y, z; t) +W (1.26)

Finally we find that µ has a trivial dynamics µ̇ = 0, i.e. µ is a constant of

motion, and ζ̇ = {H, ζ} = eB

m
≡ 1

ϵ
is the fast gyroangle.

A systematic derivation of the expression for constant of motion at each order of
small parameter ϵ, as well as geometrical aspects related to the dynamical reduction,
will be discussed in Chapter 4.
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CHAPTER 1. INTRODUCTION

1.2 Kinetic approach

Plasma kinetics studies plasma evolution on six dimensional phase space. It is well
known that such an approach is very demanding numerically and needs reduction of
number of dynamical variables. One of the possible way to realize it, is to remove fast
gyrophase dependence from dynamics. Such an approach is named “Gyrokinetics”.
Particle numerical simulations based on the use of nonlinear gyrokinetic equations
have experienced an important expansion over the last several decades. It represents
now a powerful tool for studying various aspects of turbulence, instabilities and its
associated anomalous transport.

1.3 Perturbation methods leading to the Gyroki-

netic Maxwell-Vlasov equations

There exists two principal groups of methods that permits us to get reduced dynam-
ical equations implemented inside those codes. The first one, referred to also as the
standard method, consists in dealing with explicit gyroaveraging of the Vlasov equa-
tion expressed in lowest order reduced (guiding-center) coordinates. This is followed
by separation of equilibrium and perturbed parts of the guiding-center distribution
function. One of the serious disadvantages of such a method is its failure to provide
a clear iterative algorithm.

Another group of methods do not deal with Vlasov equation directly, but start
with consideration of a single particle Lagrangian. They use Lie-transform tech-
niques which provide near-identity coordinate transformations that decouple the
gyration from the slower dynamics of interest. Such a method was formally in-
troduced in [1] and applied for stationary electrostatic turbulence case. Later its
application was expanded on the problem of a single particle motion in an external
non-uniform magnetic [2] and electromagnetic [3] fields as well as to study of me-
chanics of magnetic field line flow [4]. Their first advantage with respect to the first
group of reduction methods is that such a transformation is reversible, so the infor-
mation about the fast dynamics is not lost and can be recovered when it is needed.
The second strong point of such approaches is existence of a well defined iterative
procedure that permits us at each order to derive gyroangle-independent dynamics.
The more general among those methods, is the action-variational Lie perturbation
method. This method deals with the phase-space Lagrangian (Poincaré-Cartan fun-

6



1.3. PERTURBATION METHODS LEADING TO THE
GYROKINETIC MAXWELL-VLASOV EQUATIONS

damental one-form), which couples the symplectic structure and the Hamiltonian3:

Γ ≡ L dt = p · dq−Hdt (1.27)

where p and q represents canonical phase space variables. Then the Hamiltonian
equations are obtained according to the variational principle when that the phase
space variables are varied independently of each other:

δΓ ≡ δp ·
(
dq− ∂H

∂p
dt

)
− δq ·

(
dp+

∂H

∂q
dt

)
= 0 (1.28)

so that

∀δq, δp⇔ q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(1.29)

Note that the independent variation of the phase space variables here represents the
main difference between the traditional variational principle, when the Lagrangian is
defined on configuration space (q, q̇), and the variational principle using the phase-
space Lagrangian.

The first step here in obtaining gyrophase-independent dynamics is to pass from
the canonical variables (p,q) into the local particle variables zα = (X, µ, ζ, uz),
introduced into the previous section. The next step consists in performing a set of
transformations given by:

τϵz
a ≡ z̄a = za + ϵGa

1 + ϵ2
(
Ga

2 +
1

2
Gb

1

∂Ga
1

∂zb

)
+ . . . (1.30)

where za denotes initial set of non-reduced coordinates and z̄a reduced correspond-
ingly the n-th order transformation is driven by phase-space vector field Ga

n∂/∂z
a.

Such a phase space change of variables induces phase-space Lagrangian transforma-
tion as follows

Γ̄ = T−1
ϵ Γ + dS ≡ ϵ−1Γ̄0 + Γ̄1 + ϵ Γ̄2 + ϵ2 Γ̄3 (1.31)

where Γ̄n = Γ̄nadz̄a − H̄ndt and the push forward operator T−1
ϵ =

. . . exp(−ϵ2£2) exp(−ϵ£1) is expressed in terms of Lie-derivatives. According to
Cartan’s formula, Lie derivative of one-form yields one-form

£GΓ ≡ iG · dΓ + d(iG · Γ) = Ga ωabdz
b + d(GaΓa) (1.32)

3Phase space Lagrangian expression arises from the transition between configuration space and
phase space given by Legendre transformation

L(q, q̇; t) = p
dq

dt
−H(p,q; t)

where p ≡ ∂q̇L

7



CHAPTER 1. INTRODUCTION

here dΓ ≡ ωabdz
a ∧ dzb. Then by applying two first order decomposition for pull-

back operator to the phase-space Lagrangian we obtain the iterative procedure up
to the ϵ3:

Γ̄ ≡ exp(−ϵ2£2) exp(−ϵ£1)
(
ϵ−1Γ0 + Γ1 + ϵ Γ2 + ϵ2 Γ3

)
=
(
1− ϵ2£2

) (
1− ϵ£1 +

ϵ2

2
£2

1

)(
ϵ−1Γ0 + Γ1 + ϵ Γ2 + ϵ2 Γ3

)
(1.33)

then at each order we obtain

ϵ−1 : Γ̄0 = Γ0 (1.34)

ϵ0 Γ̄1 = Γ1 −£1Γ0 + dS1 (1.35)

ϵ1 Γ̄2 = Γ2 −£2Γ0 −£1Γ1 +
1

2
£2

1Γ0 + dS2 (1.36)

ϵ2 Γ̄3 = Γ3 −£3Γ0 −£2Γ1 −£1Γ2 +
1

2
£2

1Γ1 +£2£1Γ0 −
1

6
£3

1Γ0 (1.37)

This iterative procedure is started with Γ0 and Γ1 expressed by:

Γ =
(e
ϵ
A+

(
p ||b̂+ p⊥

))
· dx− γ mdt ≡ ϵ−1Γ0 + Γ1 (1.38)

where we assume that c = 1 and mγ =
√
p2 +m2, here p is kinetic particle momen-

tum.

Here the goal is to define the vector fields Gia components that provides the
expression for reduced set of phase space coordinates according to the expression
(1.30).

Further procedure of gyroangle dependence removing is explicitly detailed in [5].

Such a methods are referred as modern gyrokinetic methods. In the Chapter
4, methods developed by Littlejohn [2, 3, 6] and generalized by Cary and Brizard
[5] was implemented during variational derivation of Gyrokinetic Maxwell-Vlasov
equations.

The general structure of the action-variational Lie perturbation method can be
summarized in two principal stages. At the first stage dynamics of a single charged
particle moving in a non-uniform time-independent magnetic field is considered.
Then the fast dynamics (gyroangle dependence)is removed when applying near-
identity phase space transformation (guiding-center) resulting from application of
Lie derivatives. At the end of this procedure guiding-center model for reduced
dynamics is obtained.

At the second stage the reduced system is perturbed by electromagnetic fluctu-
ations. These perturbations reintroduces gyrophase dependence inside it one more
time. The goal of a new phase space transformation (gyrocenter) is to eliminate
second time fast dynamical dependence.

8
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./Lie_transform_picture.eps

Figure 1.2: Lie transform

Ones dynamical reduction is accomplished for a single particle motion, the re-
duced Vlasov equation can be derived by implementing the pull back transformation.
The general idea of such a transformation is presented on the figure below.

Then the Maxwell equations are obtained as a result of calculation of zeroth
(Poisson equation) and first (Ampère equation) velocity moments of reduced Vlasov
distribution function. It is important to note that that this reduction procedure
preserves energy.

In Chapter 3 we use implementation of the Lie transform perturbation method
for the gyrocenter Hamiltonian. Then the reduced Vlasov-Maxwell equations are de-
rived using a variational principle with constrained variations that will be explicitly
introduced.

1.4 Continuous systems Hamiltonian formalism

Here we propose to consider the problem of Maxwell-Vlasov dynamical reduction
from another point of view, by making use of its non-canonical Hamiltonian struc-
ture.

Systems that possess Hamiltonian structure are of special interest in physics.
Originally, systems endowed with a canonical Hamiltonian bracket were recognized.
Later, after finding Hamiltonian structure for such systems as the Korteweg–de Vries
equation, the usefulness of non-canonical variables was realized. More precisely in
[7] the idea to introduce Hamiltonian structure on space of functionals defined over
the dynamical variables, appears.

9
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Functional derivative

Here we will employ the notion of the functional derivative. There are some subtitle
differences between its mathematical and physical definition. Traditionally func-
tional derivative appears as a generalization of the directional derivative. At the
place to take derivative in the direction of a vector, it produces differentiation in the
direction of a function. It describes how the entire functional, F [f(x)] , changes as a
result of a small change in the test function φ(x). The mathematical definition gives
a relationship independently of the choice of the test function φ and its variation it
is defined as: ⟨δF [f ]

δf
, φ
⟩
=

∫
δF [f(x)]

δf(x′)
φ(x′) dx′ ≡ d

dε
F [f + εφ]

∣∣∣
ε=0

(1.39)

The physical definition, that we will use in what follows, make choice of the specific
test function as Dirac δ- function. It means that we are varying the test function
φ(x) = δ(x − y) only about some neighborhood of y. Consequently, there is no
variation of φ(x) outside of this neighborhood.

δF [f(x)]

δf(y)
= lim

ε→0

F [f(x) + ϵ δ(x− y)]− F [f(x)]
ε

(1.40)

During the calculations it is convenient to use the following expression:

F [f(x) + δ(x− y)]− F [f(x)] =
∫
δF

δf
δ(x− y)dy (1.41)

Then we use (1.40) during the derivation of the Maxwell–Vlasov equations as the
equations of motion for the Hamiltonian system defined by (1.56) and (1.57).

1.4.1 Korteweg–de Vries

Korteweg–de Vries equation is a mathematical model of waves on shallow water
surfaces.

ut = uux + uxxx (1.42)

This equation was at the center of interest for many reasons. First of all it represents
an exactly solvable model, it means that the solutions of such a partial differential
equation can be exactly specified; it possesses solitons solutions; it can be solved
by means of inverse scattering transform. Here we will address our attention to
this model because of its Lagrangian (variational) and Hamiltonian structures. The
variational formulation of the eq. (1.42) is given by introducing the Lagrangian :

L =

∫
dx

[
1

2
u ϕt −

1

6
u3 +

1

2
u2x

]
(1.43)

10
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then by writing the corresponding Euler-Lagrange equations

∂L
∂ϕ

=
∂

∂t

( ∂L
∂ϕt

)
+

∂

∂x

(∂L
∂u

)
(1.44)

and introducing the functional:

F [u] =

∫ 2π

0

f(u, ux)dx =

∫ 2π

0

(
1

6
u3 − 1

2
u2x

)
dx (1.45)

we obtain the eq.(1.42) in the following form:

ut =
∂

∂x

( δ
δu
F [u]

)
(1.46)

The Hamiltonian formulation for the Korteweg–de Vries equation follows from
introduction of the Poisson bracket on the functionals of u:

{G1, G2} =
∫ 2π

0

dx
δG1 [u]

δu

∂

∂x

[
δG2 [u]

δu

]
(1.47)

with Hamiltonian H = F [u]. Finally, we can rewrite (1.42)in its Hamiltonian form
ut = −{H, u}.

Really by applying (1.47) and (1.45) with further integration by parts we obtain

ut =

∫ 2π

0

dx
δF [u]

δu

∂

∂x

δu(x)

δu(x′)
= −

∫ 2π

0

∂

∂x

δF [u]

δu
δ(x − x′)dx, where we have used

that
δu(x)

δu(x′)
= δ(x− x′).

We will see that the example of Korteweg–de Vries system was pioneering in
discovery of Hamiltonian Maxwell-Vlasov structure.

1.4.2 Maxwell-Vlasov

In the case of the Maxwell-Vlasov system, one of the principal difficulties was related
to the necessity to describe field-particle interaction, which involves the coupling
between fields variables and the canonical phase space variables P = mq̇+ eA(q).

The principal ideas that lie behind the discovery of Hamiltonian structure for
Maxwell-Vlasov system can be formulated as follows:

• Use of the infinite dimensional phase space realized as space of the functionals
F (f,E,B) on the gauge-invariant (non-canonical) variables: Electromagnetic
fields E = E(q), B = B(q) and Vlasov distribution function f = f(p,q) with
p-kinetic particle momentum

• Translation of the field-particle coupling from the phase space inside the Hamil-
tonian bracket.

11
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The corresponding non-canonical Hamiltonian structure obtained involving phys-
ical intuition and symplectic geometry methods was presented in [8, 9].

Later the relativistic Hamiltonian formulation of Maxwell-Vlasov equations was
proposed by Bialynicki–Birula in [10]. It uses the Klimontovich (discrete) repre-
sentation of particle distribution function: Such a representation expresses each
distribution function as a sum of contributions from isolated particles. Here ξA(t)
and πA(t) denotes the position and kinetic momentum of the A-th particle and Sα
represents the set of particles of type α.

fα(p,q; t) =
∑
A∈Sα

δ (q− ξA(t)) δ (p− πA(t)) (1.48)

The general idea of this work is to obtain the Maxwell-Vlasov Hamiltonian struc-
ture using elementary Poisson bracket relations for the set of non-canonical phase
space variables, composed of electromagnetic fields (E,B) and (π, ξ), kinetic particle
momentum and position correspondingly. Then we apply the general rule:

{F,G} =
∑
i,j

∂F

∂χi
{χi, χj} ∂G

∂χj
(1.49)

The Poisson bracket for electromagnetic field was proposed by Born and Infeld
(1935)

{Bi(q),Ej(q
′)} = ϵijk ∂kδ(q

′ − q) (1.50)

where ∂k designs k-th component of spatial gradient. The Poisson brackets that in-
troduces coupling between fields and particles uses the expression (1.48) for particle
distribution function:

This coupling elementary Poisson brackets are

{ξiA, π
j
B} = δABδij (1.51)

{πiA, π
j
B} = δABeAϵijkB

k(ξA) (1.52)

{πiA, Ej(q)} = eAδijδ(q− ξA) (1.53)

Further generalization to the continuous case of Vlasov distribution function is re-
alized by replacing the partial derivatives by the functional ones and the sum by an
integral in (1.49).

Another important remark that we should make there is about the physical
constraints that are imposed on the phase space in each of the methods leading
to the Maxwell-Vlasov Hamiltonian formulation. As we have mentioned above, in
such an approach the phase space is infinity dimensional, composed by particle
distribution function that obey Vlasov equation f(p,q), and electromagnetic fields
E(q) and B(q). Two physical constraints, expressed by two of Maxwell’s equations,
are imposed on this phase space:

∇ ·B = 0 (1.54)

∇ · E = e

∫
d 3p f(p,q) (1.55)

12
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Note that such a constraints are preserved by the time evolution of the system. Two
others Maxwell’s equations play the role of dynamical ones. The observables forms
the vector space of “smooth” functionals over the functions f(p,q),E(q),B(q).
Maxwell-Vlasov Poisson bracket preserves this vector space, so that the observables
form a Poisson algebra. In this approach the interaction between the plasma and the
electromagnetic field is introduced entirely through the following Poisson bracket:

{F,G} =
∫ ∫

d 3q d 3p f

[
∂

∂p

δF

δf
· ∂
∂q

δG

δf
− ∂

∂q

δF

δf
· ∂
∂p

δG

δf

]
+

∫
d 3q

[
∇× δF

δB
· δG
δE
− δF

δE
· ∇ × δG

δB

]
+

∫ ∫
d 3q d 3p

∂f

∂p
·
[
δF

δf

δG

δE
− δF

δE

δG

δf

]
−e

∫ ∫
d 3q d 3p f B ·

[
∂

∂p

δF

δf
× ∂

∂p

δG

δf

]
(1.56)

Here fluid approach is used: (p,q) do not undergo time evolution and play the role
of labels permitting to mark degrees of freedom. The first term in this expression
represents particle bracket, the second one-field bracket and the last two terms
introduces the retroaction between fields and particles.

The Hamiltonian is given by the kinetic energy of particles plus the energy of
the electromagnetic fields4:

H [f,E,B] =

∫ ∫
d 3q d 3p f mγ +

∫
d 3q

|E|2 + |B|2

2
(1.57)

where mγ =
√
p2 +m2 and |B|2 ≡ B ·B is the field norm.

Equations of motion

We start by obtaining the expression for the Liouville operator which is derived
from the Hamiltonian (1.57) and the Poisson bracket above (1.56). By taking into
account the expressions for functional derivatives:

δH

δf
= mγ,

δH

δE
= E,

δH

δB
= B (1.58)

4Here we suppose that c = 1
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and by integrating by parts, we have

{H} = −
∫ ∫

d 3q d 3p
(
v · ∇f + e (E+ v ×B) · ∂f

∂p

) δ
δf

(1.59)

+

∫ ∫
d 3q

(
∇×B · δ

δE
−∇× E · δ

δB

)
(1.60)

+

∫ ∫
d 3q d 3p mγ

∂f

∂p
· δ
δE

(1.61)

Then the Maxwell-Vlasov equations are:

Ė = {H,E} = ∇×B−
∫
d 3p v f (1.62)

Ḃ = {H,B} = −∇× E (1.63)

ḟ = {H, f} = −v ∂qf(p,q)− e (E+ v ×B) ∂pf(p,q) (1.64)

1.5 Hamiltonian perturbation theory

The general idea of our approach is to treat coupling between fields and particles as a
perturbation of some uncoupled motion. Let us consider the system with simplified
Hamiltonian:

H0 [f,E,B] =

∫ ∫
d 3q d 3p f mγ +

∫
d 3q

|B|2

2
(1.65)

The dynamics of this system possesses one remarkable property: the magnetic field
does not evaluate under the flow generated by the Hamiltonian H0.

By substituting the expression for the Hamiltonian H0 in the Maxwell-Vlasov
Poisson bracket we obtain:

Ḃ = {H0,B} = 0 (1.66)

Ė = {H0,E} = ∇×B− e
∫
d 3p v f(p,q) (1.67)

ḟ = {H0, f} = −v ·
∂f(p,q)

∂q
− e (v ×B) · ∂f(p,q)

∂p
(1.68)

where v ≡ p/mγ denotes the relativistic particle velocity.
Another important property of such a system is that the electric field dynamics

is now uncoupled from the particle dynamics. Then now field and particles can be
considered separately.

Using Euler-Lagrangian duality we can project particle dynamics on the 6 di-
mensional phase space (p,q). The key property that we will use during realization
of such a projection is the fact that magnetic field B is constant under the simplified
Hamiltonian flow.

14



1.5. HAMILTONIAN PERTURBATION THEORY

Euler-Lagrange duality

In this thesis we adopt both Eulerian and Lagrangian viewpoints, summarized in
Table 1.1.

Euler Lagrange

Observables

F [f ] f (p, q)

Phase space

E (q) ,B (q) , f (p,q) (p,q)

Poisson bracket

Maxwell-Vlasov Gyroscopic

Kinetic energy∫
d 3q f(p,q)mγ mγ

Equation of motion

ḟ = − (v · ∂q + e (v ×B) · ∂p) ṗ = e v ×B, q̇ = v

Table 1.1: Summary of the Eulerian and Lagrangian descriptions

Discussion

The next step in our perturbative construction is to consider dynamical reduction
for particle motion in a non-uniform external magnetic field B. This problem is
considered in Chapter 4 of this dissertation. The next step of such a reduction
procedure will consist of perturbative field-particle coupling reintroduction into the
system.
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Overview of the dissertation

The text of this dissertation is organized as follows.
In Chapter 2 Hamiltonian control method is implemented in order to study

barrier formation in E × B drift model. Chapter 3 deals with investigation of
momentum transport through derivation of the momentum conservation law for
Maxwell-Vlasov equations.

Chapter 4 explores the fundamental geometrical problems related to the dynam-
ical reduction of charged particle motion in an non-uniform magnetic field. This
work represents an important step in the construction of the alternative method for
dynamical reduction of the Maxwell-Vlasov system.
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Chapter 2

Barriers for the reduction of
transport due to the E ×B drift in
magnetized plasmas

Abstract.

We consider a 11
2
degrees of freedom Hamiltonian dynamical sys-

tem, which models the chaotic dynamics of charged test-particles in a
turbulent electric field, across the confining magnetic field in controlled
thermonuclear fusion devices. The external electric field E = −∇V is
modeled by a phenomenological potential V and the magnetic field B
is considered uniform. It is shown that, by introducing a small addi-
tive control term to the external electric field, it is possible to create a
transport barrier for this dynamical system. The robustness of this con-
trol method is also investigated. This theoretical study indicates that
alternative transport barriers can be triggered without requiring a con-
trol action on the device scale as in present Internal Transport Barriers
(ITB).

2.1 Introduction

It has long been recognized that the confinement properties of high performance
plasmas with magnetic confinement are governed by electromagnetic turbulence that
develops in microscales [11]. In that framework various scenarios are explored to
lower the turbulent transport and therefore improve the overall performance of a
given device. The aim of such a research activity is two-fold.

First, an improvement with respect to the basic turbulent scenario, the so-called
L-mode (L for low) allows one to reduce the reactor size to achieve a given fusion

17
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power and to improve the economical attractiveness of fusion energy production.
This line of thought has been privileged for ITER that considers the H-mode (H for
high) to achieve an energy amplification factor of 10 in its reference scenario [12].
The H-mode scenario is based on a local reduction of the turbulent transport in a
narrow regime in the vicinity of the outermoster confinement surface [13].

Second, in the so-called advanced tokamak scenarios, Internal Transport Barriers
are considered [12]. These barriers are characterised by a local reduction of turbulent
transport with two important consequences, first an improvement of the core fusion
performance, second the generation of bootstrap current that provides a means to
generate the required plasma current in regime with strong gradients [14]. The
research on ITB then appears to be important in the quest of steady state operation
of fusion reactors, an issue that also has important consequences for the operation
of fusion reactors.

The H-mode appears as a spontaneous bifurcation of turbulent transport prop-
erties in the edge plasma [13], the ITB scenarios are more difficult to generate in a
controlled fashion [15]. Indeed, they appear to be based on macroscopic modifica-
tions of the confinement properties that are both difficult to drive and difficult to
control in order to optimise the performance.

In this paper, we propose an alternative approach to transport barriers based on
a macroscopic control of the E × B turbulence. Our theoretical study is based on
a localized hamiltonian control method that is well suited for E × B transport. In
a previous approach [16], a more global scheme was proposed with a reduction of
turbulent transport at each point of the phase space. In the present work, we derive
an exact expression to govern a local control at a chosen position in phase space. In
principle, such an approach allows one to generate the required transport barriers
in the regions of interest without enforcing large modification of the confinement
properties to achieve an ITB formation [15]. Although the application of such a
precise control scheme remains to be assessed, our approach shows that local control
transport barriers can be generated without requiring macroscopic changes of the
plasma properties to trigger such barriers. The scope of the present work is the
theoretical demonstration of the control scheme and consequently the possibility of
generating transport barriers based on more specific control schemes than envisaged
in present advanced scenarios.

In Section 2.2, we give the general description of our model and the physical
motivations for our investigation. In Section 2.3, we explain the general method
of localized control for Hamiltonian systems and we estimate the size of the control
term. Section 2.4 is devoted to the numerical investigations of the control term,
and we discuss its robustness and its energy cost. The last section 2.5 is devoted to
conclusions and discussion.
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2.2 Physical motivations and the E ×B model

2.2.1 Physical motivations

Fusion plasma are sophisticated systems that combine the intrinsic complexity of
neutral fluid turbulence and the self-consistent response of charged species, both elec-
trons and ions, to magnetic fields. Regarding magnetic confinement in a tokamak, a
large external magnetic field and a first order induced magnetic field are organised
to generate the so-called magnetic equilibrium of nested toroidal magnetic surfaces
[17]. On the latter, the plasma can be sustained close to a local thermodynamical
equilibrium. In order to analyse turbulent transport we consider plasma perturba-
tions of this class of solutions with no evolution of the magnetic equilibrium, thus
excluding MHD instabilities. Such perturbations self-consistently generate electro-
magnetic perturbations that feedback on the plasma evolution. Following present
experimental evidence, we shall assume here that magnetic fluctuations have a neg-
ligible impact on turbulent transport [18]. We will thus concentrate on electrostatic
perturbations that correspond to the vanishing β limit, where β = p/(B2/2µ0)
is the ratio of the plasma pressure p to the magnetic pressure. The appropriate
framework for this turbulence is the Vlasov equation in the gyrokinetic approxi-
mation associated with the Maxwell-Gauss equation that relates the electric field
to the charge density. When considering the Ion Temperature Gradient instability
[19] that appears to dominate the ion heat transport, one can further assume the
electron response to be adiabatic so that the plasma response is governed by the
gyrokinetic Vlasov equation for the ion species.

Let us now consider the linear response of such a distribution function f̂ , to a

given electrostatic perturbation, typically of the form Te ϕ̂ e
−iωt+ik⃗r⃗, (where f̂ and

ϕ̂ are Fourier amplitudes of distribution function and electric potential). To leading
orders one then finds that the plasma response exhibits a resonance:

f̂ =

(
ω + ω∗

ω − k|| v||
− 1

)
ϕ̂feq (2.1)

Here feq is the reference distribution function, locally Maxwellian with respect to
v|| and ω

∗ is the diamagnetic frequency that contains the density and temperature
gradient that drive the ITG instability [19]. Te is the electronic temperature. This
simplified plasma response to the electrostatic perturbation allows one to illustrate
the turbulent control that is considered to trigger off transport barriers in present
tokamak experiments.

Let us examine the resonance ω − k|| v|| = 0 where k|| = (n −m/q)/R with R
being the major radius, q the safety factor that characterises the specific magnetic
equilibrium and m and n the wave numbers of the perturbation that yield the wave
vectors of the perturbation in the two periodic directions of the tokamak equilibrium.
When the turbulent frequency ω is small with respect to vth/(qR), (where vth =
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√
kBT/m is the thermal velocity), the resonance occurs for vanishing values of k||,

and as a consequence at given radial location due to the radial dependence of the
safety factor. The resonant effect is sketched on figure 2.1. In a quasilinear approach,

./Fig0.eps

Figure 2.1: Resonances for q = m
n and q = m+1

n for two different widths, nar-
row resonances empedding large scale turbulent transport and broad resonances
favouring strong turbulent transport.

the response to the perturbations will lead to large scale turbulent transport when
the width of the resonance δm is comparable to the distance between the resonances
∆m,m+1 leading to an overlap criterion that is comparable to the well known Chirikov
criterion for chaotic transport σm = (δm + δm+1)/∆m,m+1 with σ > 1 leading to
turbulent transport across the magnetic surfaces and σ < 1 localising the turbulent
transport to narrow radial regions in the vicinity of the resonant magnetic surfaces.

The present control schemes are two-fold. First, one can consider a large scale
radial electric field that governs a Doppler shift of the mode frequency ω. As such
the Doppler shift ω − ωE has no effect. However a shear of the Doppler frequency
ωE, ωE = ω̄E + δrω′

E will induce a shearing effect of the turbulent eddies and thus
control the radial extent of the mode δm, so that one can locally achieve σ < 1 in
order to drive a transport barrier.

Second, one can modify the magnetic equilibrium so that the distance between
the resonant surfaces is strongly increased in particular in a magnetic configura-
tion with weak magnetic shear (dq/dr ≈ 0) so that ∆m,m+1 is strongly increased,
∆m,m+1 ≫ δm, also leading to σ < 1.

Both control schemes for the generation of ITBs can be interpreted using the
situation sketched on figure 2.1. The initial situation with large scale radial transport
across the magnetic surfaces (so called L-mode) is indicated by the dashed lines and
is governed by significant overlap between the resonances. The ITB control scheme
aims at either reducing the width of the islands or increasing the distance between
the resonances yielding a situation sketeched by the plain line in figure 2.1 where
the overlap is too small and a region with vanishing turbulent transport, the ITB,
develops between the resonances.

Experimental strategies in advanced scenarios comprising Internal Transport
Barriers are based on means to enforce these two control schemes. In both cases
they aim at modifying macroscopically the discharge conditions to fulfill locally the
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σ < 1 criterion. It thus appears interesting to devise a control scheme based on a
less intrusive action that would allow one to modify the chaotic transport locally
by the choice of an appropriate electrostatic perturbation hence leading to a local
transport barrier.

2.2.2 The E ×B model

For fusion plasmas, the magnetic field B is slowly variable with respect to the
inverse of the Larmor radius ρL i.e: ρL|∇ lnB| ≪ 1. This fact allows the separation
of the motion of a charged test particle into a slow motion (parallel to the lines
of the magnetic field) and a fast motion (Larmor rotation). This fast motion is
named gyromotion, around some gyrocenter. In first approximation the averaging
of the gyromotion over the gyroangle gives the approximate trajectory of the charged
particle. This averaging is the guiding-center approximation.

In this approximation, the equations of motion of a charged test particle in the
presence of a strong uniform magnetic field B = Bẑ, (where ẑ is the unit vector in
the z direction) and of an external time-dependent electric field E = −∇V1 are:

d

dT

 X

Y

 =
cE×B

B2
=

c

B
E(X, Y, T )× ẑ

=
c

B

 −∂Y V1(X,Y, T )
∂XV1(X, Y, T )

 (2.2)

where V1 is the electric potential. The spatial coordinates X and Y play the role of
canonically-conjugate variables and the electric potential V1(X, Y, T ) is the Hamil-
tonian for the problem. Now the problem is placed into a parallelepipedic box with
dimensions L× ℓ× (2π/ω), where L and ℓ are some characteristic lengths and ω is
a characteristic frequency of our problem, X is locally a radial coordinate and Y is
a poloidal coordinate. A phenomenological model [20] is chosen for the potential:

V1(X,Y, T ) =
N∑

n,m=1

V0 cosχn,m
(n2 +m2)3/2

(2.3)

where V0 is some amplitude of the potential,

χn,m ≡
2π

L
nX +

2π

ℓ
mY + ϕn,m − ωT

ω is constant, for simplifying the numerical simulations and ϕn,m are some random
phases (uniformly distributed).

We introduce the dimensionless variables

(x, y, t) ≡ (2πX/L, 2πY/ℓ, ωT ) (2.4)
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So the equations of motion (2.2) in these variables are:

d

dt

(
x
y

)
=

(
−∂yV (x, y, t)
∂xV (x, y, t)

)
(2.5)

where V = ε(V1/V0) is a dimensionless electric potential given by

V (x, y, t) = ε

N∑
n,m=1

cos (nx+my + ϕn,m − t)
(n2 +m2)3/2

(2.6)

Here

ε = 4π2(cV0/B)/(Lℓω) (2.7)

is the small dimensionless parameter of our problem. We perturb the model potential
(2.6) in order to build a transport barrier. The system modeled by Eqs.(2.5) is a 11

2

degrees of freedom system with a chaotic dynamics [16, 20]. The poloidal section
of our modeled tokamak is a Poincaré section for this problem and the stroboscopic
period will be chosen to be 2π, in term of the dimensionless variable t.

The particular choice (2.3) or (2.6) is not crucial and can be generalized. Gen-
erally, ω can be chosen depending on n,m. This would make the numerical compu-
tations more involved. In the following section, V is chosen completely arbitrary.

2.3 Localized control theory of hamiltonian sys-

tems

2.3.1 The control term

In this section we show how to construct a transport barrier for any electric po-
tential V . The electric potential V (x, y, t) yields a non-autonomous Hamiltonian.
We expand the two-dimensional phase space by including the canonically-conjugate
variables (w,τ),

H = H(x, τ ; y, w) = V (x, y, τ)− w (2.8)

The Hamiltonian of our system thus becomes autonomous. Here τ is a new variable
whose dynamics is trivial: τ̇ = 1 i.e. τ = τ0 + t and w is the variable (momentum)
canonically conjugate to τ . The Poisson bracket operator in the expanded phase
space for any U = U(x, τ ; y, w) is given by the expression:

{U} ≡ (∂xU)∂y − (∂yU)∂x + (∂τU)∂w − (∂wU)∂τ . (2.9)

Hence {U} is a linear (differential) operator acting on functions of (x, τ ; y, w). We
call H0 = w the unperturbed Hamiltonian and V (x, y, τ) its perturbation. We now
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implement a perturbation theory for H0. The operator of the Poisson bracket (4.6)
for the Hamiltonian H is

{H} = (∂xV )∂y − (∂yV )∂x + ∂τ + (∂τV )∂w (2.10)

So the equations of motion in the expanded phase space are:

ẏ = {H}y = ∂xV (x, y, τ) (2.11)

ẋ = {H}x = − ∂yV (x, y, τ) (2.12)

ẇ = {H}w = ∂τV (x, y, τ) (2.13)

τ̇ = {H}τ = 1 (2.14)

We want to construct a small modification F of the potential V such that

H̃ ≡ V (x, y, τ) + F (x, y, τ)− w ≡ Ṽ (x, y, τ)− w (2.15)

has a barrier at some chosen position x = x0. So the control term

F = Ṽ (x, y, τ)− V (x, y, τ) (2.16)

must be much smaller than the perturbation (e.g., quadratic in V ). One of the
possibilities is:

Ṽ ≡ V (x+ ∂yf(y, τ), y, τ) (2.17)

where

f(y, τ) ≡
∫ τ

0

V (x0, y, t)dt

Indeed we have the following theorem:

Theorem 1 The Hamiltonian H̃ has a trajectory x = x0 + ∂yf(y, τ) acting as a
barrier in phase space.

Proof
Let the Hamiltonian Ĥ ≡ exp({f})H̃ be canonically related to H̃. (Indeed the

exponential of any Poisson bracket is a canonical transformation.) We show that Ĥ
has a simple barrier at x = x0. We start with the computation of the bracket (4.6)
for the function f . Since f = f(y, τ), the expression for this bracket contains only
two terms,

{f} ≡ −f ′∂x + ḟ∂w (2.18)

where
f ′ ≡ ∂yf and ḟ ≡ ∂τf (2.19)

which commute:
[f ′∂x, ḟ∂w] = 0 (2.20)
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Now let us compute the coordinate transformation generated by exp({f}):

exp({f}) ≡ exp(−f ′∂x) exp(ḟ∂w), (2.21)

where we used (2.20) to separate the two exponentials.
Using the fact that exp(b∂x) is the translation operator of the variable x by the

quantity b: [exp(b∂x)W ](x) = W (x+ b), we obtain

Ĥ = e{f}H̃ ≡ e{f}Ṽ (x, y, τ) − e{f}w

= Ṽ (x− f ′, y, τ) −
(
w + ḟ

)
= V (x+ f ′ − f ′, y, τ)− V (x0, y, τ)− w
= V (x, y, τ)− V (x0, y, τ)− w (2.22)

This Hamiltonian has a simple trajectory x = x0, w = w0, i.e. any initial data
x = x0, y = y0, w = w0, τ = τ0 evolves under the flow of Ĥ into x = x0, y = yt, w =
w0, τ = τ0 + t for some evolution yt that may be complicated, but not useful for our
problem. Hamilton’s equations for x and w are now

ẋ = {Ĥ}x = ∂y [V (x0, y, τ)− V (x, y, τ)] (2.23)

ẇ = {Ĥ}w = ∂τ [V (x0, y, τ)− V (x, y, τ)] (2.24)

so that for x = x0, we find ẋ = 0 = ẇ. Then the union of all points (x, y, w, τ) at
x = x0 w = w0:

B0 =
∪
y,τ,w0


x0
y
w0

τ

 (2.25)

is a 3-dimensional surface T2 × R, (T ≡ R/2πZ) preserved by the flow of Ĥ in the
4-dimensional phase space. If an initial condition starts on B0, its evolution under
the flow exp(t{Ĥ}) will remain on B0.

So we can say that B0 act as a barrier for the Hamiltonian Ĥ: the initial condi-
tions starting inside B0 can’t evolve outside B0 and vice-versa.

To obtain the expression for a barrier B for H̃ we deform the barrier for Ĥ via
the transformation exp({f}). As

H̃ = e−{f}Ĥ (2.26)

and exp({f}) is a canonical transformation, we have

{H̃} = {e−{f}Ĥ} = e−{f}{Ĥ}e{f} (2.27)

Now let us calculate the flow of H̃:

et{H̃} = et(e
−{f}{Ĥ}e{f}) = e−{f}et{Ĥ}e{f} (2.28)
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Indeed:

et(e
−{f}{Ĥ}e{f}) =

∞∑
n=0

tn(e−{f}{Ĥ}e{f})n

n!
(2.29)

For instance when n = 2:

t2(e−{f}{Ĥ}e{f})2 = t2e−{f}{Ĥ}e{f}e−{f}{Ĥ}e{f}

= t2e−{f}{Ĥ}
2
e{f} (2.30)

and so

et{H̃} =
∞∑
n=0

tne−{f}{Ĥ}ne{f}

n!
= e−{f}et{Ĥ}e{f} (2.31)

As we have seen before:

e{f}


x
y
w
τ

 =


x− f ′

y

w − ḟ
τ


and

et{Ĥ}


x0
y
w0

τ

 =


x0
yt
w0

τ + t

 (2.32)

Multiplying (2.28) on the right by e−{f} we obtain:

et{H̃}e−{f} = e−{f}et{Ĥ}

et{H̃}e−{f}


x0
y
w0

τ

 = et{H̃}


x0 + f ′(y, τ)

y

w0 + ḟ(y, τ)
τ

 (2.33)

and

e−{f}et{Ĥ}


x0
y
w0

τ

 = e−{f}


x0
yt
w0

τ + t



=


x0 + f ′(yt, τ + t)

yt
w0 + ḟ(yt, τ + t)

τ + t

 (2.34)
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So the flow exp(t{H̃}) preserves the set

B =
∪
y,τ,w0


x0 + f ′(y, τ)

y

w0 + ḟ(y, τ)
τ

 (2.35)

B is a 3 dimensional invariant surface, topologically equivalent to T2×R into the 4
dimensional phase space. B separates the phase space into 2 parts, and is a barrier
between its interior and its exterior. B is given by the deformation exp({f}) of the
simple barrier B0.

The section of this barrier on the sub space (x, y, t) is topologically equivalent
to a torus T2.

This method of control has been successfully applied to a real machine: a trav-
eling wave tube to reduce its chaos [21].

2.3.2 Properties of the control term

In this Section, we estimate the size and the regularity of the control term (2.16).

Theorem 2 For the phenomenological potential (2.6) the control term (2.16) veri-
fies:

∥F∥ 1
N
, 1
N
≤ ε2N2 e

3

4π
(2.36)

if ε is small enough, i.e. if |ε| ≤
√
π

2Ne3/2
where N is the number of modes in the sum

(2.6).

Proof The proof of this estimation is given in [22] and is based on rewriting

F = V (x+ f ′)− V (x) =

∫ 1

0

ds ∂xV (x+ sf ′, y, τ)f ′(y, τ)

= O(V 2) (2.37)

and then use Cauchy’s Theorem.

2.4 Numerical investigations for the control term

In this Section, we present the results of our numerical investigations for the control
term F . The theoretical estimate presented in the previous section shows that its
size is quadratic in the perturbation. Figure 2.2 shows the contour plot of V (x, y, t)
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and Ṽ (x, y, t) (Ṽ = V +F ) at some fixed time t, for example t = π
4
. One can see that

the contours of both potentials are very similar. But the dynamics of the systems
with V and Ṽ are very different.

For all numerical simulations we choose the number of modes N = 25 in (2.6).
In all plots the abscissa is x and the ordinate is y.

./Fig1.eps

Figure 2.2: Uncontrolled and controlled potential for ε = 0.6, t = π
4 , x0 = 2.

2.4.1 Phase portrait for the exact control term

To explore the effectiveness of the barrier, we plot (in Fig. 2.3) the phase portraits
for the original system (without control term) and for the system with the exact
control term F . We choose the same initial conditions. The time of integration is
T = 2000, the number of trajectories: Ntraj = 200 (number of initial conditions, all
taken in the strip −1 − π ≤ x ≤ −π; 0 ≤ y ≤ 2π) and the parameter ε = 0.9. We
choose the barrier at position x0 = 2. To get a Poincaré section, we plot the poloidal
section when t ∈ 2πZ. Then we compare the number of trajectories passing through
the barrier during this time of integration for each system. We eliminate the points
after the crossing. For the uncontrolled system 68% of the initial conditions cross
the barrier at x0 = 2 and for the controlled system only 1% of the trajectories escape
from the zone of confinement. The theory announces the existence of an exact barrier
for the controlled system: these escaped trajectories (1%) are due to numerical errors
in the integration. One can observe that the barrier for the controlled system is a
straight line. In fact this barrier moves, its expression depends on time:

x = x0 + f ′(y, t) (2.38)

But when t ∈ 2πZ its oscillation around x = x0 vanishes: f ′(y, 2kπ) =∫ 2kπ

0
∂yV (x0, y, t)dt = 0. This is what we see on this phase portrait. In fact we

create 2 barriers at position x = x0, and x = x0− 2π (and also at x0+2nπ) because
of the periodicity of the problem. We note that the mixing increases inside the two
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./Fig2.eps

Figure 2.3: Phase portraits without control term and with the exact control
term, for ε = 0.9, x0 = 2, Ntraj = 200.

barriers. The same phenomenon was also observed in the control of fluids [23], where
the same method was applied.

2.4.2 Robustness of the barrier

In a real Tokamak, it is impossible to know an analytical expression for electric
potential V . So we can’t implement the exact expression for F . Hence we need
to test the robustness of the barrier by truncating the Fourier decomposition (for
instance in time) of the controlled potential.

Fourier decomposition

Theorem 3 The potential (2.17) can be decomposed as Ṽ =
∑

k∈Z Ṽk, where

Ṽk = ε
N∑

n,m=1

Jk(nρ)
(n2 +m2)3/2

cos (η + kΘ+ (k − 1)t) (2.39)

with

ηn,m(y) = nx+my + ϕn,m + nεFc (2.40)

Fc(y) =
N∑

n,m=1

m cos(Kn,m,y)

(n2 +m2)3/2
(2.41)

Fs(y) =
N∑

n,m=1

m sin(Kn,m,y)

(n2 +m2)3/2
(2.42)

Km,n,y = nx0 +my + ϕn,m (2.43)
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and Jk is the Bessel’s function

Jk(nρ) =
1

π

∫ π

0

cos (ku− nρ sinu) du (2.44)

Proof We rewrite explicitly the expression (2.17) for our phenomenological con-

trolled potential Ṽ (x, y, t):

Ṽ (x, y, t) =ε
N∑

n,m=1

cos
(
n(x+ f ′(y, t)) +my + ϕn,m − t

)
(n2 +m2)3/2

(2.45)

with

f ′(y, t) = ε
N∑

n,m=1

m
(
cosKn,m,y − cos(Kn,m,y − t)

)
(n2 +m2)3/2

(2.46)

With the definition (2.41) and (2.42) we have:

f ′(y, t) = ε(Fc(y) (1− cos t)− Fs(y) sin t) (2.47)

Let us introduce
ρ = ε(F 2

c + F 2
s )

1/2 (2.48)

and Θ by
ρ sinΘ ≡ −εFc(y) ρ cosΘ ≡ −εFs(y) (2.49)

so that

Ṽ = ε
N∑

n,m=1

cos (η − t+ nρ sin(Θ + t))

(n2 +m2)3/2
(2.50)

Using Bessel’s functions properties [24]

cos(ρ sinΘ) =
∑
k∈Z

Jk(ρ) cos kΘ (2.51)

sin(ρ sinΘ) =
∑
k∈Z

Jk(ρ) sin kΘ (2.52)

we get

cos (η − t+ nρ sin(Θ + t)) =
∑
k∈Z

Jk(nρ) cos (ξ) (2.53)

where ξ = η + kΘ + (k − 1)t, and we finally obtain (2.39). The theorem is proved.
�

During numerical simulations we truncate the controlled potential by keeping
only its first 3 temporal Fourier harmonics:

Ṽtr=ε
N∑

n,m=1

A0 + A1 cos t+B1 sin t+ A2 cos 2t+B2 sin 2t

(n2 +m2)3/2
(2.54)
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A0 = J0(nρ) cos(η +Θ)

A1 = J0(nρ) cos η + J2(nρ) cos(η + 2Θ)

B1 = J0(nρ) sin η − J2(nρ) sin(η + 2Θ)

A2 = J3(nρ) cos(η + 3Θ)− J1(nρ) cos(η −Θ)

B2 = −J3(nρ) sin(η + 3Θ)− J1(nρ) sin(η −Θ)

Figure 2.4 compares the two contour plots for the exact control term and the

./Fig3.eps

Figure 2.4: Exact Control Term and Truncated Control Term with ε = 0.6, t =
π
4 .

truncated control term (2.54). Figure2.5 compares the two phase portraits for the
system without control term and for the system with the above truncated control
term (2.54). The computation of Ṽtr on some grid has been performed in Matlab and
the numerical integration of the trajectories was done in C. One can see a barrier

./Fig4.eps

Figure 2.5: ε = 0.3, T = 2000, Ntraj = 50.

for the system with the truncated control term. As for the system with the exact
control term we create two barriers at positions x = x0 and x = x0 − 2π and the
phenomenon of increasing the mixing inside the barriers persist.
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Table 2.1: Squared ratios of the amplitudes of the control term and the un-
controlled electric potential ζex, ζtr; ratios of electric energy of the control term
and the uncontrolled electric potential ηex, ηtr; for the system with exact and
truncated control term.

ε ζex ζtr ηex ηtr
0.3 0.1105 0.1193 0.6297 0.1431
0.4 0.1466 0.1583 0.7145 0.2393
0.5 0.1822 0.1967 0.8161 0.3550
0.6 0.2345 0.2137 0.9336 0.4883
0.7 0.2518 0.2716 1.0657 0.6375
0.8 0.2858 0.3038 1.2119 0.8014
0.9 0.3191 0.3439 1.3722 0.9796
1.5 0.5052 0.5427 2.6247 2.3037

2.4.3 Energetical cost

As we have seen before, the introduction of the control term into the system can
reduce and even stop the diffusion of the particles through the barrier. Now we
estimate the energy cost of the control term F and the truncated control term
Ftr ≡ Ṽtr − V .

Definition 1 The average of any functionW = W (x, y, τ) is defined by the formula:

< |W | >=
∫ 2π

0

dx

∫ 2π

0

dy

∫ 2π

0

dt |W (x, y, t)| (2.55)

Now we calculate the ratio between the absolute value of the truncated control
(electric potential) or the exact control and the uncontrolled electric potential:

ζex =< |F |2 > / < |V |2 >

and

ζtr =< |Ftr|2 > / < |V |2 >

We also compute the ratio between the energy of the control electric field and the
energy of the uncontrolled system in their exact and truncated version

ηex =< |∇F |2 > / < |∇V |2 >

and

ηtr =< |∇Ftr|2 > / < |∇V |2 >

for different values of ε. Results are shown in Table 2.1.
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Table 2.2: Number of escaping particles without control term Nwithout, and for
the system with the exact control term Nexact and the truncated control term
Ntr.

ε Nwithout Nexact Ntr
0.4 22% 0% 6%
0.5 26% 0% 18%
0.9 68% 1% 44%
1.5 72% 1% 54%

Table 2.3: Difference ∆N of the number of particles passing through the barrier
and difference of relative electric energy ∆η for the controlled and uncontrolled
system.

ε ∆N ∆η
0.3 8% 0.49
0.4 16% 0.47
0.5 8% 0.46
0.9 24% 0.39
1.5 18% 0.32

One can see that the truncated control term needs a smaller energy than the exact
control term. In Table 2.2, we present the number of particles passing through the
barrier in function of ε, after the same integration time.

Let ∆N = Nwithout − Ntr be the difference between the number of particles
passing through the barrier for the system without control and with the truncated
control and ∆η = ηex − ηtr the difference between the relative electric energy for
the system with the exact control term and the system with the truncated control
term. In Table 2.3 we present ∆N and ∆η for differents values of ε.

For ε below 0.2 the non controlled system is rather regular, there is no particles
stream through the barrier, so we have no need to introduce the control electric
field. For ε between 0.3 and 0.9 the truncated control field is quite efficient, it
allows to drop the chaotic transport through the barrier by a factor 8% to 24%
with respect to the uncontrolled system and it requires less energy than the exact
control field. For ε greater than 1 the truncated control field is less efficient than
the exact one, because the dynamics of the system is very chaotic. For example
when ε = 1.5, there are 72% of the particles crossing the barrier for the uncontrolled
system and 54% for the system with the truncated control field. At the same time
the energetical cost of the truncated control field is above 70% of the exact one,
which allows to stop the transport through the barrier. So for ε ≥ 1 we need to use
the exact control field rather than the truncated one.
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2.5 Discussion and Conclusion

In this article, we studied a possible improvement of the confinement properties of
a magnetized fusion plasma. A transport barrier conception method is proposed
as an alternative to presently achieved barriers such as the H-mode and the ITB
scenarios. One can note, that our method differs from an ITB construction. Indeed,
in order to build-up a transport barrier, we do not require a hard modification of
the system, such as a change in the q-profile. Rather, we propose a weak change of
the system properties that allow a barrier to develop. However, our control scheme
requires some knowledge and information relative to the turbulence at work, these
having weak or no impact on the ITB scenarios.

2.5.1 Main results

First of all we have proved that the local control theory gives the possibility to
construct a transport barrier at any chosen position x = x0 for any electric potential
V (x, y, t). Indeed, the proof given in section 2.3 does not depend on the model for the
electric potential V . In Subsection 2.3.1, we give a rigorous estimate for the norm of
the control term F , for some phenomenological model of the electric potential. The
introduction of the exact control term into the system inhibits the particle transport
through the barrier for any ε while the implementation of a truncated control term
reduces the particle transport significantly for ε ∈ (0.3, 1.0).

2.5.2 Discussion, open questions

Comparison with the global control method

Let us now compare our approach with the global control method [16] which aims
at globally reducing the transport in every point of the phase space. Our approach
aims at implementing a transport barrier. However, one also observes a global
modification of the dynamics since the mixing properties seem to increase away
from the barriers.

Furthermore, in many cases, only the first few terms of the expansion of the
global control term [16] can be computed explicitly. Here we have an explicit exact
expression for the local control term.

Effectiveness and properties of the control procedure

In subsection 2.2.2, we have introduced the dimensionless variables (2.4) and defined
a dimensionless control parameter ε ≡ 4π2(cV0/B)/(Lℓω). In the simplifying case
where l = L = 2π/k is the characteristic length of our problem, we have ε =
ck2V0/(ωB). Let us consider a symmetric vortex, hence with characteristic scale
1/k. Let us now consider the motion of a particle governed by such a vortex. The
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order of magnitude of the drift velocity is therefore vE = kcV0/B and the associated
characteristic time τETT , τETT ≡ 1/(kvE), is the eddy turn over time. Let ω be the
characteristic evolution frquency of the turbulent eddies, here of the electric field,
then the Kubo number K is K = 1/ωτETT . This parameter is the dimensionless
control parameter of this class of problems, and we remark that in our case K = ε.
It is also important to remark that the parameter K also characterises the diffusion
properties of our system. Indeed, let δ be a step size of our particle in a random
walk process and let τ be the associated characteristic time, the diffusion coefficient
is then D = δ2/τ . Since one can relate the characteristic step and time by the
velocity, δ = vEτ , on also finds:

D =
(vEτ)

2

τ
=
k2c2V 2

0

B2
τ =

1

k2τ 2ETT
τ =

K2

k2
ω2τ (2.56)

We also introduce the reference diffusion coefficient D̄ = k−2ω, so that:

D/D̄ ≡ K2ωτ (2.57)

They are two asymptotic regimes for our system. The first one, is the regime of
weak turbulence, characterised by ωτETT ≫ 1 and therefore K ≪ 1. In this regime,
the electric potential evolution is fast, the particle trajectories only follow the eddy
geometry on distances much smaller than the eddy size. The steps δ are small
and the characteristic time τ of the random walk such that ωτ ≈ 1. The particle
diffusion (2.57) is then such that:

D/D̄ ≈ K2 for ωτETT ≫ 1 (2.58)

The second asymptotic regime is the regime of strong turbulence, with ωτETT ≪ 1
and K ≫ 1. Particles then explore the eddies before decorrelation and the charac-
teristic time of the random step is typically τ ≈ τETT and:

D/D̄ ≈ K for ωτETT ≪ 1 (2.59)

The first regime corresponds to the weak turbulence limit with weak Kubo number
and particle diffusion and the second to strong turbulence and large Kubo number
and particle diffusion. The control method developed in this article does not depend
on K ≡ ε. There is always a possibility to construct an exact transport barrier.
However for the numerical simulations, we have remarked, that for small ε one can
observe a stable barrier without escaping particles, and for ε close or more than 1
there is some leaking of particles across the barrier. The barrier is more difficult
to enforce. Also when considering the truncated control term, one finds that the
control term is ineffective in the strong turbulence limit.

Let us now consider the implementation of our method to turbulent plasmas
where the turbulent electric field is consistent with the particle transport. The the-
oretical proof of an hamiltonian control concept is developped provided the system
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properties at work are completely known. For example the analytic expression for
the electric potential. This is impossible in a real system, since the measurements
take place on a finite spatio-temporal grid. This has motivated our investigation of
the truncated control term by reducing the actually used information on the system.
As pointed out previously, one finds that this approach is ineffective for strong tur-
bulence. Another issue is the evolution of the turbulent electric field following the
appearance of a transport barrier. This issue would deserve a specific analysis and
very likely updating the control term on a trasnport characteristic time scale. An
alternative to such a process would be to use a retroactive Hamiltonian approach (a
classical field theory) [10] and to develop the control theory in that framework.
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Chapter 3

Maxwell-Vlasov conservation law

3.1 Introduction and physical motivations

The Maxwell-Vlasov gyrokinetic approach represents a powerful tool for the inves-
tigation of turbulent behavior of low-frequency strongly magnetized plasmas. It is
well known that one of the possible ways for investigating the properties of a physi-
cal system is to derive its conservation laws. Noether’s theorem plays a fundamental
role in theoretical physics by relating conservation laws and symmetries. For exam-
ple, the energy conservation law is associated with symmetries under infinitesimal
time translation t→ t+ δt and momentum conservation law is associated with the
symmetries under infinitesimal spatial translations x→ x+ δx. Generally Noether
method for fluids and plasmas can be presented for Euler-Lagrangian (E-L) and
Euler-Poincaré (E-P) variational principles which differ by their treatment of fields
variations. In fact, the essential difference between these variational principles is to
consider dynamical fields to be varied independently (E-L) or not. In what follows
we deal with Euler-Poincaré variational principle for Maxwell-Vlasov system. We
remark here that one of the serious advantages of Noether’s method for derivation of
gyrokinetic Maxwell-Vlasov system conservation laws is that this method permits us
to obtain exactly conserved properties even for systems with asymptotically reduced
dynamics.

The gyrokinetic energy conservation law was recently obtained in [25]. The goal
of our study here is to derive an exact gyrokinetic Vlasov-Poisson momentum con-
servation law. This investigation can have an important field of applications. First
of all an exactly conserved quantity can be implemented as a numerical simulations
verification. In the other hand, interpreted like a momentum transport equation,
momentum conservation law can also be used for investigation of intrinsic plasma
rotation phenomena, which play an important role in fusion plasma stabilization.
Further it can also be considered as a potential tool for plasma control by investi-
gation of transport barrier creation.

In fact, transport barrier creation represents the results of one of the self-
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consistent field-particle interaction. For example energy and momentum exchange
between particles and fields in plasma. More precisely, energy exchange leads to
plasma heating, and momentum exchange leads to current drive, so both phenom-
ena can be considered as one of the sources for the transport barrier creation. Con-
servation laws guarantee a proper exchange between particles and fields and then
permits us to explore self-consistent mechanisms that govern plasma behavior.

3.2 Maxwell-Vlasov equations and variational

principles

Due to their large applicability Maxwell-Vlasov equations of ideal plasma dynamics
has a long history and was studied extensively. It was firstly used in their simpler
form known as Poisson-Vlasov equations by Jeans [26]for investigation of structure
formation on stellar and galactic scales and even before by Poincaré [27] in his work
on determination of stability conditions for stellar configurations. On the other hand
Poisson-Vlasov equation can be also applied in order to study self-consistent dynam-
ics of electrostatic collisionless plasma whereas Maxwell-Vlasov equations permits
us to study self-consistent collisionless dynamics of plasma in electromagnetic field
case. In order to prepare the study of stability of plasma equilibrium, Low in 1956
has presented his variational principle for Maxwell-Vlasov system. Low’s action is
expressed in mixture of Lagrangian particle variables and Eulerian fields variables.
Since then a variety of variational formulations for Maxwell-Vlasov equations have
appeared. Particular attention was payed to the formulation of the particle part
of the action. For example its mixed Eulerian-Lagrangian formulation was used in
Hamiltonian-Jacobi action presented in [28, 28–30] and [31]. A purely Eulerian for-
mulation was proposed in [32, 33] through the introduction of two functions known
as Clebsch potentials introduced in [34, 35] and appropriate action principle with
Clebsch action. The leaf action variational principle introduced by Ye and Morrison
in [36] uses a single generating function as the dynamical variable for describing
the particle distribution and represents a link between Lagrangian and Eulerian
representations for actions. A more systematic derivation for a different Eulerian
variational principle was presented by Cendra et al in [37]. It is obtained by follow-
ing the reduction procedure of Low variational principle, much as one does in the
corresponding derivation of non-canonical Poisson bracket in the Hamiltonian for-
mulation for the Maxwell-Vlasov system. Similarly to ideal fluid Eulerian variational
principle, constrained variations on six dimensional phase space was introduced in
this work. Finally, a new Eulerian variational principle that uses constrained vari-
ations on extended eight dimensional phase space was presented by A.J. Brizard
in [38]. The transition from the six-dimensional phase space to the eight dimen-
sional phase space permits us to express Vlasov distribution variation in terms of
canonical Poisson bracket and a single scalar field δS which generate a virtual dis-
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placements on the extended phase space :Zα → Zα + δZα, α ∈ {1, . . . 8}, where
δZα ≡ {Zα, δS}. In what follows we show how this variational principle can be ap-
plied for derivation of conservation laws for perturbed Maxwell-Vlasov system and
gyrokinetic Maxwell-Vlasov system in the case of electrostatic fluctuations.

3.3 Variational principle for perturbed Maxwell-

Vlasov

This section is dedicated to the derivation of momentum conservation law in the case
of the perturbed Maxwell-Vlasov system. In particular we consider that magnetic
field is given by B = B0 + ϵB1 where B0 = ∇×A0 denotes the background time-
independent equilibrium component, and B1 = ∇×A1 its fluctuation. At the same
time the electric field contains only a fluctuating part E1 = −∇Φ1 − c−1∂tA1.

In order to represent particle part of dynamics in extended eight dimensional
phase space, first of all we introduce an extended Hamiltonian H = H − w where
H is a Hamiltonian of a charged particle in an external perturbed electromagnetic
field B1,E1:

H =
1

2m
(p− e

c
A)2 + eϵ Φ1 (3.1)

where A ≡ A0 + ϵA1 Then we introduce extended Vlasov distribution function

F(Z) ≡ cδ(w −H)F (p,x) (3.2)

where F is the Vlasov distribution function on 6 dimensional phase space. This
definition insures that the extended Hamiltonian H satisfies the physical constraint
H = w. Here w is a variable that is canonically conjugate to t and the Poisson
bracket is an extended canonical Poisson bracket:

{F,G}ext = ∇F ·
∂G

∂p
− ∂F

∂p
· ∇G+

∂F

∂t
· ∂G
∂w
− ∂F

∂w
· ∂G
∂t

(3.3)

Note that the dynamical variables in this approach are: electromagnetic fluctuating
fields B1, E1 and extended Vlasov distribution function F . Now we give an expres-
sion for action functional corresponding to our system and then we use it order to
write corresponding Hamilton’s action principle δA ≡ 0:

A = −
∫
d8ZF(Z)H(Z; Φ1,A1)+

∫
d4x

8π

(
ϵ2|E1|2 − |B0 + ϵB1|2

)
≡
∫
Ld4x (3.4)

Note that the extended phase space integration in the expression below is defined
by d8Z ≡ c dtd3xd4p where d4p ≡ c−1d3pdw. In order to proceed with writing of
Hamilton’s action principle

δA =

∫
d4x δL = 0 (3.5)

we need first to obtain the Eulerian variation of Lagrangian density δL.
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3.3.1 Eulerian variations

The Eulerian variation of the Lagrangian density given by expression (3.4) is ex-
pressed as:

δL = −
∫

(δFH + δHF) d4p+ ϵ

4π

(
ϵ2 δE1 · E1 − ϵ δB1 ·B

)
(3.6)

Here B0 is excluded as a variational field (since it is time independent). Eulerian
electromagnetic field variations are naturally related to the electromagnetic potential
variations as follows

δE1 = −∇δΦ1 − c−1∂tδA1 (3.7)

δB1 = ∇× δA1 (3.8)

they satisfy the constraints given by two of Maxwell’s equations

∇× δE1 =
1

c

∂δB1

∂t
(3.9)

∇ · δB1 = 0 (3.10)

The Eulerian variation for the extended distribution function (3.2) is obtained by
using the fundamental relation between Eulerian (δF) and Lagrangian ∆F varia-
tions:

δF ≡ ∆F − δZa ∂F
∂Za

= −{Za, S}ext
∂F
∂Za

≡ {S,F}ext (3.11)

It preserves the Vlasov constraint
∫
Fd8Z = 0 under a virtual canonical transfor-

mation Za → Za + δZa in extended phase space (as a result of integration of an
exact Poisson bracket over phase space). To obtain the expression (3.11) we use
two facts. The first one is that the virtual canonical transformation is generated
by the extended scalar field S: δZa → Za + δZa. The second one is that the La-
grangian variation of extended distribution function F is equal to zero. This is a
direct consequence of the fact that the distribution function is constant along any
trajectory in the phase space (Liouville’s theorem). Finally the Eulerian variation
of the extended Hamiltonian δH is given by:

δH = δΦ1
δH

δΦ1

+ δA1 ·
δH

δA1

(3.12)

Now our goal is to rewrite the expression for Lagrangian variation density (3.6) so
that the variation generators (S, δΦ1, δA1) appear explicitly

1. This will give us the

1You can find a detailed calculation that permits us the passage between the general expression
for Maxwell-Vlasov Lagrangian density to the equations of motion and Noether’s terms in Appendix
A
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possibility to derive the equations of motion and at the same time to obtain the
Noether terms necessary for the derivation of conservation laws.

δL =

(
∂Λ

∂t
+∇ · Γ

)
+ δΦ1

[
ϵ2

4π
∇ · E1 −

∫
d4p

δH

δΦ1

F

]
(3.13)

+ δA1 ·
[
ϵ

4πc

(
ϵ
∂E1

∂t
− c∇×B

)
−
∫
d4p

δH

δA1

F

]
−
∫
S {F ,H}ext d4p

where the Noether fields Λ and Γ are given by

Λ ≡
∫
d4p SF − ϵ2

4π c
δA1 · E1 (3.14)

Γ ≡
∫
d4p S F ẋ− ϵ2

4π
δA1 ×B1 (3.15)

with ẋ ≡ {x, H} representing the particle velocity. Note that here the Noether
space-time divergence terms ∂Λ/∂t + ∇ · Γ do not contribute to the variational
principle.

Now we introduce this expression into Hamilton’s action principle (3.5). Here
each term that is multiplied by the generators of the variations will give us corre-
sponding equations of motion. All the other terms are expressed as divergence and
exact time-derivative, and so do not influence the dynamics of the system. These are
the Noether terms, which contribute to the derivation of conservation laws. We re-
mark that this expression is general and gives the possibility to obtain the equations
of motion and Noether terms for any system of Maxwell-Vlasov equations (reduced
or not).

3.3.2 Perturbed Maxwell-Vlasov equations

In this section we deal with perturbed Maxwell-Vlasov system, so we use (3.1) in
order to obtain corresponding equations of motion. The functional derivatives δH

δΦ1

and δH
δA1

are given by:

δH

δΦ1

= ϵe (3.16)

δH

δA1

= − ϵ

m

e

c

(
p− e

c
(A0 + ϵA1)

)
≡ ϵ

e

c
v (3.17)

So finally the perturbed Maxwell equations are given by the following expression:

ϵ∇ · E1 = 4πe

∫
d4p F (3.18)

∇×B = ϵ
1

c

∂E1

∂t
+ 4πe

∫
d4p F v

c
(3.19)
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Then the extended Vlasov equation is given by:

{F ,H}ext = 0 (3.20)

In order to obtain the Vlasov equation we perform the integration over the energy
coordinate

∫
dw of the extended Vlasov equation (see for details Appendix A.2.2).

∂F

∂t
+ {F,H} = ∂F

∂t
+∇F · ∂H

∂p
−∇H · ∂F

∂p
= 0 (3.21)

and then the perturbed Maxwell equations of motion become

ϵ∇ · E1 = 4πe

∫
d3p F (3.22)

∇×B = ϵ
1

c

∂E1

∂t
+ 4πe

∫
d3p F

v

c
(3.23)

3.4 Momentum conservation law

In this section we use Noether method in order to derive exact momentum conserva-
tion law for perturbed Maxwell-Vlasov system. The Noether’s theorem states that
for each symmetry of the Lagrangian density L there corresponds a conservation law
(and vice versa). When the Lagrangian is invariant under a time translation, a space
translation, or a spatial rotation, the conservation law involves energy, momentum,
or angular momentum conservation respectively. The formal proof of this statement
can be found in [39].

After substituting the perturbed equations of motion (3.21,3.22,3.23) into the
expression for Eulerian variation of the Lagrangian density (3.14), we obtain Noether
equation:

δL =
∂Λ

∂t
+∇ · Γ (3.24)

Now the variations (S, δΦ1, δA1) are no longer consider arbitrary but are generated
by infinitesimal space-time translations correspondingly to the conservation law that
we derive. Before we proceed with the derivation of the conservation laws, we note
that the Noether components (Λ,Γ) are defined up to the following transformations:

Λ̄ ≡ Λ +∇ · η (3.25)

Γ̄ ≡ Γ− ∂η

∂t
+∇× σ (3.26)

where η and σ are arbitrary vector fields. These vector fields will be used in order to
obtain conservation laws in gauge-independent form. Note that these transforma-
tions are obtained naturally. In fact one can add and then sustain to the Noether
equation (3.24) the following quantity: ∇∂tη = ∂t∇η. Another vector field that we
note σ can be added to Γ component due to the fact that ∇ · (∇× σ) = 0 for any
vector field σ.
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3.4.1 Constrained variations

Constrained variations for electromagnetic potentials

The variations of electromagnetic potentials generated by infinitesimal space-time
translations can be expressed in terms of Lie-derivative £δx where δx represents an
infinitesimal translation in the four-dimensional phase space. In general theory the
expression for constrained variations of the Eulerian variational principle in terms
of Lie-derivative appears when the equivalence between Lagrangian and Eulerian
variational principle is discussed. On the other hand, one can interpret this fact
only by geometrical considerations, using the fact that the Lie -derivative can be
viewed as a simple generalization of directional derivative. In this section we deal
with geometrical tools in order to obtain the expression for electromagnetic field
constrained variations.

We start with choice of the metric, here we deal with space-like or Minkowski
type of metric:

gµν = gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (3.27)

We chose also the following definition of covariant and contravariant components:
Aµ = (A0, Ai) and Aµ = gµνAν = (−A0, Ai). Infinitesimal space-time variations
are represented by the vector: δxµ = (−cδt, δxi) and covariant differentiation is
given by: ∂µ = (−c−1∂t, ∂i) where ∂i ≡ ∂/∂xi. Then we can write an expression for
one-form electromagnetic four potential.

A = Aµdx
µ = −c A0 dt+A · dx (3.28)

Using the Cartan formula for Lie-derivative we have:

£δxA = iδx · dA+ d(iδx · A) (3.29)

where the inner product operator iδx acts as follows on one (A = Aµdx
µ) and two

(∂µAνdx
µ ∧ dxν) forms:

d(iδx · A) = dxν∂ν (Aµδx
µ) = dxν∂ν

[
−c A0 δt+ Aiδx

i
]

(3.30)

iδx · dA = ∂µAν δx
µ dxν − ∂µAν dxµ δxν ≡ δxµFµνdx

ν (3.31)

then
£δxA = (δxµFµν + ∂ν(Aµδx

µ)) dxν ≡ −δAνdxν (3.32)

Then the variation of electromagnetic potential component:

δA0 = −δxiFi0 + c−1∂t
(
−A0cδt+ Ajδx

j
)

(3.33)

δAi = cδtF0i − δxjFji − ∂i
(
−A0 c δt+ Ajδx

j
)

(3.34)
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By substituting the components of antisymmetric field tensor F0i = −∂iA0 −
c−1∂tA and Fji = ∂jAi − ∂iAj we obtain:

δA0 = −δx · ∇A0 − δt ∂tA0 (3.35)

δA = −δx · ∇A− δt ∂tA (3.36)

We note here that Φ ≡ A0 and δΦ ≡ δA0, then

δΦ = −δxi ∂iΦ− δt ∂tΦ (3.37)

Another possibility to deal with covariant and contravariant vectors in this place
is to suppose that A0 = Φ and A0 = −Φ then the sign does not appear inside
the definition of covariant and contravariant components of vector potential Aµ =
(A0, Ai) and A

µ = (A0, Ai). The infinitesimal space-time variations vector is δxµ =
(δx0, δxi) with δx0 = cδt and ∂µ = (∂x0 , ∂xi) with ∂x0 = c−1∂t. Then A = Aµdx

µ =
A0dx

0 +A · dx and using the Eq. (3.32) we obtain:

δA0 = −δxiFi0 − ∂0
(
A0δx

0 +A · dx
)

(3.38)

δAi = −δx0F0i − δxjFji − ∂j
(
A0δx

0 +A · dx
)

(3.39)

with F0i = ∂0Ai − ∂iA0 and Fij = ∂iAj − ∂jAi,

δA0 = −δxi∂iA0 − δt∂tA0 (3.40)

δAi = −δx · ∇A− δt∂tA (3.41)

Replacing now A0 ≡ −Φ we obtain (3.37)

Constrained variations for Lagrangian density

By analogy with constrained variations for electromagnetic potentials, using the
Cartan formula for Lie derivative, we can obtain the variation for Lagrangian density.
In fact, let us consider four-form LΩ where Ω is the oriented space-time volume
element, then

δL Ω ≡ −£δx (L Ω) (3.42)

Using the Cartan formula we obtain

£δx (L Ω) = d (iδx (L Ω)) + iδx (d (L Ω)) (3.43)

The second term in this expression is equal to zero because (d (d4x) ≡ 0), the first
term can be rearranged as follows:

d (iδx (L Ω)) = (∂αL δxα) Ω (3.44)

here we use that:

iδx
[
dxα ∧ dxβ ∧ dxγ ∧ dxζ

]
= δxα

(
dxβ ∧ dxγ ∧ dxζ

)
(3.45)
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and
d (L iδxΩ) = ∂αLδxα

(
dxα ∧ dxβ ∧ dxγ ∧ dxζ

)
≡ (∂αL δxα) Ω (3.46)

By substituting the formula (3.44) into the expression (3.42) we obtain:

δL = −∂µ (δxµ L) (3.47)

Due to the fact that in our approach we decompose the initial magnetic field into
its dynamical part B1 and its background part B0 we should take it into account
when defining the Eulerian variation of Lagrangian density. In order to do that, we
correct the expression for variation δL by subtracting from ∂µL the derivative of the
Lagrangian density with respect to the space-time variables while all the dynamical
fields are held constant. Then only the background fields contribute. We indicate
such a derivative by ∂′µL. So finally

δL = −δxi (∂iL − ∂′iL) + δt (∂tL − ∂′tL) (3.48)

3.4.2 Noether method

In order to obtain the momentum conservation law for the perturbed Maxwell-
Vlasov system, we use the Noether equation (3.24) and consider infinitesimal space
translations x→ x+ δx generated by:

S = (p∗) · δx
δΦ1 = −δx · ∇Φ1 ≡ δx · (E1 + c−1 ∂tA1)
δA1 = −δx · ∇A1 ≡ δx×B1 −∇A1 · δx
δL = −δx · (∇L−∇′L)

 (3.49)

where the expression for canonical particle momentum p∗ will be discussed be-
low. The expression for variations of electromagnetic fields δΦ1, δA1, δL are ob-
tained from the general theory as the spatial component of the Lie derivative
δA = δAµdx

µ ≡ −£δxA and δL Ω = −£δx (L Ω). Here the notation ∇′L in
the expression for δL denotes the explicit spatial gradient of the Lagrangian den-
sity L with dynamical fields E1,B1, F held constant. Since we consider the case of
spatially uniform background magnetic field B0, we have

∇′L ≡ ∇B0 ·
∂L
∂B0

= −∇B0 ·
(
B

4π
+

∫
F
∂H

∂B0

d3p

)
(3.50)

where the first term denotes the contribution from the Maxwell part LM ≡ (ϵ2|E1|2−
|B|2)/8π of the Lagrangian density while the second term involves the magnetization
contribution associated with the background magnetic field [40]. Then the second
term is formally equal to zero while we still work in canonical variables. In fact,
in our case the particle Hamiltonian (3.1) is expressed in terms of electromagnetic
potential A = A0 + ϵA1, and not magnetic field B0 = ∇×A0.
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Primitive momentum conservation law

By inserting the variations (3.49) into the Noether equation (3.24), we obtain the
primitive momentum conservation law

− (∇L−∇′L) = ∂

∂t

[∫
F (p∗ · δx) d4p−

ϵ2

4π c
(δx×B1 −∇δχ1) · E1

]
+ ∇ ·

[∫
F (p∗ · δx) ẋd4p−

ϵ2

4π

(
δx · E1 +

1

c

∂δχ1

∂t

)
E1

− ϵ

4π
(δx×B1 −∇δχ1)×B

]
(3.51)

where we have introduced a gauge-dependent field δχ1 ≡ A1 · δx and rewrite the
variations (3.49) as displayed. Consequently to that this primitive form of the mo-
mentum conservation law is not gauge invariant.

Gauge-independent momentum conservation law

In order to remove the gauge-dependent term in expression (3.51), we use the trans-
formations (3.26), with η ≡ (ϵ2/4π c)(A1 · δx)E1 and σ ≡ (ϵ/4π)(A1 · δx) B (the
details of this calculation are given in the Appendix). Finally the gauge-independent
momentum conservation law is

∂P

∂t
+∇ ·Π = ∇B0 ·

∂L
∂B0

(3.52)

According to the Noether theorem, the component of the gyrokinetic momentum
in the direction of the background magnetic field B0 field spatial symmetry is con-
served.

Here the momentum density, after integrating over energy variable
∫
dw, is

P =

∫
F
(
p∗ − ϵ

e

c
A1

)
d3p+

ϵ2

4πc
E1 ×B1 (3.53)

and the canonical momentum-stress tensor is

Π =

[
ϵ2

8π

(
|E1|2 + |B1|2

)
− |B0|2

8π

]
I− 1

4π

(
ϵ2E1E1 + ϵB1B

)
+

∫
F
[
ẋ p∗ − ϵ

e

c
(v A1)

]
d3p (3.54)

Note that we take into account the Vlasov condition FH ≡ 0 in extended phase
space when evaluating the derivative ∇L, so only the Maxwell part of Lagrangian
density will give the contribution in Π.
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3.4.3 Proof of Momentum conservation

In this section we give an explicit proof of the momentum conservation law (3.52).
We will see that the momentum conservation yields the dynamics of the system. We
start by taking partial time derivative of the perturbed momentum density (3.53):

∂P

∂t
=

∫ [
∂F

∂t

(
p∗ − ϵ

e

c
A1

)
+ F

∂

∂t

(
p∗ − ϵ

e

c
A1

)]
d3p

+
ϵ2

4π c

(
∂E1

∂t
×B1 + E1 ×

∂B1

∂t

)
(3.55)

By substituting into the expression below the Maxwell-Vlasov equations (3.22 , 3.23)
and the Vlasov equation in the phase-space divergence form:

∂F

∂t
+∇ · (F ẋ)− ∂

∂p
· (F ṗ) = 0 (3.56)

we have:

∂P

∂t
= −∇ ·

[∫
F ẋ

(
p∗ − ϵ

e

c
A1

)
d3p+

ϵ2

8π

(
|E1|2 + |B1|2

)
− 1

4π

(
ϵ B1B+ ϵ2E1E1

)]
− ϵ

4π
∇B0 ·B1 +

∫
F

[
d

dt

(
p∗ − ϵ

e

c
A1

)
− ϵ e

(
E1 +

v

c
×B1

)]
d3p (3.57)

where
d

dt

(
p∗ − ϵ

e

c
A1

)
≡ ∂

∂t

(
p∗ − ϵ

e

c
A1

)
+ {
(
p∗ − ϵ

e

c
A1

)
, H} (3.58)

The detailed calculation that permits us the transition between the Eq.(3.55) to the
Eq. (3.57) is given in the appendix B. Now we add ∇·Π to the result of the explicit
time differentiation of the perturbed momentum density ∂P/∂t, where Π is defined
by the Eq. (3.54). So the momentum conservation law (3.52) becomes:

0 ≡ ∂P

∂t
+∇ ·Π−∇B0 ·

∂L
∂B0

(3.59)

=

∫
F

[
d

dt

(
p∗ − ϵ

e

c
A1

)
− ϵ e

(
E1 +

v

c
×B1

)]
d3p

Therefore, the last equation yields the perturbed canonical momentum equation:

d

dt

(
p∗ − ϵ

e

c
A1

)
≡ ϵ e

(
E1 +

v

c
×B1

)
(3.60)

The equation (3.60) can be used to define the perturbed canonical momentum p∗
that intervenes when defining the generating function of spatial translations (3.49).
We remark that we can replace the momentum conservation law for the perturbed
Maxwell-Vlasov system (3.52) by the equation for perturbed canonical momentum
in the particle phase space (3.60). This connection is analogous to the standard con-
nection between the momentum conservation law and the equation for the particle
canonical momentum in the case of the non-perturbed Maxwell-Vlasov system.
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3.4.4 Particle canonical momentum

In previous section we have obtained the equation for the perturbed canonical mo-
mentum p∗. We now discuss its properties by comparing with the case of the
unperturbed Maxwell-Vlasov system.

In general theory [38] for the full Maxwell-Vlasov system when magnetic field
is not divided into its equilibrium (non-dynamical part) and perturbed (dynamical)
part, the generating function S for the derivation of the momentum conservation
law is given by the particle canonical momentum p ≡ mv + e

c
A.

Let see now what changes for the perturbed Maxwell-Vlasov system, when the
electromagnetic fields E ≡ ϵE1 = −Φ1 − c−1∂tA1 and B ≡ B0 + ϵB1 = ∇ ×
(A0 + ϵA1) are expressed in terms of background fields (0,B0) and perturbation
fields (E1,B1). In this case the corresponding particle canonical momentum should
be expressed as p ≡ mv + e

c
A0 + ϵ e

c
A1 and the corresponding equation of motion

that can be directly derived from the Hamiltonian (3.1) is (see for details C):

d

dt

(
p− e

c
A0 − ϵ

e

c
A1

)
= e

(
ϵ E1 +

v

c
× (B0 + ϵ B1)

)
(3.61)

Let now compare this equation to the equation (3.60) for the perturbed canonical
momentum p∗. First we can remark that the magnetic part of the Lorentz force
in r.h.s of the equation (3.60) does not contain the contribution coming from the
equilibrium magnetic field B0, there is only the contribution coming from the dy-
namical electromagnetic fields B1 and E1. We remark that such an equation can be
derived from the Hamiltonian (3.1) after performing on it the gauge transformation
A→ A′ = A−∇χ where the gauge field is chosen such that ∇χ ≡ A0

H =
1

2m

(
p− ϵe

c
A1

)2
+ ϵ e Φ1 (3.62)

Then in order to be coherent, p∗ should be defined as follows

p∗ = mv + ϵ
e

c
A1 (3.63)

It represents a mixed-canonical momentum (i.e., it is a kinetic momentum in the
absence of the magnetic field perturbation generated by the vector field A1). We
can see that the generating function S for the perturbed Maxwell-Vlasov system
contains only the dynamical part of the vector potential.

Now we use the expression for the mixed-canonical momentum p∗ (3.63) in order
to simplify the expressions for the momentum density (3.53) and the momentum
canonical tensor (3.54). Finally we obtain the expressions for the momentum density
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and the momentum stress tensor with symmetrized Vlasov part:

P =

∫
F v d3p+

ϵ2

4πc
E1 ×B1 (3.64)

Π =

[
ϵ2

8π

(
|E1|2 + |B1|2

)
− |B0|2

8π

]
I− 1

4π

(
ϵ2E1E1 + ϵB1B

)
+

∫
F mvv d3p (3.65)

3.4.5 Momentum conservation law in background separated
form

In this section we show how the momentum conservation law can be used in order
to study the momentum exchange between the background field and plasma. For
doing this we rewrite the momentum conservation law in its background separated
form. We define

P̄ ≡ P =

∫
F

v

c
d3p (3.66)

Π̄ = Π+
|B0|2

8π
I+

ϵ

4π
B1 ·B0 =

ϵ2

8π

[(
|E1|2 + |B1|2

)]
I− 1

4π

(
ϵ2E1E1 + ϵB1B1

)
+

∫
F mvv d3p (3.67)

Then the momentum conservation law (3.52) became:

∂P

∂t
+∇ ·Π =

1

4π
J0 ×B1 (3.68)

where we make appear the background component of current J0 ≡ (∇×B0), we
use that ∇· (B1 B0)−∇B0 ·B1 = (∇×B0)×B1. Let us now consider the equation
(3.68), its l.h.s. contains purely plasma contributions into the momentum density
P and the momentum stress tensor Π, the r.h.s. contains the coupling between
the background magnetic field B0, represented by background current J0, and the
plasma magnetic field B1. So we can say that momentum conservation law describes
exchange between the background fields and plasma.

3.5 Gyrokinetic variational principle

In sections 3.3 and 3.4 we have considered derivation of momentum conservation law
for perturbed Maxwell-Vlasov system. In this section we will deal with derivation
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of momentum conservation law in the case of reduced (by using the Lie-transform
method [41]) Maxwell-Vlasov system. Note that differently from the perturbed
Maxwell-Vlasov system case, here we consider only the electrostatic fluctuations with
dynamical electric field E1 = −∇Φ1 and the non-dynamical background magnetic
field B0 = ∇×A0. The case of the electromagnetic fluctuations represents a part
of the future work.

Previously, several works dealt with variational formulation of reduced Maxwell-
Vlasov system. For example Sugama in [42] has presented Lagrangian variational
principle, in which an action functional for gyrocenter particles was derived from
the Low Lagrangian formalism. Here we still use the Eulerian variational principle
proposed by A.J. Brizard in [38] and then adapted by him in [43] for the case of the
reduced Maxwell-Vlasov system.

Here we generally follow the same schema for momentum conservation law deriva-
tion that in the case of the perturbed Maxwell-Vlasov system.

Gyrokinetic action functional for electrostatic perturbation

In order to prepare the introduction of gyrokinetic electrostatic Maxwell-Vlasov
action functional, we first present extended reduced (gyrocenter) Hamiltonian Hgy

and Vlasov distribution function Fgy. Accordingly to the Lie-transform phase space
method for gyrokinetic dynamical reduction [44], the gyrocenter Hamiltonian is
given by

Hgy

(
X, p ||, µ, t,Φ1

)
= Hgc

(
X, p ||, µ

)
+ ⟨ϵ e Φ1 gc⟩ −

ϵ2

2
e ⟨£gyΦ1 gc⟩ (3.69)

where ⟨. . . ⟩ denotes the gyroangle-averaging operation, the unperturbed gyrocenter
Hamiltonian is defined as the guiding-center Hamiltonian Hgc ≡ µB0 + p2||/2m, the
effective first-order guiding-center potential in electrostatic turbulence case is

Φ1gc ≡= T−1
gc Φ1 (3.70)

where T−1
gc denotes push-forward gyrocenter operator. The second order pondero-

motive potential in Eq. (3.69) is expressed in terms of the gyrocenter Lie-derivative
£gy [25], which is defined for a general function G in electrostatic turbulence case
as

£gyG ≡
e

Ω
{Ψ̃1gc, G}gc (3.71)

where {. , .}gc represents the guiding-center Poisson bracket [45] and Ψ̃1gc is defined
from the following equation:

∂θΨ̃1 ≡ Φ̃1gc = e (Φ1gc − ⟨Φ1gc⟩) (3.72)

Ω = eB0/mc denotes the Larmor frequency. We remark that while the gyroangle-
averaged potential ⟨ϕ1gc⟩ contributes to the linear (first order) perturbed gyrocenter
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Hamiltonian dynamics, the gyroangle-dependent potential Φ̃1gc contributes to the
(second-order) gyrocenter ponderomotive Hamiltonian in Eq.(3.69). The extended
gyrocenter Hamiltonian

Hgy

(
X, p ||, µ, t, w; Φ1

)
≡ Hgy

(
X, p ||, µ, t; Φ1

)
− w (3.73)

is expressed in terms of the time-dependent gyrocenter Hamiltonian given by Eq.
(3.69) and the gyrocenter energy coordinate w. The extended Vlasov distribution
function

Fgy(Z) ≡ F (X, p ||, µ, t) c δ(w −Hgy) (3.74)

ensures that the gyrocenter Hamiltonian dynamics satisfies the physical constraint
Hgy ≡ 0. Now we have all the elements to give the expression for the electro-
static gyrokinetic action functional Agy and to the corresponding Hamilton’s action
principle δAgy = 0.

Agy = −
∫
d8Z Fgy (Z) Hgy (Z; Φ1) +

∫
d4x

8π

(
|E1|2 − |B0|2

)
≡
∫
Lgy d4x (3.75)

Note that now the integration is realized over the extended reduced phase space
d8Z ≡ dt d3X d4p, where d4p ≡ c−1dw d3p and d3p = 2π m B∗

|| dp || dµ. Here
2π m B∗

|| represents the Jacobian of the guiding-center transformation.

3.5.1 Eulerian variations

The general expression for Eulerian variation of Lagrangian density in the case of
gyrokinetic Maxwell-Vlasov system Lgy is given by:

δLgy =
ϵ

4π

[
(δE1 · E1)−

∫
δFgy Hgy + ϵ

(
δΦ1

δHgy

δΦ1

)
Fgy
]

(3.76)

where B0 is a non-dynamical field and the constrained Eulerian variation for electric
field δE1 = −∇Φ1 preserves the constraint c∇ × δE1 = 0. The Eulerian variation
for the extended gyrocenter Vlasov distribution is

δFgy ≡ {Sgy,Fgy}ϵ (3.77)

where {., .}ϵ denotes the extended guiding-center Poisson bracket. Similarly to pre-
vious case this Eulerian variation preserves the Vlasov constraint

∫
δFgyd8Z = 0

under a virtual canonical transformation Z → Z + δZ in extended phase space.
Now the virtual canonical transformation is generated by the extended scalar field
Sgy: δZα ≡ {Zα, Sgy}ϵ
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Gyrocenter Hamiltonian functional derivative

In this subsection we give some details about evaluation of functional derivative
δHgy/δΦ(x). Before starting this calculation we have to make some remarks.

Due to the gyrokinetic dynamical reduction one have to pay attention to the
fact that the electromagnetic fields Φ1 = Φ1(x),A0 = A0(x) and the particle (gy-
rocenters) X are now evaluated at different spatial positions. The fields are still
evaluated at the full particle position x while the positions of the gyrocenters are
X ≡ x − ρ0 where the difference between them is ρ0 which denotes the Larmor
radius. To give the link between the electric field evaluated in the position x and
the gyrocenter electric field evaluated into the reduced (gyrocenter) position, we
introduce the guiding-center delta function δ3gc ≡ δ3 (X+ ρ0 − x). It indicates that
the gyrocenter contribution at a fixed point x only comes from gyrocenters located
on the ring X = x− ρ0. Then

Φ1gc =

∫
d3x δ3gc Φ1(x) (3.78)

The variation of the gyrocenter Hamiltonian (3.69) is given by:

δHgy = ϵ e⟨δΦ1gc⟩ −
ϵ2 e2

2Ω
⟨{δΨ̃1gc, Φ̃1gc}gc + {Ψ̃1gc, δΦ̃1gc}gc⟩ (3.79)

Accordingly to the Eq.(3.78), functional derivative of the first order gyrocenter
Hamiltonian is

⟨δΦ1gc⟩
δΦ1(x)

= δ3gc (3.80)

In order to evaluate functional derivative of the second order correction to the gy-
rocenter Hamiltonian, we integrate it by parts with Φ̃1gc = ∂θΨ̃1gc

⟨{δΨ̃1gc, Φ̃1gc}gc⟩ = ⟨{δΨ̃1gc,
∂Ψ̃1gc

∂θ
}gc⟩ = −⟨{

∂δΨ̃1gc

∂θ
, Ψ̃1gc}gc⟩

= −⟨{δΦ̃1gc, Ψ̃1gc}gc⟩ = ⟨{Ψ̃1gc, δΦ̃1gc}gc⟩ (3.81)

Then
δHgy

δΦ1(x)
= ϵ e⟨δ3gc⟩ −

ϵ2 e2

Ω
⟨{Ψ̃1gc, δ

3
gc}gc⟩ ≡ ⟨T−1

gc δ
3
gc⟩ (3.82)

Here we make appear the push-forward gyrocenter operator T−1
gc ≡ 1− ϵ£gy (up to

the first order).
Following the schema presented for perturbed Maxwell-Vlasov system we rewrite

the expression (3.76) for Eulerian variations of Lgy so that the variations generators
(Sgy, δΦ1) appears explicitly:

δLgy =

(
∂Λ

∂t
+∇ · Γ

)
−
∫

Sgy{Fgy,Hgy}ϵ d4p

+ δΦ1

[
ϵ2

4π
∇ · E1 − ϵ e

∫
Fgy⟨T−1

gc δ
3
gc⟩d4p d3X

]
(3.83)
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here we have used Eq.(3.82) and Eq.(3.77). The Noether fields Λ and Γ that does
not contribute to the variational principle

Λ ≡
∫

SgyFgyd4p (3.84)

Γ ≡
∫

Sgy Fgy Ẋ d4p− ϵ2

4π
δΦ1 E1 (3.85)

with Ẋ ≡ {X, Hgy}gc representing the gyroangle-independent gyrocenter velocity.

3.5.2 Gyrokinetic Maxwell-Vlasov equations

After substituting the variation (3.83) into the variational principle
∫
δLgyd4x =

0 for arbitrary variation generators (Sgy, δΦ1), we obtain the gyrokinetic Vlasov
equation

{Fgy,Hgy}ϵ = 0 (3.86)

and the gyrokinetic Poisson equation:

ϵ ∇ · E1 = 4π e

∫
Fgy⟨T−1

gc δ
3
gc⟩d 4p d 3X (3.87)

Performing the integration over the energy coordinate (
∫
dw) on the extended gy-

rokinetic Vlasov equation (3.86) we obtain the gyrokinetic Vlasov equation (see for
details Appendix A.2.2).

∂F

∂t
+ {F,Hgy}gc ≡

∂F

∂t
+ Ẋ · ∇F + ṗ ||

∂F

∂p ||
= 0 (3.88)

and the gyrokinetic Poisson equation

ϵ ∇ · E1 = 4π e

∫
F ⟨T−1

gc δ
3
gc⟩d 3p d 3X (3.89)

3.6 Gyrokinetic momentum conservation law

Following the procedure for deriving the momentum conservation law that was es-
tablished for the perturbed Maxwell-Vlasov system case, we now substitute the
gyrokinetic Vlasov-Poisson equations (3.88) and (3.89) into the variational equation
(3.83), we obtain the corresponding Noether equation

δLgy =
∂Λ

∂t
+∇ · Γ (3.90)

where Λ and Γ are defined up to the transformation (3.26).
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3.6.1 Noether Method

Comparing to the expressions (3.49) for the variations generated by infinitesimal
space translations x→ x+ δx in the case of the full perturbed Maxwell-Vlasov sys-
tem, the variations (Sgy,Φ1) for the gyrokinetic electrostatic Vlasov-Maxwell system
are now given by:

Sgy = pgy · δx (3.91)

δΦ1 = −δx · ∇Φ1 ≡ δx · E1 (3.92)

δLgy = −δx · (∇Lgy −∇′Lgy) (3.93)

where Sgy is the gyrocenter generating scalar field for the virtual spatial translation
δx contains gyrocenter canonical momentum pgy its expression will be discussed
below. The expressions for electric field variation and Lagrangian density variation
are obtained following the same procedure that was presented in Section 3.4.1. Note
that comparing to the Eq. (3.50) for the derivative of the Lagrangian density with
respect to the background magnetic field B0 we should replace L by Lgy and H by
Hgy:

∇′Lgy ≡ ∇B0 ·
∂Lgy
∂B0

= −∇B0 ·
(
B0

4π
+

∫
F
∂Hgy

∂B0

d 3p

)
(3.94)

We note also that in the absence of the perturbed magnetic field B1 the momentum
conservation law that we derive is directly gauge independent:

−δx · (∇Lgy −∇′Lgy) =
∂

∂t

[∫
Fgy (⟨pgy⟩ · δx) d4p

]
(3.95)

+ ∇ ·
[∫
Fgy (⟨pgy⟩ · δx) Ẋgy d

4p− ϵ2

4π
δx · E1E1

]
Note that while deriving this momentum conservation law we have used only the
gyroaveraged part of the generating function Sgy = ⟨pgy⟩. In fact it is necessary
in order to be coherent with dynamics generated by the gyrocenter gyroangle-
independent Hamiltonian (3.69). For example the gyrokinetic Poisson equation
(3.89) is driven only by the gyroaveraged part of the gyrokinetic charge density
ρgk ≡

∫
F ⟨T−1

gy δ
3
gc⟩d 3p. In what concerns the gyrokinetic Vlasov equation (3.88),

it is obtained by assuming supplementary that ∂θF = 0 (see appendix A.2.2).
Then we rewrite the expression (3.94) as

∂Pgy

∂t
+∇ ·Πgy = ∇B0 ·

∂Lgy
∂B0

≡ ∂′Lgy (3.96)

Then by performing the integration over the energy coordinate
∫
dw, the gyrokinetic

momentum density is

Pgy =

∫
F ⟨pgy⟩ d3p (3.97)
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and the gyrokinetic momentum stress tensor is

Πgy =
1

8π

(
ϵ2|E1|2 − |B0|2

)
I− ϵ2

4π
E1E1 +

∫
F Ẋgy ⟨pgy⟩ d3p (3.98)

where Ẋgy ≡ {X, Hgy}gc

3.6.2 Proof of Gyrokinetic Momentum conservation

As in previous case we give an explicit proof of the gyrokinetic momentum con-
servation law (3.96). We begin with the partial time derivative of the gyrokinetic
momentum density (3.97):

∂Pgy

∂t
=

∫ [
∂F

∂t
⟨pgy⟩+ F

∂⟨pgy⟩
∂t

]
d 3p (3.99)

By substituting corresponding gyrokinetic Vlasov equation in its phase-space diver-
gence form (see for details appendix A.2.2)

{F,Hgy}gc =
1

B∗
||
∇ ·
(
B∗

|| Ẋ F
)
+

1

B∗
||

∂

∂p ||

(
B∗

|| ṗ || F
)

(3.100)

after integration by parts we obtain

∂Pgy

∂t
=

∫
F
dgy ⟨pgy⟩

dt
d 3p−∇ ·

[∫
F Ẋgy ⟨pgy⟩

]
d 3p (3.101)

where
dgy ⟨pgy⟩

dt
≡ ∂⟨pgy⟩

∂t
+ {⟨pgy⟩, Hgy}gc (3.102)

Due to the fact that we have taken only the gyroaveraged part of the generating
function Sgy in order to derive the gyrokinetic momentum conservation law and only
⟨pgy⟩ intervene into our calculations, we have:

B∗
||{⟨pgy⟩, Hgy}gc = ∇ ·

(
B∗

|| ⟨pgy⟩ Ẋgy

)
+

∂

∂p ||

(
B∗

|| ⟨pgy⟩ ˙p ||
)

(3.103)

Now we use the gyrokinetic Poisson equation (3.89) and the electrostatic constraint
∇ × E1 = 0 in order to perform the electrostatic Maxwell part of the gyrokinetic
momentum stress divergence ∇ ·Πgy

ϵ2

4π
∇ ·
(
1

2
|E1|2 − E1E1

)
=

ϵ2

4π
(E1 × (∇× E1)−∇ · E1 E1)

= ϵ e

∫
F ⟨T−1

gy δ
3
gc E1⟩d 3p d 3x ≡ ϵ e

∫
F ⟨T−1

gy E1gc⟩ d 3p (3.104)
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Using the expression below we add and we subtract ϵ2

4π
∇ ·

(
1
2
|E1|2 − E1E1

)
, and

∇B0 · ∂Lgy

∂B0
given by the Eq. (3.94)to the r.h.s. of the Eq.(3.101) we obtain

0 ≡ ∂Pgy

∂t
+∇ ·Πgy = ∇B0 ·

∂Lgy
∂B0

=

∫
F

[
dgy ⟨pgy⟩

dt
− ϵ e⟨T−1

gy E1gc⟩+∇B0 ·
∂Hgy

∂B0

]
d 3p (3.105)

which yields the electrostatic gyrocenter canonical momentum equation:

dgy ⟨pgy⟩
dt

≡ ϵ e⟨T−1
gy E1gc⟩ − ∇B0 ·

∂Hgy

∂B0

(3.106)

3.6.3 Gyrokinetic particle canonical momentum

In the section 3.4.4 we have discussed the expression of the perturbed particle
canonical momentum that generate the momentum conservation law for perturbed
Maxwell-Vlasov system. We have seen that the momentum conservation law was

generated by a mixed-canonical momentum : p∗ ≡ mv +
e

c
A1, which simply be-

comes in the electrostatic perturbation case the particle kinetic momentum.
Let us now analyze the equation (3.106) for electrostatic canonical momentum.

We can deduce by analogy with the non-reduced case, which pgy now represents
kinetic gyrocenter canonical momentum pgy = mẊgy.

Due to the fact thatHgy given by Eq. (3.69) does not depend on the gyroangle co-
ordinate and supposing that in the first approximation, the Jacobian of the guiding-
center transform does not depend on the gyroanlge (J = 2πmB∗

|| ≡ 2πmB∗
||(Xgy) =

2πmB∗(Xgy) · b̂0(X)), according to the gyrocenter equations of motion given in the
Appendix (A.2.2), we have Ẋgy ≡ ⟨Ẋgy⟩. Then the expressions for Pgy and Πgy

become

Pgy =

∫
F m Ẋgy d

3p

Πgy =
1

8π

(
ϵ2|E1|2 − |B0|2

)
I− ϵ2

4π
E1E1 +

∫
F pgy Ẋgy d

3p

(3.107)

3.7 Applications of the gyrokinetic momentum

conservation law

In this section we explore the possible ways for applications of the gyrokinetic
momentum conservation law (3.60). In particular here we consider the parallel
and toroidal gyrokinetic momentum transport equation, derived in the axisymmet-
ric magnetic geometry from this general gyrokinetic momentum conservation law.
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These two equations are often considered as the same assuming that the background
magnetic field is mainly in the toroidal direction. This is true only for a simple
tokamak geometry, when the background magnetic field is considered as a toroidal
magnetic field, but is invalid for spherical tokamak geometries, for example. So the
consideration of this both equations can be useful.

3.7.1 Gyrokinetic momentum conservation law in back-
ground separated form

In order to study the momentum exchange between plasma and the background
magnetic field, let us first rewrite the momentum conservation law (3.60) in its
background separated form:

∂P̄gy

∂t
+∇ · Π̄gy = −∇B0

∫
d3p

∂Hgy

∂B0

(3.108)

where

P̄gy ≡ Pgy =

∫
F m Ẋgy d

3p (3.109)

Π̄gy ≡
1

8π

(
ϵ2|E1|2 I− 2 E1E1

)
+

∫
F m Ẋgy Ẋgy d

3p (3.110)

Let us now consider the terms in the r.h.s. of the equation (3.108) that represent
the exchange between plasma and background field. At the lowest order in ϵ, we
obtain the guiding-center magnetization ∂Hgy/∂B0 = µb̂0.

For higher-order terms in ∂Hgy/∂B0, in the first approximation, we take the limit
where the background magnetic field is uniform. Details of the calculations for the
higher - order gyrocenter contributions can be found in the appendix D. For example
the first order correction ϵ ∂⟨ϕ1gc⟩/∂B0 involves the divergence of the perpendicular

perturbed electric field
∂

∂B0

⟨ϕ1gc⟩ =
µ

2mΩ2
b̂0 (∇ · E1⊥) where ∇ ·E1 ⊥ ≡ I⊥ : ∇E1.

3.7.2 Parallel momentum conservation law

Let us now project the equation (3.108) on the direction of the background magnetic
field b̂0

∂P ||

∂t
+ b̂0 ·

(
∇ · Π̄gy

)
=

−
(∫

µ F

(
1 + ϵ

1

2mΩ2
∇ · E1 ⊥

)
d3p

)
b̂0 · ∇B0

(3.111)
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where P || ≡ P · b̂0, and we have used that: with B0 ≡ B0b̂0 and ∇B0 = ∇B0b̂0 +

B0 ∇b̂0, we have b̂0 ·∇B0 · b̂0 = b̂0 ·∇B0+B0b̂0 ·∇b̂0 · b̂0︸ ︷︷ ︸
=0

because of ∇(b̂0 · b̂0) = 0.

Here the terms in the r.h.s. of this equation represents the polarization due to the
background magnetic field. At the lowest order we obtain the guiding-center mirror-
force density and at the first order in electrostatic perturbation we have proportional
to the perpendicular part of the gyrokinetic charge density ρ⊥ ≡ ∇ · E1⊥ term.

3.7.3 Toroidal gyrokinetic momentum conservation law

According to Noether’s theorem, the component of the gyrokinetic momentum in the
direction of a spatial symmetry of the unperturbed magnetic field is conserved. In
axisymmetric tokamak geometry, for example, where the background magnetic field

is independent of the toroidal angle ϕ (i.e.
∂x

∂ϕ
· ∇B0 =

∂B0

∂ϕ
= 0 and then

∂′Lgy
∂ϕ

= 0

), the l.h.s. of the equation (3.96) vanish and the toroidal gyrokinetic momentum

density Pϕ ≡ Pgy ·
∂x

∂ϕ
satisfies the toroidal gyrokinetic transport equation 2:

∂Pϕ
∂t

= −∂x
∂ϕ
·
(
∇ · Π̄gy

)
(3.112)

3.7.4 Intrinsic plasma rotation mechanisms identification

The problem of the identification of intrinsic rotation mechanism represents one of
the relevant problems for magnetically confined plasmas. In fact, plasma rotation
plays an important role in turbulence stabilization and transport reduction, there-
fore in improvement of tokamak performance both in stability and confinement. In
present-day machines, rotation is usually driven by external sources, such as neutral
beam injection. The problem is that such a rotation mechanism generators can be-
come unavailable in a future fusion devices as ITER for example, due to their large
size and high plasmas densities. In the same time one possible issue seems to be indi-
cated by the system itself. It was observed in various fusion devices, such as Alcator
C-Mod [46], DIII-D [47] and NSTX (National Spherical Torus Experiment)[48] that
the plasma rotation has a spontaneous (intrinsic) component. As a consequence of
these observations, numerous theoretical works on the establishing physical mecha-
nisms of the non-diffusive momentum transport have been stimulated.

In fact, the turbulent momentum stress tensor Π (called flux term in the gen-
eral theory for transport equation), plays the role of the key physics quantity for

2Note here that there is no ambiguity related to the contraction
∂x

∂ϕ
·
(
∇ · Π̄gy

)
because the

gyrokinetic momentum stress tensor Π̄gy is the second rank tensor and then ∇ · Π̄gy is a vector,

so there is no difference between the left and right contraction with the basis vector
∂x

∂ϕ
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the identification of the plasma rotation mechanism. In general theory it can be
decomposed as follows [49]:

Πϕ ≡ Π · ∂x
∂ϕ

= −χϕ
∂Ẋϕ

∂r
+ V Ẋϕ +ΠR (3.113)

where χϕ is the turbulent diffusivity, V is the convective (pinch) velocity and ΠR

represents residual stress tensor. The two last terms both represents a non-diffusive
contributions. The turbulent diffusivity is studied now since 20 years [? ] while
pinch and residual stress tensor mechanism were actively studied only in the last 3
years [49, 52, 53]. Special attention was payed to the residual stress investigation
[49–51]. In fact the diffusive and convective mechanisms have an analogue in particle
transport, while the residual stress tensor has not. As a consequence, the residual
stress can be viewed as a candidate for treating the field-particle exchange [49].

The non-diffusive mechanisms listed in the r.h.s. of the equation (3.113) can
certainly be detailed and completed. Let see for example the pinch mechanism.
Initially the origin of the pinch term was shown to be connected with E×B shear
mechanism in [52] and [53]. On the other hand in [54] a novel complementary to the
E×B shear, pinch mechanism was identified originated from the symmetry breaking
due to the magnetic field curvature. This is why it can be interesting to go into the
depth of new non-diffusive momentum transport mechanisms identification.

Let us now analyze the momentum stress tensor (momentum flux) derived from
the gyrokinetic variational principle. After a simple projection (on the right) to the
parallel or toroidal direction we can identify the pinch term, proportional to the
parallel or toroidal velocity, and the residual stress tensor that is simply represented
by the Maxwell tensor E1,aE1 || where a represents the 3 spatial coordinates.

Πgy · b̂0 ≡ Π ||

=
ϵ2

8π

(
|E1|2b̂0 − 2 E1E1 ||

)
+

∫
d3p F Ẋgy︸ ︷︷ ︸

=V

Ẋgy || (3.114)

Comparing with the toroidal momentum conservation equation with vanishing r.h.s.
due to the background magnetic field symmetry, the parallel momentum transport
equation possesses some source terms which originate from background gyrokinetic
magnetic field magnetization. Such a terms show the connection between plasma
and the background field and should also be considered as a momentum transport
mechanisms. Investigation of such terms represents an opportunity for future work.

3.7.5 Toroidal momentum evolution equation

Let us now consider the toroidal momentum evolution equation. We suppose that
the poloidal component of the background magnetic field can be neglected with
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respect to the toroidal component of the background magnetic field Bϕ ≫ Bθ, it
permits us in the first approximation to identify the parallel and the generalized
unit toroidal direction with b̂0 = ∇̂ϕ.3 By consequence we can use the toroidal
gyrokinetic momentum transport equation (3.112) rather then parallel gyrokinetic
momentum transport equation (3.111).

The details about toroidal projection of gyrokinetic momentum stress tensor in
arbitrary axisymmetric geometry are presented in the appendix E. 4 Then the
toroidal gyrokinetic momentum conservation law in cylindrical geometry is given
by:

∂P||

∂t
+

∫
d3p

 R |Ẋ|2∂F
∂ϕ
− F Ẋz ∂Ẋ||

∂z
− F ẊR∂Ẋ||

∂R︸ ︷︷ ︸
anormal diffusion

+

m

∫
d3p

F Ẋ||

(
∂Ẋz

∂z
+
∂ẊR

∂R
+

1

R
ẊR

)
︸ ︷︷ ︸

pinch velocity

 = (3.115)

ϵ2

4π

[ (
E||
∂Ez

∂z
− Ez ∂E||

∂z

)
+

(
E||
∂ER

∂R
− ER∂E||

∂R

)
+

1

R
E||E

R

]
Here we have defined∫

d3p F
(
R Ẋϕ

)
=

∫
d3p F Ẋ|| ≡ P|| (3.116)

Let us now analyze the equation (3.116) by comparing it to the equation (3.113)
(appearing as Eq.2 in [49]). We remark that in our case we can similarly identify 3
principal groups of mechanisms responsible for intrinsic plasma rotation.

The first one contains terms proportional to the parallel velocity (the pinch
velocity). The second one contains terms proportional to the gradient of the parallel
velocity, such a terms are referred to the abnormal diffusion mechanisms5. The
last group is classified as a group containing the Maxwell tensor components, called
residual stress terms.

3Here ∇ϕ = 1
R∇̂ϕ and then the covariant parallel component of any vector C is related to its

toroidal components as C|| = 1/R Cϕ
4We use the expression (E.63) in the case of the cylindrical geometry, where we identify coor-

dinates of general axisymmetric geometry (ψ, θ, ϕ) to coordinates (R, z, ϕ). Here the metric tensor
coordinates are gRR = 1, gϕϕ = R2, gzz = 1 the Jacobian J = R and ∂J

∂z = 0, ∂J
∂R = 1

5Here the term abnormal means that the diffusion processus is driven by turbulence (for exam-
ple, random walk of a particle driven by fluctuations of electromagnetic fields) and not by collisions
leading to the dissipation. This type of diffusion is possible in the Hamiltonian framework.
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Now we compare the momentum transport equation (3.116) to the momentum
transport equation derived from the first moment for the gyrokinetic Vlasov equa-
tion given in [50]. In both cases the r.h.s. of these equations contains the gyrokinetic

Maxwell stress tensor
∂E1aE1b

∂ya
that can be treated as a part of the residual stress ten-

sor. However the origins of this term are different for each method mentioned here.
Following the method presented in this chapter that uses the gyrokinetic Maxwell-
Vlasov variational principle, the gyrokinetic Maxwell stress tensor originates directly
from the expression for the gyrokinetic Maxwell-Vlasov action functional (3.4). In
what concerns the second method used in [50], the same term appears as a result of
the violation of the gyrocenter quasi neutrality at the second order of the electro-
static perturbation.

The gyrokinetic variational principle provides an exact momentum conservation
equation at the third order, the momentum conservation equation given in [50]
contains the highest order corrections to the residual stress tensor.

3.8 Summary

In this chapter the derivation of an exact gyrokinetic momentum conservation law
using the gyrokinetic variational principle, presented in [38], is done in the cases of
the full perturbed Maxwell-Vlasov and the electrostatic gyrokinetic Maxwell-Vlasov
system. This chapter is organized so that the derivation of the momentum conser-
vation law for the full perturbed Maxwell-Vlasov system prepare the derivation of
the momentum conservation law in the case of the gyrokinetically reduced Maxwell-
Vlasov system. In the first case only the effects resulting from the background
magnetic field separation are considered. For example, the adaptation of the Eule-
rian variations for the Lagrangian density is discussed in the section 3.4.1. Then in
Section 3.4.4 its influence on the particle canonical momentum p and therefore on
the generating function S = p · δx is compared to the full Maxwell-Vlasov system
case.

Further in 3.5 electrostatic gyrokinetic Maxwell-Vlasov system with background
separated magnetic field is considered. The corresponding expression for the particle
canonical momentum is discussed in 3.6.3.

Finally, one of the possible applications of the gyrokinetic momentum conser-
vation law, the investigation of momentum transport phenomena, is considered in
Section 3.7, and the toroidal momentum conservation and parallel momentum trans-
port equations are derived. In the latter case the terms related to the exchange
between plasma and background magnetic field are presented in (3.111). The iden-
tification of the intrinsic plasma rotation mechanisms resulting from the momentum
conservation equation is done in the cylindrical geometry case (3.116).

In previous works [51, 55], the derivation of the gyrokinetic momentum transport
equation was realized by using moments of the gyrokinetic Vlasov equation, which
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suffer from the standard gyrokinetic closure problem. In the same time the pre-
sented method for the gyrokinetic momentum conservation law derivation provide
an exact statement which depends on the nonlinear gyrokinetic physics included in
the gyrokinetic action functional.

Exploring the momentum conservation law derivation and its further physical
interpretation in the electromagnetically perturbed gyrokinetic Maxwell-Vlasov sys-
tem represents one of the perspectives of the future research.
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Chapter 4

Intrinsic guiding center theory

In this chapter we address the problem of the dynamical reduction for the motion
of a charged particle in a non-uniform slowly varying external magnetic field. The
general purpose of our work is to face up to the problems related to some geometrical
obstructions that were encountered previously.

The main idea for the dynamical reduction arises from consideration of the el-
ementary problem of charged particle motion in a uniform magnetic field, for ex-
ample B = B0ẑ. In this case (when the component of initial velocity parallel to
the magnetic field line is different from zero), the particle follows a helical orbit
(otherwise the motion of the particle is confined to a circle in the plane perpen-
dicular to the magnetic field line). Such a motion is multiscale: it consists of the
slow uniform drift along the magnetic field line and the fast uniform rotation (gy-
ration) around the magnetic field line. The frequency of this fast uniform rotation
(gyrofrequency) expressed as Ω = eB/mc is called also the Larmor frequency. The
radius of the gyration motion (gyroradius) ρ = b̂× v⊥/Ω explicitly depends on the
fast variable (gyroangle) ζ. The component of velocity parallel to the magnetic field
v|| = v · b̂ is constant. At the same time the kinetic energy and the modulus of
velocity v = (v · v)1/2 = (v2|| + v2⊥)

1/2 are conserved. This yields the invariance of

the following quantity µ = m v2⊥/2B. In other words we can say that µ denotes a
dynamical invariant of this system.

The guiding-center theories developed since Northrop [56] provide modifications
to this elementary dynamics in order to expand its properties (separation of scales
of motion and existence of dynamical invariants) in the case of slowly varying strong
magnetic field. Here the slow variance of the magnetic field is defined with respect to
the particle motion: we assume that its length scale LB is large compared to scales
of the particle motion: the modulus of the gyroradius ρ = v⊥/Ω and the distance
v||/Ω traveled by the particle in one gyroperiod parallel to the magnetic field line.
However, in the case of the non-uniform magnetic field for example, one should pay
attention to the fact that the gyrofrequency, Ω, is no longer a constant but becomes
dependent on the spatial coordinate r. Then some estimate of Larmor frequency,
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CHAPTER 4. INTRINSIC GUIDING CENTER THEORY

for example Ω = suprΩ(r), has to be made when defining the length scales.
The main idea of this approach is based on the physical intuition: in the case

of slowly varying magnetic field the particle dynamics should approximately be the
same as that in the case of the constant magnetic field.

Let us first consider the kinetic energy of the particle. It will still be conserved
because the modulus of the particle velocity is still conserved, but the ratio between
parallel and perpendicular velocity components can now vary. This leads to the fact
that µ is no more a constant but a slowly varying quantity (an adiabatic invariant).

It was showed by Alfvèn (1940) and recently remind in [5] that the magnetic
moment

µ =
e

m

∫ π

−π

dζ

2π

[
mv + e A(X+ ρ)

]
· ∂ρ
∂ζ

=
mv2⊥
2B

. (4.1)

is an adiabatic invariant associated with the fast gyromotion of a charged particle
(with mass m and the charge e) moving in a slowly varying magnetic field. Here the
particle position r is decomposed into its slowly varying component X, called the
guiding center, and its rapidly varying component, represented by the gyroradius ρ.

The general purpose of finding some adiabatic invariant is the possibility to make
an appropriate change of variables that permits us to consider such a slowly varying
quantity as one of the variables of the phase space. Then the variable associated to
its fast variable will be treated as an ignorable one. Such a procedure permits us to
simplify the dynamical description of the initial system.

Finding an adiabatic invariant can be used as a starting point for providing some
procedure that yields the series for its high order corrections.

In the first part of this chapter the problem of such a series construction is
considered on local particle phase space.

The common point of the guiding center theories developed previously is the
introduction of the slowly varying guiding-center position defined by removing the
gyroradius vector from the particle position X = r − ρ. Such a transformation
leads to the de-correlation between the positions in which electromagnetic fields
(full position (x)) and virtual particles (guiding-centers) (reduced position(X)) are
evaluated. In the previous chapter, we have considered the gyrokinetic Maxwell-
Vlasov equations, derived using reduced phase space coordinates obtained from the
Lie-transform perturbation method. We observed that such a decorrelation was
expressed through the appearance of the δ3 ≡ δ(x− ρ) function within the reduced
equations. One of the principal differences of our method is to not make use of such
a reduced position but directly deal with the particle position.

Another important point that will be discussed here concerns the gyrophase
definition. This question has been the subject of reflection for a number of plasma
physicists since the development of guiding-center theories, from the early work
of Hagan and Frieman [57], through that of Littlejohn [58] to the recent work of
Sugiyama [59].

In the case of the constant and uniform magnetic field no ambiguity related to
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the gyrophase appears. It can be defined in the plane perpendicular to the magnetic
field line as an angle between some constant perpendicular direction, (that can be
conventionally taken as x̂, for example) and the gyroradius vector ρ. The situation
become more complex in the case of the nonuniform magnetic field. Here it is no
longer possible to choose a constant reference direction in the perpendicular plane
to represent the gyrophase origin.

The usual procedure proposes to measure this fast angle with respect to some
fixed basis in the plane perpendicular to magnetic field, that we will note as (b̂1, b̂2).
Due to the spatial dependence of the magnetic directional vector, (b̂1, b̂2) must also
be dependent on the spatial coordinate. Then at each space point a different basis
will be defined. That is not all. Another difficulty lies inside the fact that the
vectors b̂1, b̂2 are not defined uniquely. The requirement of forming an orthogonal
basis with the magnetic field directional vector b̂ leaves open the opportunity for
rotation in the perpendicular plane about b̂ by some arbitrary angle, the gyrogauge
angle. The core of the problematic here lies in a fundamental geometrical effect:
anholonomy of a basis field in curved spaces.

The natural question which arises at this point is whether or not a “privileged”
choice exists for (b̂1, b̂2). A suggestion that is often made is to make use of the

normal and binormal vectors to the field line, i.e. b̂1 =
b̂ · ∇b̂
|b̂ · ∇b̂|

, b̂2 = b̂× b̂1. This

choice has some advantages and disadvantages. On the one hand, the vectors b̂1, b̂2

are tied to the physical vector b̂. On the other hand such a basis is undefined in the
case of straight field lines and becomes discontinuous at field line twisting points. In
the first part of this chapter we make use of this natural basis when deriving general
expressions for dynamical equations in local coordinates.

At the same time, when implementing these general dynamical equations in the
particular case of axisymmetric magnetic field geometry, we will operate with a more
practical choice for calculations by taking in place of the curvature vector b̂1, the
magnetic flux coordinate ∇ψ.

In the second part of this chapter an approach that does not involve use of some
fixed basis in order to measure the gyrophase angle is presented. Moreover, no gy-
rophase is used in order to represent rotation in the plane perpendicular to magnetic
field. The description of rotations is made on a more abstract level involving intrin-
sic so(3) Lie structure. A detailed construction for intrinsic gyroaveraging operator
is also presented.

In what follows we will refer our results to the guiding-center theory resulting
from the Lie-transform perturbation method [2, 3, 5, 45]
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4.1 Noncanonical Hamiltonian structure

It is well known that dynamics of a charged particle (of mass m and charge e)
in an external non-uniform magnetic field B = Bb̂, (where B is the magnitude
of the magnetic field and b̂ is its direction) has a Hamiltonian structure. Such
a Hamiltonian structure admits different formulations. The traditional one uses
the gauge-dependent electromagnetic potential formalism B = ∇×A; in this case
the corresponding Hamiltonian structure is canonical. The phase space consists of
the canonically conjugate coordinates: the canonical particle position q and the
canonical particle momentum following from the minimal coupling principle P =
mq̇+ eA.1

Another possibility is to use a field formalism that has the advantage to be
gauge independent. Here the corresponding Hamiltonian structure is non-canonical
because now it contains the coupling between fields and particles. The correspond-
ing phase space consists of non-canonically conjugated variables: a local particle
position r and the particle kinetic momentum p = mṙ. Such phase space variables
represent physical coordinates of the particle and so are better adapted to highlight
the underlying physical properties of the system, as for example dynamical scale
separation, necessary to realize dynamical reduction. For this purpose, the non-
canonical Hamiltonian formulation was used for the first time by R. Littlejohn in
[2].

Note that both Hamiltonian representations are related by the mapping:

r = q (4.2)

p = P− eA (4.3)

(4.4)

In what follows, we consider the free relativistic particle Hamiltonian:

H =
(
m2 + |p|2

) 1
2 ≡ mγ (4.5)

and the corresponding non-canonical Poisson bracket given by:

{f, g} = ∂f

∂p
· ∂g
∂r
− ∂f

∂r
· ∂g
∂p
− eB · ∂f

∂p
× ∂g

∂p
(4.6)

Then the suitable equations of motion in the non-canonical variables (r,p) are:

ṙ = {H, r} = p

mγ
(4.7)

ṗ = {H,p} = e

mγ
(p×B) (4.8)

where we have used that |p|2 = p · p and ∂pH = p/mγ.

1In this chapter we assume that c = 1
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4.2 Dynamical reduction

As mentioned above, in order to proceed with dynamical reduction, one should
explore the underlying properties of the dynamical system. The first obvious sim-
plification that one can bring into the dynamical description of our system is to
remark that the modulus of the particle kinetic momentum p ≡ √p · p is a trivial
constant of motion. In fact, it immediately arises from the expression (4.5) for par-
ticle relativistic Hamiltonian, a trivial function of p. 2 Due to this fact, we make
another change of variable:

 r

p

→


r

p̂ =
p

p

p = (p · p)1/2

 , (4.9)

With the following decomposition of the particle kinetic momentum p ≡ p p̂, where
p̂ denotes the unit momentum vector tangent to the particle orbit. Note that here we
do not introduce the guiding center of the particle but work directly with its position.
This is one of the principle differences with the earlier work of R. Littlejohn [2].

4.2.1 Rescaled Hamiltonian dynamics

Let us now consider the dynamics generated by the Hamiltonian that is equal to the
norm of the particle kinetic momentum p. By using the Poisson bracket defined in
(4.6), and the definition of unit vector p̂ ≡ p/p we obtain:

ṙ = {p, r} = p̂

ṗ = {p,p} = p̂× eB. (4.10)

Note that such a rescaling of the Hamiltonian,

mγ ≡
√
p2 +m2 → p (4.11)

is equivalent to the change of the time scale

t → τ ≡ p

mγ
t, (4.12)

This dynamics in the new phase space (r, p̂, p) is given by:

ṙ = {p , r} = p̂

˙̂p = {p , p̂} = 1

p
( p̂ × e B) (4.13)

ṗ = 0.

2Moreover this constant of motion is unstable with respect to the perturbation of the system by
an electric field. Our goal here is to obtain a constant of motion that can resist such a perturbation.
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Here we have used 3

∂p̂

∂p
=

1

p
(I− p̂p̂) ,

∂p

∂p
= p̂. (4.14)

The next step in the investigation of this system will depend on the way that we
deal with the vector p̂.

The essential point is the choice of the basis for its decomposition and the manner
to proceed with the dynamical reduction. In the two following subsections we shortly
discuss the difficulties associated with these aspects.

4.2.2 Gyrogauge transformation

One of the possible ways to deal with unit momentum vector p̂ (tangent to the
particle trajectory) is to decompose it in the basis associated to magnetic field line
by introducing two scalar dynamical variables φ-pitch angle and ζ-gyroangle locally.
Such a procedure consists of two steps.

At the first stage we introduce a fixed frame, composed of the tangent to the
magnetic field line vector b̂ = B/B and two vectors (b̂1, b̂2) in a perpendicular
plane. The pitch angle φ measures the projection of the unit momentum parallel to
the magnetic field and is defined as cosφ = p̂ · b̂. In order to define the gyrophase
ζ we have to introduce two rotating vectors:

ρ̂(x, ζ) = b̂1(x) cos ζ − b̂2(x) sin ζ (4.15)

⊥̂⊥⊥(x, ζ) = −b̂1(x) sin ζ − b̂2(x) cos ζ (4.16)

The problem is that the fixed frame vectors (b̂1, b̂2) are not unique. This frame is
defined up to rotations through the angle ξ:

b̂′
1 = b̂1 cos ξ − b̂2 sin ξ (4.17)

b̂′
2 = −b̂1 sin ξ − b̂2 cos ξ (4.18)

Such a transformation does not affect the spatial variable x′ = x. In order to keep
the rotating frame vectors invariant, the translation of the gyrophase ζ on some
angle ξ = ξ(x) should be taken into account:

ζ → ζ ′ ≡ ζ + ξ (4.19)

Finally the result of two transformations (4.18) and (4.19), named the gyrogauge
transformations do not change the rotating vectors. After simple substitution and

some trigonometry we obtain ρ̂′(x′, ζ ′) = ρ̂(x, ζ), ⊥̂⊥⊥
′
(x′, ζ ′) = ⊥̂⊥⊥(x, ζ).

3In writing these expressions, we make use the fundamental identities of vector calculus:

a · (b× c) = c · (b× c), then ˙̂p = {p, p̂} = −∂p̂
∂p
·
(
e B× ∂p

∂p̂

)
= p̂× B
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./changement_coord.ps

Figure 4.1: Gyrogauge transformation.

However, in the same time, dynamics of the system is not invariant with respect
to the transformations (4.18) and (4.19). It was shown by Littlejohn [3] that in
order to guarantee the gyrogauge invariance of the theory, the rotation of the fixed
frame must be included inside the dynamical equations. This is why the gyrogauge
vector R = ∇b̂1 · b̂2, which designs such a rotation, should be encountered during
the derivation of the equations of motion.

The Lie-transform method presented by R. Littlejohn (1981) [3] and developed
by A.J. Brizard in [5, 45, 60] offers an iterative procedure that guarantees the inde-
pendence of the reduced parallel dynamics on the gyrogauge function ξ = ξ(x) at
any order. In the same time the reduced gyrophase variable will still to be depen-
dent on the vector R. In what follows we will see that the same situation produces
for obtained by our method exact and gyroaveraged dynamical equations of motion.

The problem of the gyrogauge independence for guiding center theories indicated
and resolved by Littlejohn was recently re-evoked in the work of L. Sugiyama [59]
and provoked an active discussion inside the gyrokinetics community [61, 62].

It was repeated [59] that the crux point of the guiding center theories is hid-
den inside the definition of the gyrophase. Moreover it was emphasized that the
anholonomy of the fixed basis vectors that occurs in the general 3 dimensional mag-
netic field configuration, due to its non-zero torsion, can lead to breaking down of
the gyrogauge vector R and failure of perturbative series expansion at the second
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order. To assure globally consistent definition of the vector R a serious restriction
on the magnetic configuration to be torsion free was indicated. However Krommes
[61] indicated that in any case the guiding center theories does not explore the global
properties of the magnetic geometry because of the failure of the adiabatic invariant
before the moment when the particle starts to be affected by global magnetic field
properties.

4.2.3 Constant of motion and Hamiltonian normal form

The phase space variables, canonical or non-canonical are never completely inde-
pendent. In fact, they are always related by the Hamiltonian stationarity condition
Ḣ = Ḣ(r,p) = 0. In our case this condition is expressed as ṗ = 0.

Let us now consider the dynamics generated by the rescaled Hamiltonian p (4.10).
Then after the change of variables (4.9), the rescaled Hamiltonian p represents one of
the independent phase space variables (r, p̂, p) and the equations of motion become
(4.13). If we now suppose that our system possesses a constant of motion A, it
can then be viewed as A = A(r, p̂, p), or by inverting the functional dependencies,
the rescaled Hamiltonian p can be viewed as a function of the constant of motion
p = p(r, p̂,A). This idea leads inside two approaches that we implement in this
chapter in order to deal with the dynamical reduction of our Hamiltonian system
(4.5),(4.6).

The first one, composed of two principal steps, starts with construction of a
constant of motion. It consists to use the corresponding stationarity condition
0 ≡ Ȧ = {A, H} that yields a partial differential equation for A. Due to the
separation of dynamical scales suitable for our system, there will be an opportu-
nity to find one of its physical solutions in a small parameter series decomposition

A(r, p̂, p) =
n∑
i=0

Ai(r, p̂, p) εi where Ai satisfy the stationarity condition at the i-th

order.
At the first step, dynamics of the system will be reduced on the hyperplane

defined by the functional phase-space dependence of the constant of motion A =
A(r, p̂, p). Then at each order of its series decomposition, the constant of motion
can be used to control the precision of the dynamical reduction by considering its
time variation. This opportunity will be exploited in the section 4.4 while exploring
trapped particle trajectories.

The next step consists in inverting the functional dependence between the new
constant of motionA and the initial phase space variables (r, p̂, p) in order to include
it in the set of the new phase space variables (r, p̂,A). Finally, by rewriting the
system dynamics (Hamiltonian and the Poisson bracket) as the functions of A , we
obtain the system for which one of their equations of motion is Ȧ = 0. The procedure
of expressing the Hamiltonian as a function of the constant of motion A leads to
construction of its Hamiltonian normal form. Due to the fact that the constant of
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motion A in our case, can be decomposed in small parameter series, we can built

the corresponding Hamiltonian series in the form: H(r, p̂,A) =
n∑
i=0

Hi(r, p̂) Ai εi.

In fact, to know the reduced dynamics of a Hamiltonian system we need to know
the Hamiltonian normal form series decomposition.

This is why the second approach deals directly with the Hamiltonian normal form
series, without passing through the first stage of the construction of the constant of
motion. From the beginning we work on the phase space (r, p̂,A) and we consider
the rescaled Hamiltonian as a function on this phase space p = p(r, p̂,A) that
satisfies the stationarity condition ṗ = 0. In fact this condition has to be satisfied
independently of the choice of the phase space variables. Moreover it gives the
partial differential equation for p that leads to its series decomposition in the new
phase space variables.

In the following we consider the problem of dynamical reduction by applying
these two approaches. In the first part of this chapter, we pass through the constant
of motion construction in order to derive reduced dynamics in the local coordinates.
Such a coordinates will be dependent on the choice of the fixed basis (b̂1, b̂2) asso-
ciated to the magnetic field line. Our goal here is to present and to illustrate, in a
particular case of axisymmetric magnetic geometry, the local dynamical reduction
without introducing the guiding-center position.

In the second part, we proceed the intrinsic (independent of the fixed basis
(b̂1, b̂2)) dynamical reduction. Here we will pass by the direct way of the Hamilto-
nian normal form construction.

4.3 Local dynamical reduction

4.3.1 Fixed and dynamical basis

Here we start with introduction of the right-handed set of the fixed vectors
(b̂0, b̂1, b̂2) where b̂0 ≡ B/B is the unit tangent to the magnetic field line vec-
tor at some space point r, b̂1 ≡ k−1b̂0 ·∇b̂0 denotes the unit vector in the direction
of the magnetic curvature (with k ≡ |b̂0 · ∇b̂0|), and b̂2 ≡ b̂0 × b̂1. Then we in-
troduce the momentum-space coordinates (p, φ, ζ), where p is the norm of particle
momentum defined in (4.2), the pitch angle φ and the gyroangle ζ are given by:

φ = arccos
p · b̂0√
p · p

, ζ = arctan
p · b̂1

p · b̂2

(4.20)

It permits us to decompose the unit momentum vector p̂ tangent to the particle
orbit as follows:

p̂ =
p

p
= cosφ b̂0 − sinφ

(
sin ζ b̂1 + cos ζ b̂2

)
(4.21)
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and its associated orthogonal vectors

p̂1 =
∂p̂

∂φ
= − sinφ b̂0 − cosφ

(
sin ζ b̂1 + cos ζ b̂2

)
(4.22)

p̂2 = − 1

sinφ

∂p̂

∂ζ
= cos ζ b̂1 − sin ζ b̂2 (4.23)

According to expressions above the dynamical set of the vectors (p̂, p̂1, p̂2) can be
obtained from the fixed set (b̂, b̂1, b̂2) by rotation through the angles φ and ζ. This
relation can be expressed with multiplication by matrix:

U =

 cosφ − sinφ sin ζ − sinφ cos ζ
− sinφ − cosφ sin ζ − cosφ cos ζ
0 cos ζ − sin ζ

 (4.24)

Some remarks about dependence and independence of the phase space
variables

We have to emphasize here that the new phase - space variables (x, p, φ, ζ), where x
denotes the new particle position, have to be considered as independent from each
other. An ambiguity can appear due to the fact that the coordinate transformation
(p̂→ (φ, ζ)) does not affect the particle position. However the main difference
between new and old phase space coordinates is their spatial dependence. To avoid
this inconvenience, in what follows we will distinguish two particle positions: r for
the old variables and x for the new variables.

Note that for the fixed basis vectors the spatial dependence is considered to be
the same in old and new variables:

b̂α = b̂α(r) ≡ b̂α(x) (4.25)

where α ∈ {0, 1, 2}. This can lead to two different situations: the variables that
were initially defined as independent become spatially dependent after passing from
r to x and vice versa.

For example, the initial phase space variables (p, r) are considered to be inde-
pendent of each other, then the particle kinetic momentum p is independent of the
particle position r. After change of variables kinetic particle momentum p = p p̂
is now decomposed accordingly to the eq.(4.21) and became dependent on the new
space variable x through the spatial dependence of the vectors (b̂0(x), b̂1(x), b̂2(x)).

On the other hand, the pitch angle variable φ and the gyrophase variable ζ
are independent on the new phase space, accordingly to the eq.(4.21) they become
spatially dependent when returning to the phase space (p, r) through basis vectors
(b̂0(r), b̂1(r), b̂2(r))

We will need to carefully use this information when obtaining equations of motion
in the new variables.
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4.3.2 Local Poisson bracket

In order to proceed with the derivation of the equations of motion on the new 5-
dimensional phase space, (x, p, φ, ζ) we need to find the corresponding expression
for the Poisson bracket (4.6).

There are two possibilities to proceed. The first one is to make the change of
variables inside the 2-form that corresponds to the non-canonical bracket (4.6)

σ = dx ∧ dp− e B dx⊗ Bdx (4.26)

where B ≡ ϵijkb̂j. There are two stages: the first one consists to make the change of
variables for 1-forms dx, dp. The second one consists to inverse the corresponding
symplectic matrix. Such a procedure is similar to one used inside the Lie-transform
perturbation method [5]. Here we will exploit another possibility by making the
change of variables directly inside the Poisson bracket. To realize it we use the
chain rule:

{f, g}new =
∑
i,j

∂f

∂zi
{zi, zj}old

∂g

∂zj
(4.27)

where zi = (x, p, φ, ζ) represent the new phase space variables and {...}old is the
Poisson bracket expressed in initial variables (r,p).

Note that this formula appears naturally when applying the chain rule:

∂

∂r
=
∂x

∂r

∂

∂x
+
∂ϕ

∂r

∂

∂ϕ
+
∂ζ

∂r

∂

∂ζ
+
∂p

∂r

∂

∂p
(4.28)

and
∂

∂p
=
∂x

∂p

∂

∂x
+
∂ϕ

∂p

∂

∂ϕ
+
∂ζ

∂p

∂

∂ζ
+
∂p

∂p

∂

∂p
(4.29)

Then the expression for the canonical part of the Poisson bracket in new variables
appears when developing the expression:

∂

∂p
· ∂
∂r
− ∂

∂r
· ∂
∂p

=

{ϕ,x} ·
(
∂

∂ϕ

∂

∂x
− ∂

∂x

∂

∂ϕ

)
+ {ζ,x} ·

(
∂

∂ζ

∂

∂x
− ∂

∂x

∂

∂ϕ

)
+ {p,x} ·

(
∂

∂p

∂

∂x
− ∂

∂x

∂

∂p

)
+

{p, ϕ}
(
∂

∂p

∂

∂ϕ
− ∂

∂p

∂

∂ϕ

)
+ {p, ζ}

(
∂

∂p

∂

∂ζ
− ∂

∂ζ

∂

∂p

)
+ {ζ, ϕ}

(
∂

∂ζ

∂

∂ϕ
− ∂

∂ϕ

∂

∂ζ

)
(4.30)

Generalized Frenet-Serret equations

During the derivation of the Poisson bracket we will need to deal with spatial deriva-
tives of the fixed basis vectors (b̂0, b̂1, b̂2). Such a derivatives can be expressed in
the following compact bi-vector form 4

4In what follows we use the Greek indices to indicate the different basis vectors (b̂0, b̂1, b̂2) and
the Latin indices in order to indicate its coordinates
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∇ b̂α =M · Bα (4.31)

Note that this relation does not change when passing from the old space variable
r to the new space variable x because the assumption (4.25) on the invariance of
the spatial dependence of the basis vectors.

The bi-vector M is defined as follows5:

M = (∇b̂0 · b̂1) b̂2 + (∇b̂2 · b̂0) b̂1 + (∇b̂1 · b̂2) b̂0 (4.32)

and Bα = ϵijk b̂α j denotes the bi-vector which components are given by the operator

“the vector product with the basis vector b̂α”.
In order to prove (4.31) we have to use the fact that ∇b̂α · b̂β = −∇b̂β · b̂α and

∇b̂α · b̂α = 0.
The expression for basis vector derivatives can be also interpreted as generalized

Frenet-Serret equations.

Curvature-torsion

The generalized Frenet-Serret equation (4.31) yields an expression for the curvature-
torsion of the fixed basis vectors:

∇× b̂α = b̂α · (M − I :M) (4.33)

where I = b̂0b̂0 + b̂1b̂1 + b̂2b̂2 denotes the identity tensor in the fixed basis. Then
the curvature-torsion coefficients are expressed as:

∇× b̂0 = − (M11 +M22) b̂0 +M01 b̂1 +M02 b̂2 (4.34)

∇× b̂1 = M10 b̂0 − (M00 +M22) b̂1 +M12 b̂2 (4.35)

∇× b̂2 = M20 b̂0 +M21b̂1 − (M00 +M11) b̂2 (4.36)

where Mij = b̂i ·M · b̂j the coefficients of the bi-vector M in the fixed basis.
Note that some of the curvature-torsion coefficients may be equal to zero accord-

ingly to the choice of the vectors b̂1 and b̂2. For example, in our case the coefficient
M01 = −b̂0 · ∇b̂0 · b̂2 = k b̂1 · b̂2 = 0

Then we obtain:

∇× b̂0 = τ b̂0 + k b̂2 (4.37)

with the torsion coefficient τ ≡ b̂0·∇×b̂0 = −M11−M22 = −b̂1·∇b̂2·b̂0−b̂2·∇b̂0·b̂1

and the curvature coefficient, that we have defined before as the norm of the vector
b̂1: |b̂0 · ∇b̂0| = b̂0 · ∇b̂0 · b̂1 = b̂2 · ∇ × b̂0 =M02.

5Note that the bi-vector M explicitly depends on the gyrogauge vector R ≡ ∇b̂1 · b̂2
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Phase space variables derivatives

To follow the calculation of the Poisson bracket in the new variables we have first
find the coefficients of the Jacobian matrix that corresponds to our change of
variables

J =
∂ (x, p, φ, ζ)

∂ (r,p)
:

∂x

∂r
= 1

∂x

∂p
= 0

∂p

∂r
= 0

∂p

∂p
= p̂0

∂φ

∂r
= −M · p̂2

∂φ

∂p
=

p̂1

p

∂ζ

∂r
= −M · p̂1

sinφ

∂ζ

∂p
= − p̂2

p sinφ

(4.38)

where we have used the generalized Frenet-Serret equations.
Then by using (4.38) and (4.36) we can obtain the old brackets (4.6) between

the new phase space variables: {zi, zj}old:

{p,x} = p̂0, {φ,x} = p̂1

p
, {ζ,x} = − p̂2

p sinφ

{p, φ} = −p̂0 ·M · p̂2 = −p̂2 · ∇ × p̂0 (4.39)

{p, ζ} = − 1

sinφ

(
p̂0 ·M +

eB

p

)
· p̂1 = −

1

sinφ

(
p̂1 · ∇ × p̂0 +

eB

p
· p̂1

)
{ζ, φ} =

1

p sinϕ

(
p̂1 ·M · p̂1 + p̂2 ·M · p̂2 −

eB

p
· p̂0

)
=

1

p sinϕ

(
−p̂0 · ∇ × p̂0 −

eB

p
· p̂0

)
Here we should consider that the coefficients of the bi-vector M in the dynamical
basis p̂i ·M · p̂j are the functions of the new phase space variables, then the momen-
tum variables (p, φ, ζ) are considered to be independent of the spatial variable x.
Accordingly to the definitions (4.23) and the expression for the curvature-torsion for
the fixed basis vectors (4.33) the curvature-torsion for the dynamical basis vectors
is6

∇× p̂α = p̂α · (M − I :M) (4.40)

6Note that the coefficients of the bi-vector M in the dynamical basis (p̂0, p̂1, p̂2) and in the

fixed basis (b̂0, b̂1, b̂2) are related by rotation transformation M̃ = UTMU
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where the unit tensor is now represented in dynamical basis I = p̂0p̂0+ p̂1p̂1+ p̂2p̂2

Then for the coefficients p̂i ·M · p̂j we have:

p̂0 ·M · p̂1 = p̂1 · ∇ × p̂0

p̂0 ·M · p̂2 = p̂2 · ∇ × p̂0

p̂1 ·M · p̂1 + p̂2 ·M · p̂2 = −p̂0 · ∇ × p̂0

(4.41)

Then the Poisson bracket in new variables is given by

{f, g} = p̂0

(
∂f

∂p
· ∂g
∂x
− ∂f

∂x
· ∂g
∂p

)
+

p̂1

p

(
∂f

∂φ
· ∂g
∂x
− ∂f

∂x
· ∂g
∂φ

)
+(

− p̂2

p sinφ

) (
∂f

∂ζ
· ∂g
∂x
− ∂f

∂x
· ∂g
∂ζ

)
+ (4.42)

1

sinφ

(
−p̂1 · ∇ × p̂0 −

e

p
B · p̂1

) (
∂f

∂p
· ∂g
∂ζ
− ∂f

∂ζ
· ∂g
∂p

)
+(

−p̂2 · ∇ × p̂0

) (
∂f

∂p
· ∂g
∂φ
− ∂f

∂φ
· ∂g
∂p

)
+

1

p sinφ

(
−p̂0 · ∇ × p̂0 −

e

p
B · p̂0

) (
∂f

∂ζ
· ∂g
∂φ
− ∂f

∂ζ
· ∂g
∂φ

)
By implementing the momentum gradient, defined by using the chain rule and the
expressions for phase space variables derivatives (4.38):

∂

∂p
=
∂p

∂p

∂

∂p
+
∂φ

∂p

∂

∂φ
− ∂ζ

∂p

∂

∂ζ
= p̂0

∂

∂p
+

p̂1

p

∂

∂φ
− p̂2

p sinφ

∂

∂ζ
(4.43)

We realize that the 3 first terms in the expression (4.42) represent the canonical
part of the local Poisson bracket in the new variables, while the 3 last terms give
the non-canonical part:

e B∗ ·

(
∂f

∂p
× ∂g

∂p

)
= e B ·

(
∂f

∂p
× ∂g

∂p

)
+ p ∇× p̂0 ·

(
∂f

∂p
× ∂g

∂p

)
(4.44)

where
B∗ = B+ (p/e)∇× p̂0 (4.45)

In fact, with

p∇× p̂0 ·

(
∂f

∂p
× ∂g

∂p

)
=

p̂1 · ∇ × p̂0

sinφ

(
∂f

∂p
· ∂g
∂ζ
− ∂f

∂ζ
· ∂g
∂p

)
+

p̂2 · ∇ × p̂0

(
∂f

∂p
· ∂g
∂φ
− ∂f

∂φ
· ∂g
∂p

)
+

p̂0 · ∇ × p̂0

p sinφ

(
∂f

∂ζ
· ∂g
∂φ
− ∂f

∂ζ
· ∂g
∂φ

)
(4.46)
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and

eB · ∂f
∂p
× ∂g

∂p
=

e

p sinφ

(
B · p̂1

)(∂f
∂p
· ∂g
∂ζ
− ∂f

∂ζ
· ∂g
∂p

)
+

e

p2 sinφ

(
B · p̂0

)(∂f
∂ζ
· ∂g
∂φ
− ∂f

∂ζ
· ∂g
∂φ

)
(4.47)

we obtain the expression for the noncanonical part of the Poisson bracket expressed
in the new variables (4.44).

Finally, in the new phase space variables (x; p, φ, ζ) the local Poisson bracket
(4.6) has the following expression:

{f, g} = ∂f

∂p
· ∂g
∂x
− ∂f

∂p
· ∂g
∂x
− eB∗ · ∂f

∂p
× ∂g

∂p
(4.48)

where the modified magnetic field is given by (4.45) and the momentum gradient is
defined in (4.43).

4.3.3 Local equations of motion

Using the expression (4.48) for Poisson bracket in the new local phase space variables,
and the physical Hamiltonian H (4.5) we obtain the corresponding equations of
motion.

ẋ = {H,x} = p

mγ
p̂0 (4.49)

ṗ = {H, p} = 0 (4.50)

φ̇ = {H,φ} = − p

mγ
p̂2 · (∇× p̂0) = −

p

mγ

(
(p̂0 · ∇p̂0) · p̂1

)
(4.51)

ζ̇ = {H, ζ} = e B0

mγ
− p

mγ sinφ

(
p̂1 · (∇× p̂0)

)
=

e B0

mγ
+

p

mγ sinφ

(
(p̂0 · ∇p̂0) · p̂2

)
(4.52)

where we have used that p̂2 = p̂0 × p̂1 and ∇p̂0 · p̂0 = 0.
First of all we realize that the introduction of the new phase space variables

(x, p, φ, ζ) is well suitable for the dynamical description of the considered system
because it reveals its underlying separation of scales of motion. We emphasize that
here x denotes an exact particle position and not the guiding-center position, as
was used previously in [2] and [44]. Then we can conclude that the introduction of
the guiding center (reduced particle position) is not obligatory for show the scales
of motion separation.

To represent the system in a more suitable way for numerical simulations, we
rewrite the system (4.52) in the dimensionless variables by making appear the small
parameter:

ε ≡ ρL/LB ≪ 1 (4.53)
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that represents the ratio between the particle Larmor radius (named also “gyrora-
dius”) ρL ≡ p/eB0 and the nonuniformity length scale of the magnetic field LB

7.
For fusion plasma this ratio satisfies the condition (4.53) 8. Then the dimensionless
equations of motion are 9:

ẋ = ε p̂0

ṗ = 0 (4.54)

φ̇ = −ε p̂2 · (∇× p̂0) = −ε ((p̂0 · ∇p̂0) · p̂1)

ζ̇ = 1− ε

sinφ
p̂1 · (∇× p̂0) = 1 +

ε

sinφ
((p̂0 · ∇p̂0) · p̂2)

where the spatial coordinate is now dimensionless x → x/LB. Now we can easily
remark that the gyrophase angle ζ is the fast variable of our system and the others
variables of the local particle phases space correspond to its slow dynamics.

The second remark that we have to make here is about the gyrogauge dependence
of these non-reduced equations of motion projected on the natural magnetic field
basis.

Such a dependence is essentially geometrical in origin. It was shown in [3] when
applying the Lie-transform perturbation method, that it is possible to remove the gy-
rogauge vector R dependence from the averaged guiding-center variables (X̄, p̄||, µ̄).
The exception is the gyroangle ζ that still depends on gyrogauge because its modi-
fication would bring back rapid oscillation into the reduced system.

This procedure is explicitly shown in [45]. There, the method of bringing the
parallel dynamics gyrogauge invariant is based on the fact that the curl of the
gyrogauge vector ∇×R is invariant:

∇×R′ = ∇× (R+∇ψ) = ∇×R (4.55)

By consequence the curl of the modified gyrogauge vector R∗ = R + τ/2b̂, with
τ = b̂ · ∇ × b̂, is also gyrogauge invariant, because of the correction τ/2b̂ is inde-
pendent of the derivatives of the fixed basis. Such an invariant quantity appears
in the corresponding reduced equations of motion for parallel dynamics through its
dependence on the modified magnetic field B∗ that contains the correction ∇×R∗

at the second order of perturbative expansion. Then its guarantee the gyrogauge

7For example in numerical simulations we take the nonuniformity length scale LB = 1m that
is comparable with the small tokamak radius in the case of the tokamak Tore Supra

8Note that here, oppositely to the Lie-transform perturbation analysis, presented in [45] we deal
with macroscopic limit, when the macroscopic length LB is finite and the Larmor radius ρL ≪ LB

is small. The microscopic limit consists to interpret the inequality (4.53) inversely, by considering
that the Larmor radius ρL is finite and the macroscopic length is large length LB ≫ ρL is large.
In the microscopic limit ϵ ∼ e while in the macroscopic limit ϵ ∼ 1/LB

9Note that here it is more convenient to use the physical Hamiltonian H rather then the rescaled
Hamiltonian p to derive the equations of motion because it permits us to highlight physical small
parameter ε
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invariance of the parallel reduced dynamics. As was announced in [3] the only vari-
able that still has gyrogauge dependent dynamics is the gyroangle, which contains
the vector R∗ explicitly.

If now we reintroduce the vectors ρ̂ = b̂1 cos ζ − b̂2 sin ζ and ⊥̂⊥⊥ = −b̂1 sin ζ −
b̂2 cos ζ inside (4.55), we find:

p̂0 = b̂0 cosφ+ ⊥̂⊥⊥ sinφ, p̂1 = −b̂0 sinφ+ ⊥̂⊥⊥ cosφ, p̂2 = ρ̂ (4.56)

Then the gyrogauge vector R = ∇⊥̂⊥⊥ · ρ̂ = ∇b̂1 · b̂2 appears inside the equation
of motion for gyrophase:

φ̇ = −ε p̂0 ·
(
∇⊥̂⊥⊥ · b̂0

)
(4.57)

ζ̇ = 1 +
ε

sinφ

(
p̂0 · ∇b̂0 · ρ̂ cosφ+ p̂0 ·R sinφ

)
(4.58)

It means that the rotation of the fixed vector basis b̂1, b̂2 is involved inside
the non-reduced dynamical equations. Similarly to the Lie-transform method, here
the parallel averaged and even non-reduced dynamics (x, φ, p) still be gyrogauge
invariant. The gyrophase dynamics still naturally be dependent on the gyrogauge
because of the gyrophase itself is not gyrogauge invariant(4.19).

This result, one more time emphasizes, that the gyrogauge dependence is not a
consequence of the dynamical reduction but of the choice of local basis on which the
dynamics is projected.

4.3.4 Iterative construction of the constant of motion

Now we have all the elements to start the iterative procedure for construction of the
constant of motion for our system.

First of all, the constant of motion, which we denote A here, has to satisfy the
condition Ȧ ≡ {A, H} = 0, which can be made explicit as:

(∂ζ A) ζ̇ = − (∂x A) ẋ− (∂φ A) φ̇ (4.59)

The separation of scales of motion permits us to obtain an iterative procedure for
solution of this equation with following series decomposition:

A0 =
∞∑
n=0

⟨An⟩(x, p, φ) εn +
∞∑
n=0

Ãn(x, p, φ, ζ) εn+1 (4.60)

here ⟨A⟩ denotes the gyroaveraged part of the function, and correspondingly Ã
denotes its gyroangle-dependent part. To start the iterative procedure, we suppose
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that at the lowest order the constant of motion is independent of the fast gyrophase
variable ζ. Here are the three first steps of the iterative procedure:

ε0 : ∂ζA = 0 (4.61)

ε1 : ∂ζ A1 = −p̂0 (∂x A0) + (p̂0 · ∇p̂0) · p̂1 (∂φ A0) (4.62)

ε2 : ∂ζA2 = − 1

sinφ
(p̂0 · ∇p̂0) · p̂2 (∂ζ A1) (4.63)

−p̂0 (∂x A1) + (p̂0 · ∇p̂0) · p̂1 (∂φ A1) (4.64)

where we have used the dimensionless equations of motion (4.55).

Operators of gyroaveraging, gyrofluctuation

As follows from the system (4.64), at each step of the iterative procedure that leads
to the construction of the constant of motion A we have to invert the operator ∂ζ .
In order to construct the corresponding inverse operator, that we will call G, we first
introduce the complementary operators of the gyroaveraging R and gyrofluctuation
N :

R =
1

2π

∫ π

−π
dζ, N = I−R (4.65)

Applying these operators, each observable f = f(x, p, φ, ζ) can be decomposed into

f = R f + N f ≡ ⟨f⟩ + f̃ , such a decomposition is similar to the Fourier series
decomposition, where the zero-harmonic is given by application of the operator R to
the observable f0 = R f . In the following we indicate the action of the gyroaverage
operator R with ⟨...⟩.

Then the left-inverse operator G can be defined as follows: G ∂ζ = N and
G R = 0. In fact the operator G acts as an indefinite integral operator over the
variable ζ on the observables that depend on ζ and vanish the observables that do
not depend on gyroangle ζ. Then the operator G has a kernel composed by the
gyroaveraged part of the observables. It can be represented as:

G = χ(n)

∫ ζ

dζ with χ(n) =

{
0, n = 0
1, n ̸= 0

(4.66)

where n designs harmonics in ζ. For example

G(1) = 0, and G(cosnζ) = sinnζ

n
(4.67)

We apply the operators R and G at each step of the iterative procedure. At each
stage the application of the operator R permits us to obtain the gyroaveraged part
of the coefficient ⟨Ai−1⟩ and the application of the operator G leads to the expression

for the fluctuating part of the next order coefficient Ãi.
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For example at the first order of the intrinsic procedure we have:

R : 0 = −∂x A0⟨ p̂0⟩+ ∂φ A0

⟨
(p̂0 · ∇p̂0) · p̂1

⟩
(4.68)

G : Ã1 ≡ N A2 = −∂x A0 G (p̂0) + ∂φ A0 G ((p̂0 · ∇p̂0) · p̂2) (4.69)

The first equation yields the differential equation for gyroaveraged part of the zeroth-
order coefficient ⟨A1⟩. Then the second equation gives the fluctuating part of the

first-order coefficient Ã1.

By applying the operator of the gyroaverage to the second order equation (4.64),
we will find the first order partial differential equation for the gyroaveraged part of
the coefficient A1 :⟨

∂x⟨A1⟩ p̂0

⟩
+
⟨
∂φ⟨A1⟩

(
(p̂0 · ∇p̂0) · p̂1

)⟩
= (4.70)⟨

∂xÃ1 p̂0

⟩
+
⟨
∂φ Ã1 ((p̂0 · ∇p̂0) · p̂1)

⟩
−
⟨
∂ζÃ1

(
1

sinφ
(p̂0 · ∇p̂0) · p̂2

)⟩
Note that this equation will occur at all the following stages of the iterative proce-
dure, such that at the stage number i+1 it will permit us to obtain the gyroaveraged
part of the coefficient Ai. The same procedure will be implemented in the following
section when constructing the Hamiltonian normal form in intrinsic basis.

Zeroth order constant of motion A0

Here we deal with the solution of the first order partial differential equation (4.68)
that leads to the first order of the constant of motion A0. After explicit evaluation
of the gyroaverage ⟨p̂0⟩ = b̂0 cosφ and ⟨p̂2 · (∇ × p̂0)⟩ = 1/2 sinφ (∇ · b̂0) this
equation becomes:

1

2
tanφ ∂φ A0 = −

b̂0 · ∇A0

b̂0 · ∇B
(4.71)

here we have also used the condition ∇ · b̂0 = −b̂0 · ∇B resulting from the elec-
tromagnetic constraint : ∇ · B = 0. Then we apply the method of separation of
variables, by supposing that A0(x, φ) = g(x) h(φ) we have

1

2h

dh

dφ
tanφ = − B

b̂0 · ∇B
· b̂0 · ∇g

g
= C (4.72)

where C is a constant. By integrating each equation separately we obtain

h(φ) =

(
sinφ

sinφ0

)2C

, g(x) = B(x)−C (4.73)
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Then following the physical intuition that led to the expression for the adiabatic
invariant µ0 (4.1), we set the constant C = 1. Then by choosing the constant of
integration equal to the modulus of the kinetic momentum p, we have:

A0 =
p2 sin2 φ

B
= 2m µ0 (4.74)

Here we do not proceed with the evaluation of the higher order corrections for
the constant of motion A. The explicit calculation up to the second order is realized
in Section 4.5 when applying the intrinsic formalism for Hamiltonian normal form
construction. In what follows we explore some possible applications of the local
particle dynamics.

4.4 Investigation of trapped particles trajecto-

ries.

In this section we present one of the possible applications for the derivation of
particle dynamics in local phase-space variables (x, p, φ, ζ). In particular we deal
with investigation of trapped particles trajectories in the axisymmetric magnetic
field geometry. Such an investigation is of interest for understanding fast ions (v ≥
vth) confinement.

In previous studies [63, 64] the constant-of-motion (COM) 3 dimensional phase
space was used. The invariance of its variables: the kinetic energy E = mv2/2,
zeroth-order magnetic moment µ0 = mv⊥/2B and toroidal canonical momentum
Pϕ = (e/c)ψ − mRv||Bϕ/B was supposed. It was also mentioned that such an
approximation is suitable only for low β ≤ 10% 10, while for high β a correct
description can be obtained using guiding-center equations integration.

Here the exact dynamical equations will be integrated. In the same time the
variation of the adiabatic invariant µ0 will be presented for different values of the
small parameter ε = p/eB. It will give a possibility to make an estimation of error
that can be produced when using the adiabatic invariant as one of the phase space
variables.

10The quantity β is the normalized plasma pressure defined as follows

β ≡ p

B2/µ0
,

where µ0 = 4π ∗ 10−7Hm−1 denotes the permittivity of free space. The β represents a ratio of the
plasma pressure to magnetic pressure. It is a measure of the efficiency with which the magnetic
field confines the plasma. The high β is of interest for an economic power balance in the reactor,
but difficult to achieve because of plasmas instabilities. A combination of engineering and nuclear
physics constraints has shown that a fusion plasma must achieve a temperature T ∼ 15 keV, a
pressure p ∼ 7 atm, a plasma β ∼ 8% and an energy confinement time τE ∼ 1 s.
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This work is organized as follows. The subsection 4.4.1 is devoted to derivation
of the exact dynamical equations in the general axisymmetric magnetic field geom-
etry. In particular, the equations of motion for bi-cylindrical coordinate case will
be explicitly obtained in H.1. its numerical integration will be realized by using the
package Mathematica. Then in the subsection 4.4.2 particle trajectories analysis will
be exposed.

4.4.1 Dynamics in axisymmetric magnetic field

Magnetic surfaces

To describe a magnetic field configuration it is convenient to use coordinates defined
by the field itself. The definition of a magnetic configuration corresponding to
plasma confinement device is closely related to existence of the magnetic surfaces.

“A two dimensional surface defined by a function f(x) = const is said to be
magnetic surface if at any point the magnetic field lies within the surface, i.e. B ·
∇f = 0′′

R.B. White “The Theory of Toroidally Confined Plasmas”
For example in the magnetohydrodynamical approach (MHD) fusion plasma can

be considered as magnetized fluid characterized by its kinetic pressure p and current
density j. Then the plasma equilibrium is defined by the condition j×B = ∇p its
implies that the magnetic surfaces are the isobars B · ∇p = 0.

A magnetic field, possessing an axial symmetry, suitable for a tokamak, repre-
sents one of the 3 possible types of plasma equilibria for which the magnetic surfaces
are globally known. Intuitively the existence of closed magnetic surfaces should be
one of the conditions for a good plasma confinement. It is well known that in
this case their topology consists of nested tubes (tori) of flux. Then it is natural
to associate to them a system of general curvilinear coordinates (ψ, θ, ϕ). Where
the condition ψ=const defines one of the magnetic surfaces, θ=const corresponds
to the general poloidal angle and ϕ=const introduce generalized toroidal direction.
Consequently, it is more natural to use the contravariant representation for basis
vectors(∇ϕ,∇θ,∇ϕ) that are defined as a normal vectors to the corresponding sur-
faces.

General axisymmetric coordinates

Coordinate definition Here we deal with a general axisymmetric coordinates
construction. We start by considering the cylindrical coordinates (R, ϕ, Z), where
the radial coordinate R measure the distance from the general axis to the center of
a tokamak, the angle θ represents toroidal angle and the coordinate Z permits us to
complete the definition of the position in a poloidal machine section. In the second
step we pass from the coordinates (R,Z) that define the position in the poloidal
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./tore.ps

Figure 4.2: General axisymmetric geometry

plane of a tokamak to the coordinates associated with magnetic surfaces (ψ, θ). We
suppose that there exist the functions R = R(ψ, θ), Z = Z(ψ, θ) that are invertible
ψ = ψ(R,Z), θ = θ(R,Z). Note that the toroidal direction ∇ϕ is not affected by
this change of variables.

The total transformation can be expressed in Cartesian coordinates as

x = R(ψ, θ) sinϕ x̂+R(ψ, θ) cosϕ ŷ + Z(ψ, θ) ẑ (4.75)

In order to be sure that such a transformation is well defined, we need to suppose
that the Jacobian of the direct transformation J cannot be infinite, or that the
Jacobian J −1 of the inverse transformation can not be equal to zero. Because our
transformation consist of two stages, we can write

1

J
= det

∂(ψ, θ, ϕ)

∂(x, y, z)
= det

∂(ψ, θ, ϕ)

∂(R, θ, Z)
det

∂(R, θ, Z)

∂(x, y, z)
≡ 1

Ja
1

Jc
(4.76)

It is well known that the Jacobian of the transformation from cylindrical to Cartesian
coordinates J −1

c is different from zero, then to be sure that the total transformation
from general to Cartesian coordinates is well defined, it is sufficient to consider the
Jacobian of the second part of the transformation:

1

Ja
= det

∂(ψ, θ, ϕ)

∂(R,Z, ϕ)
= det

 ∂Rψ ∂Zψ 0
∂Rθ ∂Zθ 0
0 0 1

 = |∇ψ ×∇θ| = |∇ψ||∇θ| (4.77)
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Then we need to suppose that the product of the vector norms |∇ψ||∇θ| > 0.
The second supposition on transformation (R,Z, ϕ)→ (ψ, θ, ϕ) is that we make

here is the metric tensor is diagonal, with:

|∇ψ| =
√
gψψ =

1
√
gψψ

=
1√

(∂ψR)2 + (∂ψZ)2
(4.78)

|∇θ| =
√
gθθ =

1
√
gθθ

=
1√

(∂θR)2 + (∂θZ)2
(4.79)

|∇ϕ| =
√
gϕϕ =

1
√
gϕϕ

=
1

R
(4.80)

Note that accordingly to the (4.76) the Jacobian of the total transformation is equal

to the product of the basis vectors norms
1

J
=

1

R
|∇ψ||∇θ|.

Due to the assumption of basis vector orthogonality ∇ψ · ∇θ = 0, the variable
χ, that permits us to define the transition between the basis vectors in a form of a
rotation, can be defined as follows11:

∂ψZ

∂θZ
= − ∂θR

∂ψR
≡ tanχ (4.81)

Then the relation between the basis vectors (∇R,∇Z) and (∇ψ,∇θ) can be written
as follows:

∇R = cosχ∇̂ψ − sinχ∇̂θ

∇Z = sinχ∇̂ψ + cosχ∇̂θ
(4.82)

and conversely

∇̂ψ = sinχ∇Z + cosχ∇R

∇̂θ = cosχ∇Z − sinχ∇R
(4.83)

where ∇̂ψ ≡ ∇ψ
|∇ψ|

and ∇̂θ ≡ ∇θ
|∇θ|

define the unit vectors in generalized radial and

poloidal directions.
To obtain the relations (4.82), first we have to express the basis vectors (∇R,∇Z)

in new coordinate:

∇R =

(
∂ψR
∂θR

)
,∇Z =

(
∂ψZ
∂θZ

)
(4.84)

11Note that in the case of bi-cylindrical coordinates when the magnetic surfaces are defined as
the set of concentric circles R = R0 + ψ cos θ, Z = ψ sin θ, the variable χ coincide with generalized
poloidal coordinate θ
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Then by using the normalized vectors ∇̂ψ, ∇̂θ defined in (4.80) we have:

∇R = ∂ψR ∇ψ + ∂θR ∇θ =
∂ψR√
gψψ
∇̂ψ +

∂θR√
gθθ
∇̂θ

∇Z = ∂ψZ ∇ψ + ∂θZ ∇θ =
∂ψZ√
gψψ
∇̂ψ +

∂θZ√
gθθ
∇̂θ

then with (4.81) and due to the trigonometry identities cos2 χ = 1/(1 + tanχ2) and
sin2 χ = tan2 χ/(1 + tanχ2) we can define:

cosχ =
∂θZ√
gθθ

=
∂ψR√
gψψ

(4.85)

sinχ = − ∂θR√
gθθ

=
∂ψZ√
gψψ

(4.86)

Then finally we obtain the relation (4.82) between the basis vectors.
Note here that the expressions for derivatives ∂ψχ and ∂θχ that will be useful

for curvature tensor definition, follow from (4.85),(4.86) by using the symmetry of
the second derivatives ∂ψ∂θR and ∂ψ∂θZ.

∂ψχ = −
∂θ
√
gψψ√
gθθ

, ∂θχ =
∂ψ
√
gθθ√

gψψ
(4.87)

Curvature tensor In order to derive the equations of motion for axisymmetric
magnetic field configuration with basis yi = (ψ, θ, ϕ), we need to know its curvature
tensor ∇∇yi.

We start with calculation of the curvature tensor for cylindrical coordinates.

Cylindrical coordinates The transformation from Cartesian coordinates to
cylindrical is given by

x(R, θ, Z) = R sinϕ x̂+R cosϕ ŷ + Z ẑ (4.88)

Then the metric tensor is diagonal gaa = 1/gaa, with

gaa =

 1 0 0
0 R2 0
0 0 1

 (4.89)

We express the contravariant vectors (∇R,∇ϕ,∇Z) as the functions of cylindrical
coordinates:

∇R =

 sinϕ
cosϕ
0

 ,∇ϕ =
1

R

 − cosϕ
sinϕ
0

 ,∇Z =

 0
0
1

 (4.90)
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The gradient in cylindrical coordinates is given by:

∇ = ∇R ∂

∂R
+∇ϕ ∂

∂ϕ
+∇Z ∂

∂Z
(4.91)

with
∂

∂yi
= gii∇yi · ∇ ≡

√
gii ∇̂yi · ∇.

Then the curvature tensor for cylindrical coordinates is:

∇∇R = R∇ϕ∇ϕ ≡ 1

R
∇̂ϕ∇̂ϕ (4.92)

∇∇̂ϕ = −∇ϕ∇R = − 1

R
∇̂ϕ∇R (4.93)

∇∇Z = 0 (4.94)

General axisymmetric coordinates The gradient in axisymmetric coordi-
nates is given by:

∇ = ∇ψ ∂

∂ψ
+∇θ ∂

∂θ
+∇ϕ ∂

∂ϕ
(4.95)

By applying operator ∇ to the equation (4.82) that gives the relation between ax-
isymmetric basis vectors and cylindrical basis vectors , then by using the expressions
(4.87) for derivatives of the variable χ, we obtain the curvature tensor for ∇̂ψ, ∇̂θ
12:

∇∇̂ψ = −
∂θ
√
gψψ√
gθθ
∇ψ∇̂θ +

∂ψ
√
gθθ√

gψψ
∇θ∇̂θ +

∂ψ
√
gϕϕ

√
gψψ

∇ϕ∇̂ϕ (4.96)

∇∇̂θ =
∂θ
√
gψψ√
gθθ
∇ψ∇̂ψ −

∂ψ
√
gθθ√

gψψ
∇θ∇̂ψ +

∂θ
√
gϕϕ√
gθθ
∇ϕ∇̂ϕ (4.97)

Finally for normalized toroidal vector ∇̂ϕ, the corresponding curvature tensor is
obtained by transforming the equation (4.93) for its curvature tensor ∇∇̂ϕ in cylin-
drical coordinates to axisymmetric coordinates using the relation (4.93).

∇∇̂ϕ = −
∂θ
√
gϕϕ√
gθθ
∇ϕ∇̂θ −

∂ψ
√
gϕϕ

√
gψψ

∇ϕ∇̂ψ (4.98)

The expression for curvature tensor can be rewritten in more suitable form as:

∇∇̂ψ = ∇ψ ∂

∂ψ
∇̂ψ +∇θ ∂

∂θ
∇̂ψ +∇ϕ ∂

∂ϕ
∇̂ψ (4.99)

12To be coherent in notations here we write
√
gϕϕ rather then R2
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where the coefficients for basis (∇ψ,∇θ,∇ϕ) decomposition are

∂

∂ψ
∇̂ψ = −

∂θ
√
gψψ√
gθθ
∇̂θ, ∂

∂θ
∇̂ψ =

∂ψ
√
gθθ√

gψψ
∇̂θ, ∂

∂ϕ
∇̂ψ =

∂ψ
√
gϕϕ

√
gψψ

∇̂ϕ (4.100)

Similarly, for ∇̂θ and ∇̂ϕ we find:

∇∇̂θ = ∇ψ ∂

∂ψ
∇̂θ +∇θ ∂

∂θ
∇̂θ +∇ϕ ∂

∂ϕ
∇̂ϕ (4.101)

∂

∂θ
∇̂θ =

∂θ
√
gψψ√
gθθ
∇̂ψ, ∂

∂θ
∇̂θ = −

∂ψ
√
gθθ√

gψψ
∇̂ψ, ∂

∂ϕ
∇̂θ =

∂θ
√
gϕϕ√
gθθ
∇̂ϕ (4.102)

∇∇̂ϕ = ∇ψ ∂

∂ψ
∇̂ϕ+∇θ ∂

∂θ
∇̂ϕ+∇ϕ ∂

∂ϕ
∇̂ϕ (4.103)

∂

∂ψ
∇̂ϕ =

∂

∂θ
∇̂ϕ = 0,

∂

∂ϕ
∇̂ϕ = −

∂θ
√
gϕϕ√
gθθ
∇̂θ −

∂ψ
√
gϕϕ

√
gψψ

∇̂ψ (4.104)

Bi-cylindrical coordinates Let us now consider the situation when the mag-
netic surfaces are given by the set of concentric circles. Here transition from cylin-
drical to the magnetic coordinates is given by:

R = R0 + ψ cos θ, Z = ψ sin θ (4.105)

It generate the orthogonal set of vectors ∇ψ,∇θ and the corresponding diagonal
covariant metric tensor is given by:

gψψ = 1, gθθ = ψ, gϕϕ = R0 + ψ cos θ (4.106)

So the coefficient of the curvature tensor are given by:

∂

∂ψ
∇̂ψ = 0,

∂

∂θ
∇̂ψ = ∇̂θ, ∂

∂ϕ
∇̂ψ = cos θ∇̂ϕ (4.107)

∂

∂ψ
∇̂θ = 0,

∂

∂θ
∇̂θ = −∇̂ψ, ∂

∂ϕ
∇̂θ = − sin θ∇̂ϕ (4.108)

∂

∂ψ
∇̂ϕ =

∂

∂θ
∇̂ϕ = 0,

∂

∂ϕ
∇̂ϕ = − cos θ∇̂ψ + sin θ∇̂θ (4.109)
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Magnetic field

Now we consider a configuration with axisymmetric magnetic field geometry. We
start with definition of the direction of magnetic field with unit vector:

b̂ = cos η(ψ, θ)∇̂ϕ+ sin η(ψ, θ)∇̂θ (4.110)

where the function η(ψ, θ) defines the angle between its toroidal and poloidal com-
ponents:

cotan η(ψ, θ) =
∇̂ϕ · b̂
∇̂θ · b̂

(4.111)

In the particular case, when η = η(ψ), the expression (4.111) defines the function
often called the “q-profile” or “safety factor profile”. The plasma “q” denotes the
number of times a magnetic field line turns around a torus in the toroidal direction
for each time it comes around its short (poloidal) direction. In a typical tokamak q
ranges from near unity in the center of plasma to 2 − 8 at the edge. This function
is named the safety factor because larger values are associated with higher ratios of
toroidal field to poloidal field generated by plasma current. Consequently the risk
of current-driven plasma instabilities is less for higher values of q.

Here we consider some characteristic for a tokamak “q-profile”, quadratic with
respect to the magnetic(radial) coordinate ψ:

q(ψ) = q0 +
s0
2
ψ2 (4.112)

For example in Semi-Lagrangian Gyrokinetic code GYSELA, s0 = 0.854 and q0 =
2.184

Note that the direction b̂ and the norm B of magnetic field B cannot be chosen
totally independently of each other because they are related through the magnetic
constraint:

∇ ·B = 0 (4.113)

So if we start the definition of magnetic field by introducing its direction b̂, we
should pay attention to the condition (4.113) when choosing its norm. In the case of
general axisymmetric geometry, when the norm of magnetic field is supposed to be
independent of toroidal coordinate ϕ, it can be found from the differential equation:

∂

∂θ

(
B(ψ, θ)

√
gψψ(ψ, θ)

√
gϕϕ(ψ, θ) sin η(ψ, θ)

)
= 0 (4.114)

Then one of its possible solutions, obtained from the separation of variables method,
is:

B(ψ, θ) =
F (ψ)√

gψψ(ψ, θ)
√
gϕϕ(ψ, θ) sin η(ψ, θ)

(4.115)

where F (ψ) represents an arbitrary function of radial coordinate ψ, that for sim-
plicity we will take equal to unity. Moreover, in what follows, we consider the case,
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in which the ratio function η depends only on the radial coordinate ψ and then
coincide with the q-profile: cotan η(ψ) ≡ q(ψ). Finally, the magnetic field in the
bi-cylindrical coordinates case (

√
gϕϕ = R(ψ, θ) = R0 + ψ cos θ,

√
gψψ = 1) is given

by

B =
B0

R(ψ, θ) sin η(ψ)

(
cos η(ψ)∇̂ϕ+ sin η(ψ)∇̂θ

)
≡ B b̂ (4.116)

where B0 is value of magnetic field, measured in Teslas.

Equations of motion

In order to study trapped particles trajectories in axisymmetric magnetic configu-
rations (bi-cylindrical coordinates), we decompose equations of motion in the cor-
responding basis (∇ψ,∇θ,∇ϕ). Then we integrate this equations by using Math-
ematica package. The calculation leading to equations of motion in bi-cylindrical
geometry is presented in the Appendix H.

4.4.2 Trajectories

Within the standard approach the particles inside a tokamak are divided into two
groups

• passing particles whose trajectories follow the magnetic field lines

• trapped particles bouncing between two local magnetic mirrors ( defined by
maxima of magnetic field intensity)

The shape of the latter ones is such that when projected on a poloidal cross section,
resembles a banana with width δb ∼ ϵbq(ψ)ρL where ϵb = ψ/R is the local aspect ratio
of the toroidal magnetic surface with radius ψ and the major radius R = R0+ψ cosϕ,
ρL = v⊥/Ω is the ion Larmor radius. Note that such an approximation fails near
the magnetic axis when passing into the potato regime [64].

The fast trapped ions appears in tokamaks as a results of auxiliary plasma heat-
ing, such as neutral beam injection and radio frequency heating, and production of
alpha particles.

In the neoclassical transport theory, which studies the transport due to the
Coulomb collisions and takes into account the effects of toroidal geometry, the trans-
port that arises from the small population of the trapped particles dominates the
transport resulting from the majority of passing (i.e. untrapped) particles.

Moreover, it was remarked in [63] (1984) and then in [64] (2001) that additionally
to the the standard approximation, that divides the particle into the passing and
trapped, there exist some special orbits that give rise to new interesting effects,
among them orbits for which the times of precessional and bounce motion became
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comparable. As was mentioned in both of these works, it can have an important
consequences on the plasma stability.

Our further investigation here consists of several parts. The goal here is to
explore the possible trapping process characteristics: the conditions, region, orbit
topology modification during the trapping/untrapping process, curvature magnetic
field effects.

First of all we compare the behavior of the particle for different values of the
small dimensionless parameter ε that presents the ratio between the modulus of the
kinetic particle momentum and the magnitude of magnetic field B.

On the figure 4.3 is presented an overview of the trapped/untrapped particles
according to the position of the magnetic surface in the poloidal section of our virtual
machine. The value of the small parameter in the left figure is larger then its value
in the right figure: ε = 3.5 ∗ 10−2 and ε = 2.1 ∗ 10−2 correspondingly. The left

./surf_weak_trapping_0035.eps ./surf_strong_trapping.eps

Figure 4.3: Weak and strong trapping

figure illustrate the case of weak particle trapping with ε = 3.5 ∗ 10−2 and the right
one of the strong particle trapping with ε = 2.1 ∗ 10−2. The interpretation of such
a particle behavior is straightforwardly related to the interpretation of variation of
the small parameter ε.

The small parameter ε can increase in two situations: when the intensity of mag-
netic field grows and when the particle slows down. In both cases the trapping is
strong: the particles are more tied up to the field lines. If now the velocity of the
particle grows or the intensity of the magnetic field decrease, then the particle pos-
sesses more freedom to derive between the magnetic surfaces or to become passing.
This is the case of weaker trapping.

Another observation that could be made here is about the distribution of
trapped/untrapped particles as a function of the radii of the magnetic surface. For
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instance we can just remark that the passing particles occurs in the center rather
then in the edge of machine. Such a behavior is exploited and confirmed within the
following study.

The particle is trapped when its pitch angle passes through the value π/2. This
corresponds to the moment when the parallel component of the particle velocity
vanishes.

The next question that we address here is about the ratio of the
trapped/untrapped trajectories as the function of initial values of the pitch angle
φ0 in different regions of the poloidal section.

From the left to the right: we pass from the center to the edge of the machine
with different values for initial pitch angle φ0 ∈ [0, π]. Here we use the red color
to mark the passing trajectories and we color in blue the trapped trajectories. In
order to follow the evaluation of the number of trapped/untrapped trajectories in
different regions of the poloidal section. On the figure 4.4 we color in cyan the first
trajectory that is trapped on the middle magnetic surface ψ = 0.5 (for ψ ∈ [0, 1]).
We remark that the cyan trajectory belongs to the passing region in the center of

./pitch_angle_center.eps ./pitch_angle_midl.eps ./pitch_angle_edge.eps

Figure 4.4: Pitch angle for different regions of tokamak: center ψ0 = 0.2,middle
ψ0 = 0.5, edge ψ0 = 0.9

machine and the same trajectory lies within and no longer limits the trapped region
in the edge. Then there are more trapped particles in the edge than in the center of
the machine. Dynamics of the pitch angle ϕ can be used as a criterium of a particle
behavior. In these plots, captured particles (pitch angle passes through π/2) are in
red, passing ϕ ∈ (π/2, π] and co-passing particles ϕ ∈ [0, π/2) are in blue.

These two studies confirm that, there are less captured particles at the center
that near the edge of machine because of the diameter of magnetic surfaces: smaller
is the diameter, more difficult it is for the particle to bounce between its two points,
more natural become to turn around following the passing trajectory.

On the figures 4.5,4.6 below we focuss on the trajectories topology changing when
trapping and untrapping process and give an overview of barely trapped particles or
limiting orbits. Such a transition process can be observed while changing different
parameters of the system:

• The position of the magnetic surface for given initial values of the pitch angle
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./trapping.eps

Figure 4.5: Barely trapped particles: trapping.

./untrapping.eps

Figure 4.6: Barely trapped particles: untrapping.
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ϕ0 = π/6, poloidal angle θ0 = π/3, small parameter ε = 3.5∗10−2 and magnetic
parameters q0 = 1 and s0 = 4. Here the trapping process is obtained when
varying ψ ∈ [0.34, 0.4].

• Magnetic field configuration characteristics; q-profile parameters: q0 and s0,
here in order to observe the trapping process we have modulate the shear
parameter s0 in interval [4, 6] for q0 = 2. We can remark that for smaller
values of s0 the trapping of the particle was deeper. Note that here a large
value of the parameter is considered ε = 10.2 ∗ 10−2 in order to span the
transition zone in a relatively short integration time. Here we can also remark
that the trajectories are shifted with respect to the field lines. This effect
is due to the drift velocity, that in our case possesses only the contributions
related to the magnetic curvature. In the limit β ≪ 1 it can be approximated

by the expression vD =
mv2|| + µ0B

B3
B×∇B.

• Another possibility to span the transition region is to change the values for
initial condition of the pitch angle φ0(as in the previous study) or the initial
poloidal angle θ0 (that will be considered in the next step).

We observe that there are 4 main different shapes of trajectory that can occur
through the trapping process. It can be classified as follows: tied to the magnetic
surface passing trajectory, possessing a cumulative (stagnation) point near the axe,
cusp orbit; possessing inner and outer loops: pinch orbit and finally banana orbit.
The untrapping process passes through the same stages in the opposite way. The
more particular among the mentioned orbits, is the cusp orbit. As was noticed in
[64] the cusp orbits are characterized by algebraical divergency of the bounce time.
It appears when the inner loop of the pinch orbit degenerates into a pinch point. In
the other words, when the trapped particle became almost untrapped. The same
situation was observed in our case while integrating the exact particle equations
of motion. The integration time considerably increases when passing between the
shape 2 and the shape 3.

Another interesting observation that can be made here concerns an asymmetry
that occurs in trapping processes for the particles with positive and negative initial
parallel velocity (pitch angle φ0) condition13. In the case of the trajectories that
passes around magnetic surfaces the terms of co-passing (v|| < 0) and counter-
passing (v|| > 0) are employed for it designation.

Accordingly to the sign of φ0 particle trajectory will be positioned with respect
to the magnetic surface. The inner manner when φ0 < 0 and in outer manner when
φ0 > 0. On the two figure below the co-passing (co-trapped) particle is colored
in blue and the counter-passing (counter-trapped) in green. Here we consider the
different particle trajectories as a function of initial poloidal angle θ0: On 4.7 the

13Assuming the all others initial conditions coincides
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./PassCopassNoTitle.eps

Figure 4.7: Asymmetry in trapping process for passing and co-passing particles:
as a function of initial poloidal angle θ0.

figures in the left column represent inner and outer trajectories with initial poloidal
angle θ0 ∈ [0, π − δ] and the figure in the right column represents inner and outer
trajectories with θ0 ∈ [π + δ, 2π − θ0]. We remark that in the first case the outer
trajectories (green curve) are naturally less trapped then the co-passing ones (blue
curve). The situation is inverse for initial poloidal angles θ0 = 2π−θ0. The exchange
happens in the region of θ ∈ (π− δ, π + δ). This region is zoomed on the figure 4.8.
One can remark that there exists initial condition for which the passing particle still
be trapped and the co-passing is untrapped (θ0 = 0.9π), then the both trajectories
become untrapped and separated by the magnetic surface (θ0 = 0.97π). In the
position θ0 = π the mixing of inner and outer trajectories takes place. Finally for
the initial condition θ0 = 1.1π the exchange in accomplished: now the inner particle
becomes less trapped then the outer. Such an asymmetry can be explained as one
of the effects of the magnetic field curvature.

Moreover we remark that a similar transition for inner and outer trajectories
occurs when changing magnetic configuration parameters. On the figures 4.9 and
4.10 an example with larger Larmor radius is considered in order to observe in details
the evaluation of orbit topology (here the inner trajectory is colored in cyan and
and the outer trajectory in blue):
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./PassCopassTransNoTitle.eps

Figure 4.8: Asymmetry in trapping process for passing and co-passing particles:
transition region.

The transition of the inner trajectory from trapped to passing occurs in the
interval of shear parameter s0 ∈ [2.8, 2.95]; while the same transition for the outer
trajectory takes place for s0 ∈ [6, 6.2].

The last study that was realized here concerns the fluctuation of the adiabatic
invariant for different values of the small parameter ε. The results of such an inves-
tigation are summarized in the following table.

ε δµ0/µ0

10.29 ∗ 10−2 41.03%
3.5 ∗ 10−2 20.7%
2.1 ∗ 10−2 12.4%

Table 4.1: Variation of the adiabatic invariant µ0 as a function of small
gyrokinetic parameter ε = ρL

LB
in our simulations with q0 = 1 and s0 = 4

96



4.4. INVESTIGATION OF TRAPPED PARTICLES TRAJECTORIES.

./LargeLarmorInPassBlue.eps

Figure 4.9: Asymmetry in trapping process for passing and co-passing particles.
Large Larmor radius case I.

ε δµ0/µ0

1/64 6.04%
1/128 2.98%
1/256 1.48%
1/1024 0.36%

Table 4.2: Variation of the adiabatic invariant µ0 as a function of small
gyrokinetic parameter ε = ρL

LB
in GYSELA with q0 = 0.854, s0 = 2.184

Here we compute the variation of adiabatic invariant for two groups of values
of small parameter ε. The first group, including the 3 first values, was used in our
numerical simulations. The second group of parameters represents the values of ε
that are usually taken in gyrokinetic numerical simulations produced by GYSELA.
We are close to the first of them with ε = 2.1 ∗ 10−2, but we can not deeply explore
the particle behavior for smallest ones because the integration time becomes too
long in the vicinity of the barely trapped trajectories. We remark that in the case
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./LargeLarmorOutPassBlue.eps

Figure 4.10: Asymmetry in trapping process for passing and co-passing particles.
Large Larmor radius case II.

of large value of ε = 10.29 ∗ 10−2, that we have chose for zoom the effects of particle
trajectory transitions, the variation of µ0 is quite important δµ0 = 59.4%. Therefore
such a calculation could be imprecise in the case of the COM phase space.

On the other hand, in the case of values of ε used in the GYSELA code, the
fluctuation of the adiabatic invariant µ0 lies between 0.36% and 6.04%.

In further work it will be interesting to proceed with exploration of particle
trajectories in a more realistic magnetic geometry. Moreover, understanding the
topology of particle trajectories is not only the subject of interest for laboratory
fusion plasmas, but also in the case of astrophysical plasmas. This can open new
opportunities for consideration of different magnetic configurations.
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4.5 Intrinsic dynamical reduction

In the previous section the problem of local dynamical reduction for charged particle
motion in an external non-uniform magnetic field was considered. In this section a
more abstract approach, which does not involve the use of the fixed basis vectors
and therefore the problems related to the gyrogauge dependence of the dynamics, is
presented. Previously, in the local coordinate case an iterative procedure for the con-
stant of motion A was obtained. Now we will directly proceed with a Hamiltonian
normal form construction. As was explained in 4.2.3, from the beginning we con-
sider the constant of motion A as an independent variable of the new phase space,
therefore we pass from (p, p̂, r) to (A, p̂,x). As in the local dynamical reduction
case, here r = x.

Note that it suffices to obtain the expression for the rescaled Hamiltonian p in
the new phase space variables (x, p̂,A). Consequently, it is more convenient to deal
here with the rescaled Hamiltonian dynamics (4.13).

At this stage an explicit expression for A = A(r, p, p̂) is not known. By chang-
ing the functional dependence p = p(p, p̂, r) → p = p(A, p̂,x) directly inside the
equations of motion (4.13), we will obtain an implicit expression for dynamics in the
new phase space:

ṙ = p̂

˙̂p =
p̂× e B(r)

p (r, p̂, p)

ṗ = 0

→


ẋ = p̂

˙̂p =
p̂× e B(x)

p (x, p̂,A )

Ȧ = 0

 (4.117)

4.5.1 Hamiltonian normal form

As was mentioned above, in order to obtain a partial differential equation that leads
to the expression of the rescaled Hamiltonian p as a function of the new phase space
variables, we should use the stationarity condition14 ṗ = 0 for p = p (x, p̂,A):

ṗ = ẋ · ∂xp+ ˙̂p · ∂p̂ p+ Ȧ ∂Ap = 0 (4.118)

Then by substituting into (4.118) the equations of motion in the new variables
(4.117), the general equation for Hamiltonian normal form becomes:

p

eB
p̂ · ∂xp = −

[
(p̂× b̂) · ∂p̂

]
p (4.119)

14Tensor calculus: in what follows we deal with vectors (covariant objects) and we use the
canonical Euclidian basis in order to express coordinates, for example the gradient ∇ ≡ ∂x is
viewed as a vector with following coordinates: ∇i ≡ ∂xi . Note that use of such a canonical
basis allows our description still to be intrinsic. In fact ei · ∇ej = 0 because the vectors ei are
independent of particle position x. Here · denotes the tensor contraction (scalar product in the
case of the vectors).
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The goal of our further work is to solve this differential equation.

4.5.2 Intrinsic basis

To start the solution of the equation (4.119) we need to introduce some basis in
order to make a decomposition of the vector p̂. As it has mentioned above, one of
this work is to not use the fixed basis associated to the magnetic field line.

As in the case of local dynamical reduction, we start by projecting onto the to
the parallel to magnetic field direction b̂ ≡ B/B of the unit momentum vector p̂ by
introduction of the pitch angle φ:

p̂ · b̂ = cosφ (4.120)

This relation couples spatial dependence and momentum dependence, so that φ =
φ(x, p̂).

Then in order to project p̂ into the plane perpendicular to the magnetic field
direction, we proceed with the direct construction of the dynamical basis obtained
by using only physical vectors b̂ and p̂ as follows:

ρ̂ =
b̂× p̂

|b̂× p̂|
=

b̂× p̂√
1− (b̂ · p̂)2

(4.121)

⊥̂⊥⊥ = −b̂× b̂× p̂

|b̂× p̂|
= −b̂× b̂× p̂√

1− (b̂ · p̂)2
(4.122)

where we have used the corollary of the (4.120):

|b̂× p̂| =
√

1− (b̂ · p̂)2 (4.123)

The essential difference of this method from the previous one is that here we do
not introduce an explicit definition of the gyrophase angle ζ. It is hidden inside the
rotating vectors ⊥̂⊥⊥ and ρ̂. In fact an explicit definition of the gyrophase angle ζ
inevitably involves the introduction of the fixed basis vectors b̂1 and b̂2 (4.21).

The orientation of the intrinsic dynamical basis is organized so that:

b̂× ⊥̂⊥⊥ = ρ̂, b̂× ρ̂ = −⊥̂⊥⊥ (4.124)

Finally, the unit momentum vector p̂ can be represented as follows:

p̂ = b̂ cosφ+ ⊥̂⊥⊥ sinφ (4.125)

To elucidate functional dependence, let us consider the whole phase space (x, p̂,A)
change of variables that arises from the decomposition of unit momentum vector p̂
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into the rotating frame (4.125):

 x
p̂
A

 −→


x′

ϕ

⊥̂⊥⊥
A′

 (4.126)

with x = x′ and A = A′.
As in the local approach we assume that the spatial dependence of the unit

magnetic field vector b̂ is invariant under this transformation: b̂(x) = b̂(x′).
The table below resumes the functional dependencies of variables before and

after the introduction of the rotating frame:

(x, p̂,A) (x′, p̂,A′)

φ = φ(x, p̂) φ-independent

⊥̂⊥⊥ = ⊥̂⊥⊥(x, p̂) ⊥̂⊥⊥-independent
∇ ≡ ∂x ∇′ ≡ ∂x′ + ∂xφ∂φ + ∂x⊥̂⊥⊥ · ∂⊥̂⊥⊥

Table 4.3: Comparison of the functional phase space variables dependence
before and after introducing the intrinsic rotating frame

Jacobian: space part

The Jacobian matrix of the corresponding transformation was involved when deriv-
ing the Poisson bracket in local coordinates. Here only the spatial derivatives will
be involved in further calculations, so we need to find ∂xφ and ∂x⊥̂⊥⊥.

Proposition 1
∇φ = −∇b̂ · ⊥̂⊥⊥ (∂iφ = −∂i bk⊥̂⊥⊥k) (4.127)

Proof 1

φ = arccos(b̂ · p̂) =⇒ ∇φ = − 1√
1− (b̂ · p̂)2

(
∇b̂ · p̂+∇p̂ · b̂

)

with ∇p̂ = 0, p̂ = b̂ cosφ+ ⊥̂⊥⊥ sinφ and

√
1− (b̂ · p̂)2 = sinφ

∇φ = −∇b̂ · ⊥̂⊥⊥

�
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Proposition 2

∇⊥̂⊥⊥ = −(∇b̂ · ⊥̂⊥⊥) b̂− Φ (∇b̂ · ρ̂) ρ̂ (4.128)

∇ρ̂ = −(∇b̂ · ρ) b̂+ Φ (∇b̂ · ρ̂) ⊥̂⊥⊥ (4.129)

where Φ ≡ cotan φ

Proof 2 with p̂ = b̂ cosφ+ ⊥̂⊥⊥ sinφ, ∇p̂ = 0 and ∇φ = −∇b̂ · ⊥̂⊥⊥ we have:

∇⊥̂⊥⊥ = (∇b̂ · ⊥̂⊥⊥) (Φ ⊥̂⊥⊥ − b̂)− Φ ∇b̂ (4.130)

Now we project this expression at the right on the basis vectors (b̂, ⊥̂⊥⊥, ρ̂), we use
the following properties: ∇ê · ê = 0 because ∇(ê · ê) = 0 for any unit vector ê and
∇êi · êk = −∇êk · êi, for two different basis vectors, this property is the consequence
of the fact that the basis vectors are perpendicular.

• ∇⊥̂⊥⊥ · b̂ = −(∇b̂ · ⊥̂⊥⊥)

• ∇⊥̂⊥⊥ · ⊥̂⊥⊥ = Φ ∇b̂ · ⊥̂⊥⊥ − Φ ∇b̂ · ⊥̂⊥⊥ = 0 (trivial)

• ∇⊥̂⊥⊥ · ρ̂ = −Φ ∇b̂ · ρ̂

Now we contract matrix ∇⊥̂⊥⊥ by its right with unit dyadic matrix and we use the
equations obtained below:

∇⊥̂⊥⊥ = ∇⊥̂⊥⊥ · (b̂b̂+ ⊥̂⊥⊥⊥̂⊥⊥+ ρ̂ρ̂) =

(∇⊥̂⊥⊥ · b̂) b̂+ (∇⊥̂⊥⊥ · ⊥̂⊥⊥) ⊥̂⊥⊥+ (∇⊥̂⊥⊥ · ρ̂) ρ̂ = −(∇b̂ · ⊥̂⊥⊥) b̂− Φ (∇b̂ · ρ̂) ρ̂

So we have (4.128). In order to obtain (4.129), we will proceed similarly. We
contract the bi-vector ∇ρ̂ with unit dyadic matrix and we use ∇ρ̂ · b̂ = −∇b̂ · ρ̂ and
∇⊥̂⊥⊥ · ρ̂ = −∇ρ̂ · ⊥̂⊥⊥ = Φ ∇b̂ · ρ̂, so

∇ρ̂ = −(∇b̂ · ρ̂) b̂+ Φ (∇b̂ · ρ̂) ⊥̂⊥⊥ (4.131)

The expression (4.129) is also obtained.
�

4.5.3 Intrinsic gyroaveraging

The next step in the procedure of solution of the general normal form equation
(4.119), is to make use of a separation into natural scales of motion which permits
us to treat the fast dynamics separately from the slow one. For this purpose in an
earlier section, when constructing an iterative procedure for the constant of motion
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series, the operation of gyroaveraging R =
1

2π

∫ π

−π
dζ has been introduced. 15 Here

we will proceed with introduction of a suitable gyroaveraging operator in an intrinsic
basis.

Fixed-basis-independent rotations

Until now we have used the most natural way to represent rotation of some vector
p̂ ∈ R3 around some other vector noncollinear with it, b̂ ∈ R3. We passed through
the definition of two angles: φ = arccos (p̂ · b̂) that represent rotation in the plane
that contains the vector b̂ and ζ = arctan(b̂1 ·p̂/b̂2 ·p̂) denoting the angle of rotation
in the plane perpendicular to b̂. The definition of the first one involves only the
initial rotating momentum vector p̂ and directional magnetic field unit vector b̂. At
the same time, the second angle definition needs the introduction of some basis in
the plane perpendicular to the directional vector b̂. In a general magnetic geometry
case such a basis cannot be defined uniquely and leads to the problem of gyrogauge
dependence.

To avoid the use of these arbitrarily chosen vectors, we should now consider the
definition of rotation at a more abstract level. In the two following subsections we
recall the definition of the operation of rotation around some direction in b̂ ∈ R3 on
some angle α, defined only by the choice of this direction.

Rotations in R3 It is well known that rotations generators form the Lie algebra
so(3). Its representation on R3 can be given by skew-symmetric matrices. In this
case the corresponding Lie bracket is the matrix commutator.

The basis of rotation generators can be presented in matrix form with:

Ax =

 0 0 0
0 0 −1
0 1 0

 Ay =

 0 0 1
0 0 0
−1 0 0

 Az =

 0 −1 0
1 0 0
0 1 0

 (4.132)

The commutation relations of the basis elements possesses the following property:

[Ax, Ay] = Az [Az, Ax] = Ay [Ay, Az] = Ax (4.133)

By using this basis, a generator of rotation about some unit vector û ∈ R3 can be
composed as follows:

U = ûx Ax + ûy Ay + ûz Az =

 0 −ûz ûy
ûz 0 −ûx
−ûy ûx 0

 (4.134)

15One of the L. Sugiyama remarks in [59] is about the problems related to the existence of a
globally consistent definition for the standard gyroaveraging operator (4.65). She states that in the
case of a non-trivial 3-dimensional magnetic geometry, due to the presence of non-closed magnetic
surfaces, the application of the (4.65) can lead to the integration over a cumulative angle.
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At the same time this expression can also be rewritten using the Levi-Civita tensor

Uik = ϵijk ûj (4.135)

If now we equate the expressions (4.134) with (4.135) , we will build an isomor-
phism between the skew-symmetric matrix representation of so(3) and R3. Two
things will happen:

• Any skew-symmetric matrix will be conveniently identified with a vector

U =

 0 −ûz ûy
ûz 0 −ûx
−ûy ûx 0

 = ϵijkûj ←→ û =

 ûx
ûy
ûz

 (4.136)

• The skew-symmetric matrix commutator will be identified with vector prod-
uct16

[U ,V ] = U V − V U = ϵijk(û× v̂) ←→ û× v̂ (4.137)

As a consequence R3 will be endowed with a Lie structure represented by cross
product.

In the same time we remark that an operator U can be construe also as an
operator of “cross product with the unit vector û” acting on R3.

U v̂ = û× v̂ (4.138)

such a notation will be often used.

Operator B Let us now consider the action of the operator B = ϵijkb̂j, on the

rotating basis vectors ⊥̂⊥⊥ and ρ̂.
Its action is cyclic:

B⊥̂⊥⊥ ≡ ϵijk b̂j ⊥̂⊥⊥k = b̂× ⊥̂⊥⊥ = ρ̂ (4.139)

Bρ̂ ≡ b̂× ρ̂ = −⊥̂⊥⊥ (4.140)

16Here U = ϵijkûj and V = ϵµνρv̂ρ we have

(UV)iρ = ϵijkϵkνρûjv̂ρ = ϵkijϵkνρûjv̂ρ = (δiνδjρ − δiρδjν) ûjv̂ν = v̂iûρ − δiρûjv̂j

(VU)µk = ϵµνρϵρjkv̂ν ûj = (δµjδνk − δµkδνj) v̂ν ûj = ûµv̂k − δµkv̂iûi

Then the matrix commutator

[U ,V] ≡ v̂iûρ − ûiv̂ρ ≡ ϵliρϵlmkv̂mûk
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Then the operator B2 acts as projector on the perpendicular to the magnetic
field line direction : −I⊥ = I− b̂b̂

B2⊥̂⊥⊥ = −⊥̂⊥⊥ (4.141)

B2ρ̂ = −ρ̂ (4.142)

The operator B3 acts as an operator −B:

B3⊥̂⊥⊥ = −ρ̂ (4.143)

B3ρ̂ = ⊥̂⊥⊥ (4.144)

This property give us the possibility to introduce the operator of rotation on angle α
around the direction b̂ (in other words to pass from algebra to the group) as follows:

eαB = 1− (cosα− 1) B2 + (sinα) B (4.145)

To proof the formula (4.145) we need just to decompose the operator eαB into
the Taylor series and then to use the property 4.142, 4.144 in order to sum the series.

eαB =
∞∑
n=0

α2n

(2n)!
B2n +

∞∑
n=0

α2n+1

(2n+ 1)!
B2n+1 (4.146)

Now we generalize the proprieties 4.142, 4.144:

B2n+1 = (−1)n B (4.147)

B2n = (−1)n+1 B2 (4.148)

So

eαB = 1 +
∞∑
n=1

(−1)n+1 α2n

(2n)!︸ ︷︷ ︸
=1−cosα

B2 +
∞∑
n=0

(−1)n α2n+1

(2n+ 1)!︸ ︷︷ ︸
=sinα

B (4.149)

Operator D

To deal with separation of scales of motion, we need to define an operator that
acts on the observables (functions on phase space) by rotating its arguments in a
perpendicular plane to the magnetic direction b̂.

Operator D. Definition on the intrinsic basis vectors Let us consider a
scalar differential operator

(p̂× b̂) · ∂p̂ ≡ D (4.150)

such an operator appears in the r.h.s. of the general Hamiltonian normal form
equation (4.119). Moreover the procedure of solution of this equation comes down
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to inversion of the operator D. This is why it is important to learn the proprieties
of this operator.

Let us start with definition of the operator D through its action on the basis
vectors (b̂, ρ̂, ⊥̂⊥⊥).

Proposition 3

Dρ̂ = ⊥̂⊥⊥ (4.151)

D⊥̂⊥⊥ = −ρ̂ (4.152)

Proof 3 Here (4.121):

D ρ̂ = (p̂× b̂) · ∂p̂

 b̂× p̂√
1− (b̂ · p̂)2

 (4.153)

We need to calculate the following derivative:

∂ ρ̂i
∂ p̂l

= ∂p̂l

 ϵijk b̂j p̂k√
1− (b̂n p̂n)2

 (4.154)

=
1√

1− (b̂n ρ̂n)2
ϵlij b̂j +

1(
1− (b̂n ρ̂n)2

)3/2 b̂ l (b̂n p̂n) ϵijk b̂j p̂k︸ ︷︷ ︸
sinφ ρ̂i

Second, with (4.124)we remark that

p̂× b̂ = ⊥̂⊥⊥ × b̂ sinφ = −ρ̂
√
1− (b̂ · p̂)2 (4.155)

Finally
D ρ̂i = −ϵlij ρ̂l b̂j = −ϵjli b̂j ρ̂l = ⊥̂⊥⊥i (4.156)

�

Then it turns out that the action of the operator D on the basis vectors is cyclic
and similar to the action of the operator −B = −ϵijkb̂j “cross product with vector

b̂”:

D2⊥̂⊥⊥ = −Dρ̂ = −⊥̂⊥⊥ (4.157)

D2ρ̂ = D⊥̂⊥⊥ = −ρ̂ (4.158)
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D3⊥̂⊥⊥ = −D⊥̂⊥⊥ = ρ̂ (4.159)

D3ρ̂ = −Dρ̂ = −⊥̂⊥⊥ (4.160)

Another interesting property of the operator D is summarized in the following
proposition.

Proposition 4

D = (p̂× b̂) · ∂p̂ = (ρ̂× b̂) · ∂ρ̂ = (⊥̂⊥⊥ × b̂) · ∂⊥̂⊥⊥ (4.161)

Proof 4 Because
∂

∂p̂l
=
∂ρ̂i
∂p̂l

∂

∂⊥̂⊥⊥i
+
∂φ

∂p̂l

∂

∂φ
(4.162)

By using the formula (4.154)

∂ρ̂k
∂ p̂l

=
ϵilk b̂i
sinφ

+ Φ
b̂l ρ̂k
sinφ

(4.163)

then we have

D = (p̂× b̂) · ∂p̂ = −ρ̂l ϵljk b̂j
∂

∂ρ̂k
(4.164)

= −ϵjlk b̂jρ̂l ∂ρ̂k
= (ρ̂× b̂) · ∂ρ̂ ≡ ⊥̂⊥⊥ · ∂ρ̂

By analogy we can proof that:

D = (⊥̂⊥⊥ × b̂) · ∂⊥̂⊥⊥ ≡ ρ̂ · ∂⊥̂⊥⊥ (4.165)

Then we can say that the action of the operator D on the observables involves only
the derivatives over the vectors (⊥̂⊥⊥, ρ̂) perpendicular to the magnetic field.

Operator D. Intuitive definition To give an intuition for the origin of the
operator D, let us return for a while to the local momentum coordinates (φ, ζ)
given by eq.(4.21) involving some fixed basis vectors (b̂1, b̂2). How is expressed the
operator D in this case ?

The transition between the intrinsic phase space variables and the local phase
space variables can be expressed as follows:

 x
p̂
A

→


x̃
φ
ζ

Ã

 (4.166)

with x = x̃ and A = Ã. Now the unit momentum vector is presented as

p̂ = b̂ cosϕ+ ⊥̂⊥⊥ sinϕ (4.167)
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and the expressions for rotating vectors (⊥̂⊥⊥, ρ̂) are taken the same that in (4.16):

⊥̂⊥⊥ = −b̂1 sin ζ − b̂2 cos ζ and ρ̂ = b̂1 cos ζ − b̂2 sin ζ.
This local rotating basis has the same organization: b̂× ⊥̂⊥⊥ = ρ̂, b̂× ρ̂ = −⊥̂⊥⊥

that the intrinsic basis defined in (4.122). To obtain the expression for the operator
D in local coordinates, we should first proceed with the one for the differential
operator ∂/∂p̂, by applying the chain rule:

∂

∂p̂
=
∂ϕ

∂p̂

∂

∂ϕ
+
∂ζ

∂p̂

∂

∂ζ
+
∂Ã
∂p̂

∂

∂Ã
+
∂x̃

∂p̂

∂

∂x̃
(4.168)

Accordingly to the basis definition the local momentum coordinates are expressed
as:

ϕ = arctan
p̂ · ⊥̂⊥⊥
p̂ · b̂

, ζ = arctan
b̂1 · p̂
b̂2 · p̂

(4.169)

Then its derivatives over the unit momentum variable are:

∂φ

∂p̂
= ⊥̂⊥⊥ cosφ− b̂ sinφ,

∂ζ

∂p̂
= − ρ̂

sinφ
(4.170)

Due to the fact that the change of variables (4.166) maps A = Ã , x = x̃ and
because of the independence of the variables A,x from p̂, the last two terms in the
expression (4.168) become equal to zero.

Using this information we have:

∂

∂p̂
= (⊥̂⊥⊥ cosφ− b̂ sinφ)

∂

∂φ
− ρ̂

sinφ

∂

∂ζ
(4.171)

Then with p̂× b̂ = −ρ̂ sinφ, the operator D can be expressed as follows:

(p̂× b̂) · ∂p̂ = (−ρ̂ sinφ) ·
[
(⊥̂⊥⊥ cosφ− b̂ sinφ)

∂

∂φ
− ρ̂

sinφ

∂

∂ζ

]
=

∂

∂ζ
(4.172)

Finally, we have find that the scalar differential operator D in local momentum
coordinates is equal to the derivative over the gyroangle ζ.

Note that the expression of the operator D = ∂/∂ζ does not depend on choice
of the fixed basis (b̂0b̂1, b̂2), but in the same time we emphasize that the definition
of the angle ζ will be dependent on this choice. By analogy with operator eαD one

can introduce an operator eα
∂
∂ζ that acts similarly.

Operator exp (α D). Action on the observables By analogy with the operator
of rotation eα B defined in (4.145), we now introduce the operator eα D.

As was shown in 4.5.3, the operator D is equivalent to the operator −B. Due to
that we obtain the action of eα D on (⊥̂⊥⊥, ρ̂, b̂):
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eα D ρ̂ =
(
1− (cosα− 1) D2 − sinα D

)
ρ̂ = cosα ρ̂− sinα ⊥̂⊥⊥ ≡ e−α B ρ̂ (4.173)

eα D ⊥̂⊥⊥ =
(
1− (cosα− 1) D2 − sinα D

)
⊥̂⊥⊥ = cosα⊥̂⊥⊥+ sinα ρ̂ ≡ e−α B⊥̂⊥⊥ (4.174)

Similarly to eαB, the operator eαD does not affect parallel to the magnetic field vector
b̂:

eα D b̂ =
(
1− (cosα− 1) D2 − sinα D

)
b̂ = eα Bb̂ ≡ b̂ (4.175)

Due to the relation (4.161) between the operators D and B

D = p̂ · B · ∂
∂p̂

= ρ̂ · B · ∂
∂ρ̂

= ⊥̂⊥⊥ · B · ∂
∂⊥̂⊥⊥

(4.176)

the operator D can be treated as a generator of dilatations.
Then the action of exp(α D) on an observable f(x, p̂,A) can be expressed as:

exp

(
p̂ · B · ∂

∂p̂

)
f(x, p̂,A) = f(x, e−α Bp̂,A) (4.177)

It means that when applied to an observable f(x, p̂,A), the operator eαD affects

only the arguments dependent on p̂ or ⊥̂⊥⊥, ρ̂. Its action comes down to rotation of
these vectors through the angle −α around the direction b̂.

The proof of this property can be realized by decomposing the observable in
series as follows.

f(⊥̂⊥⊥) = f (⃗0) +
∞∑
n=0

⊥̂⊥⊥
⊗n

n!
◦ ∂⊗n

⊥̂⊥⊥
f |⊥̂⊥⊥=0⃗ (4.178)

eαDf(⊥̂⊥⊥) = f( 0⃗ ) +
∞∑
n=1

eαD
(
⊥̂i1 . . . ⊥̂in

)
n!

[
∂⊥̂i1

. . . ∂⊥̂in
f
]
|⊥̂⊥⊥=0⃗ (4.179)

= f( 0⃗ ) +
∞∑
n=1

eαD⊥̂i1 . . . eαD⊥̂in
n!

[
∂⊥̂i1

. . . ∂⊥̂in
f
]
|⊥̂⊥⊥=0⃗ (4.180)

= f( 0⃗ ) +
∞∑
n=1

e−αB⊥̂i1 . . . e−αB⊥̂in
n!

[
∂⊥̂i1

. . . ∂⊥̂in
f
]
|⊥̂⊥⊥=0⃗ ≡ f

(
e−αB⊥̂⊥⊥

)
(4.181)

In order to pass from formula 4.179 to 4.180 we have to proof that:

eαD(⊥̂⊥⊥
⊗n

) = (eαD⊥̂⊥⊥)⊗n (4.182)

To do this, we have to iterate Leibnitz rule for scalar differentiation D. Each tensor
can be considered as a collection of scalars. We will prove the property 4.182 for two
scalars—to expand this proof for tensors it is sufficient to apply it to each component
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of this tensor. Let f and g be two tensors, so fi and gk are they coordinates with
respect to the canonical basis in RN

eαD (f ⊗ g) = eαDf ⊗ eαDg (4.183)

in coordinates
eαD (fi gk) = eαDfi gk (4.184)

with series expansion

∞∑
n=0

1

n!
(αD)nfi gk =

∞∑
n=0

n∑
m=0

1

m!
(αD)m fi

1

(n−m)!
(αD)n−m gk (4.185)

now it is sufficient to prove by induction that

(αD)n(fi gk) =
n∑

m=0

Cn
m (αD)mfi (αD)n−mgk (4.186)

for n→ n+ 1

Cn+1
m (αD)mfi (αD)n−m+1gk = (n+ 1)! (αD)

(
1

m!
(αD)mfi

1

(n−m)!
(αD)n−mgk

)
(4.187)

this property can be obtained immediately by direct differentiation and then using
the property for binomials Cn+1

m = Cn
m−1 + Cn

m.
The main idea for formula (4.178) can be found below.
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Series decomposition for an analytic function in a fully symmetric
tensor space

Let EN be an N -dimensional vector space with ê its basis vectors. To start let us
consider a second order direct product of this space with itself EN⊗EN ≡ (EN)2. The
basis in such a space can be composed by direct product of basis vectors êi⊗êj. Then
the direct product of any vector v ∈ EN with itself lies inside the fully symmetric
subspace of (EN)2 with basis vectors êi ∨ êj ≡ êi ⊗ êj + êj ⊗ êi

v ⊗ v =
∑ 1

1 + δij
vi vj êi ∨ êj (4.188)

Iterating the r-th power of v which lies within the symmetric subspace of (EN)r
with basis

ei1 ∨ · · · ∨ eir =
∑

all elements ∈Pr

σ êi1 êi2 . . . êir (4.189)

Here the sum is taken over all the elements in the group Pr and σ is its group
operation of permutation. In the full symmetric basis definition all the permutations
(ordered or not) are taken with the sign +. The components of (v)⊗r with respect
to the bases are of the form (v1)

j1 . . . (vN)
jN , with j1 + . . . jN = r.

v⊗r =
∑

all elements ∈Pr

( ∑
j1+j2...jN=r

(v1)
j1 . . . (vN)

jN

)
êi1 ∨ êi2 ∨ · · · ∨ êir (4.190)

The polynomials (v1)
j1 . . . (vN)

jN form a basis for the set of all analytic functions de-
fined on EN . An analytic function can be represented by its power series expansion.
Let f(v) ≡ f(v1, . . . , vN) be a real valued, analytic scalar function (an observable)
on

f(v) = f( 0⃗ ) + vi [∂vif ] |v=0⃗ + vi vj
[
∂vi∂vjf

]
|v=0⃗ + . . . (4.191)

+ vi vj vk . . .

[
∂vi∂vj∂vk . . . f

]
n!

|v=0⃗

In vector terms this formula can be rewritten as:

f(v) = f (⃗0) +
∞∑
n=1

v⊗n

n!
◦ ∇⊗nf |v=0 (4.192)

where ∇ = ∂v and the operation ◦ represents the operation of n - tensor contraction.

111



CHAPTER 4. INTRINSIC GUIDING CENTER THEORY

Operator R of intrinsic gyroaveraging. The introduction of the operator
exp(αD) permits us to define the operation of intrinsic gyroaveraging.

In fact to make the gyroaverage means to sum on all possible rotations around
the magnetic field direction b̂. This action can be expressed by the operator:

R ≡ 1

2π

∫ π

−π
dα exp(αD) (4.193)

We can take this integral formally, considering D as the integration parameter:

R =
sinh πD
πD

(4.194)

Note that this expression is not zero

sinhπD
πD

=
πD + (1/3!)(πD)3 +O(D5)

πD
(4.195)

From here, it is easy to see that RD = DR = 0, because

sinh πD = 0 (4.196)

In fact the last formula can be interpreted geometrically as a subtraction of rotations
of argument of observable on the angle ζ and then on the angle −ζ.

sinh πD f(x, ⊥̂⊥⊥, φ,A) =
[
eπD − e−πD

]
f(x, ⊥̂⊥⊥, φ,A)

= f(x, e−πB⊥̂⊥⊥, φ,A)− f(x, eπB⊥̂⊥⊥, φ,A) (4.197)

moreover accordingly to the formula (4.145) e−πD⊥̂⊥⊥ = eπD⊥̂⊥⊥ = −⊥̂⊥⊥, so we have
(4.196). On the other hand, the properties (4.195), (4.196) permit us to prove that
the operator R is a projector. It is sufficient to show that R2 = R, but

R(1−R) = sinh πD
(
πD − sinh πD

π2D2

)
= 0 (4.198)

Now we can also introduce a complementary to R projector N = 1−R.
Finally, the application of the operator R to any observable f(x, p̂,A) gives its

gyroaveraged part ⟨f(x, φ, ⊥̂⊥⊥,A)⟩ and application of the operator N to the same

observable, gives its fluctuating partf̃(x, φ, ⊥̂⊥⊥,A). By considering this operators as
a complementary projectors on the set of the averaged and fluctuating part of the
observables correspondingly, for any observable we can make a decomposition:

f(x, ⊥̂⊥⊥(x), φ(x),A) = Rf(x, ⊥̂⊥⊥(x), φ(x),A) +N f(x, ⊥̂⊥⊥(x), φ(x),A)
≡ ⟨f(x, φ(x);A)⟩+ f̃(x, ⊥̂⊥⊥(x), φ(x),A) (4.199)
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Pseudo-inverse operator G As we can see in previous paragraph, the operator
D has a non-zero kernel DR = 0, composed by all the observables that do not
depend on ⊥̂⊥⊥ and ρ̂. So it can not be inverted on the set of all the observables
defined on the phase space (x, ⊥̂⊥⊥(x), φ(x),A). However its left inverse G can be
defined as follows: GD = N ≡ 1−R.

Now using the spectral expression for the operator N we have formally:

GD = N , ⇒ G =
πD − sinhπD

πD2
(4.200)

This formal expression for the operator G can be also rewritten into the integral
form.

Theorem 4

G =
1

2π

∫ π

−π
dα (α− πsignα) exp(αD) (4.201)

We can then define its action on the basis vectors

G⊥̂⊥⊥ = ρ̂ (4.202)

Gρ̂ = −⊥̂⊥⊥ (4.203)

Note that the action of the intrinsic operator G on rotating basis vectors is similar
to the action of the operator G (4.66)in the non-intrinsic case. In fact with ⊥̂⊥⊥ =
−b̂1 sin ζ − b̂2 cos ζ and ρ̂ = b̂1 cos ζ − b̂2 sin ζ.∫ ζ

dζ ⊥̂⊥⊥ = ρ̂ and

∫ ζ

dζ ρ̂ = −⊥̂⊥⊥ (4.204)

4.6 Intrinsic Hamiltonian normal form equation

Let us now return to consideration of the general Hamiltonian normal form equa-
tion (4.119). Now we will make use of the intrinsic tools introduced above for its
resolution.

First we rewrite the r.h.s. of this equation by introducing the scalar differential
operator17 D = (p̂× b̂) · ∂p̂:

p

eB
p̂ · ∇p︸ ︷︷ ︸

slow variables derivative

= − Dp︸︷︷︸
fast variable derivative

(4.205)

That after the introduction of the intrinsic basis in coordinates (x′, φ, ⊥̂⊥⊥,A′) became:

p

eB

(
b̂(x′) sinφ+ ⊥̂⊥⊥ cosφ

)
·
(
∂x′ + ∂xφ ∂ϕ + ∂x⊥̂⊥⊥ · ∂⊥̂⊥⊥

)
p = −(⊥̂⊥⊥ × b̂)∂⊥̂⊥⊥p (4.206)

17In what follows we define the differential operator ∇ as: ∇ ≡ ∂x = ∂x′ + ∂xφ ∂ϕ + ∂x⊥̂⊥⊥ · ∂⊥̂⊥⊥
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that can be also interpreted by using the variables (x, φ(x, )⊥̂⊥⊥(x)) as:
p

eB

(
b̂(x) sinφ(x) + ⊥̂⊥⊥(x) cosφ(x)

)
· ∂xp = −(p̂× b̂(x)) · ∂p̂p (4.207)

The operator D involves the derivatives only on the perpendicular to magnetic
field directions (⊥̂⊥⊥, ρ̂). As we can see in 4.5.3 D is a fixed-basis-independent repre-
sentation of the differentiation over the gyroangle. In intrinsic basis it becomes:

D = (ρ̂× b̂) · ∂ρ̂ = (⊥̂⊥⊥ × b̂) · ∂⊥̂⊥⊥ L9999K ∂

∂ζ
(4.208)

Moreover we remark that the l.h.s. of the equation (4.205) contains small pa-
rameter ε = p/eB. The separation of dynamical scales appears naturally.

4.6.1 Solution

Similarly to the general equation for the constant of motion in the non-intrinsic case
(4.59), an iterative procedure for the resolution of (4.205) can be implemented by
using the intrinsic operators R defined in (4.193) and G defined in (4.201).

Iterative procedure Application of the operator R to the r.h.s. and the l.h.s. of
(4.205) gives us the equation for the averaged part of rescaled Hamiltonian p :

R
( p

eB
p̂ · ∇p

)
= 0 (4.209)

Note that this equation can be interpreted as a solvability condition of the general
equation (4.205).

Application of the operator G to the r.h.s. and the l.h.s. gives us the equation
for the fluctuating of p :

Np = G
( p

eB
p̂ · ∇p

)
(4.210)

The first step leads to the expression for the gyroaveraged part of p at the order
n. The second step consists to obtain the fluctuating part of p at the order n + 1.
As in the local case we suppose that the rescaled Hamiltonian p is independent of
the gyroangle ζ at the zeroth order of ϵ.

At any following order we suppose that

p = ⟨p⟩(x′, φ) + p̃(x′, φ, ⊥̂⊥⊥)←→ p = ⟨p⟩(x, φ(x)) + p̃(x, φ(x), ⊥̂⊥⊥(x)) (4.211)

Then the corresponding iterative procedure can be organized as follows:

ε0 : Dp0 = 0 (4.212)

ε1 : −Dp1 =
p0
eB

p̂ · ∇p0 (4.213)

ε2 : −Dp2 =
p̃1
eB

p̂ · ∇p0 +
⟨p1⟩
eB

p̂ · ∇p̂0 (4.214)

+
p0
eB

p̂ · ∇p̃1 +
p0
eB

p̂ · ∇⟨p1⟩ (4.215)
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In what follows all the spatial derivatives will be taken over the variable x, then the
rotating frame vectors and the pitch angle will be supposed dependent on x.

First order solution

In previous section the zeroth order constant of motion A0 ≡ ⟨A0⟩ was obtained by
applying the separation of variables method to first order partial differential equation
(4.59). In order to make the connection with the familiar expression for magnetic
momentum µ0 = (p2 sinφ2)/2B ≡ 2mA0, we start our series decomposition for the

Hamiltonian p into the new variables (x, φ(x), ⊥̂⊥⊥(x),A) with18

p0 = p0(x, ϕ(x), ⊥̂⊥⊥(x)) =
√
AB(x)

sinφ(x)
e−ϱ(x)/2 (4.216)

where ϱ = ϱ(x) is some function of the space coordinate. It will be needed in order
to obtain the second order terms. Its nature will be discussed below.

Note that the implementation of such an ansatz into the iterative procedure
(4.215) for rescaled Hamiltonian p leads to its series expansion in powers of the
variable A1/2. In what follows we deal with construction of its two first orders, i.e.
we find the terms in A1/2 and A.

By introducing p0 into the general equation (4.205) for Hamiltonian normal form,
at the first order, we have

p0
eB

p̂ · ∇p0 = −Dp1 (4.217)

By expanding ∇p0

∇p0 =
√
AB

sinφ
e−ϱ/2

(
∇B
2B
− ∇ϱ

2
+ Φ∇b̂ · ⊥̂

)
(4.218)

and then by substituting it into (4.217) we have:

p0
eB

p̂ · ∇p0 =
Ae−ϱ

e sin2 φ
(b̂ cosφ+ ⊥̂⊥⊥ sinφ) ·

(
∇B
2B
− ∇ϱ

2
+ Φ∇b̂ · ⊥̂⊥⊥

)
(4.219)

This equation give us the possibility to obtain the fluctuating part, that we call p̃1 for
the first order in A Hamiltonian. The averaged part of the first order Hamiltonian
⟨p1⟩ can be obtained when considering the second order equation. This calculation
is considered in the following section.

Here we deal with the solution of the first order equation. Due to the fact that
RD = 0, the gyroaverage of the r.h.s. of the equation (4.205) is always equal to

18Here we have inverted the functional dependence of zeroth order constant of motion and the
zeroth order Hamiltonian:

A0 =
(p sinφ)2

B
←→ p0 =

√
AB

sinφ
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zero. This implies the necessity to verify that the gyroaverage of the l.h.s. of the
same equation is also equal to zero. The gyroaverage of the both parts of the (4.219)
leads to the condition for the function ϱ:

b̂ · ∇ϱ = 0 (4.220)

In fact, with R (⊥̂⊥⊥ ⊥̂⊥⊥) = 1/2 (⊥̂⊥⊥ ⊥̂⊥⊥+ ρ̂ ρ̂ ) and ∇b̂ · b̂ = 0, we obtain:

R
( p0
eB

p̂ · ∇p0
)
= (4.221)

Ae−ϱ

e sinφ

(
Φ
b̂ · ∇B
2B

− Φ
b̂ · ∇ϱ

2
+

1

2
Φ (b̂b̂+ ⊥̂⊥⊥⊥̂⊥⊥+ ρ̂ρ̂) : ∇b̂

)

After using the electromagnetic constraint ∇ · B = ∇ · (Bb̂) = 0, that can be

rewritten as ∇ · b̂ = − b̂ · ∇B
B

, we obtain the condition (4.220).

The next step is to apply the operator G to the both parts of the equation (4.219),
in order to obtain the fluctuation of the Hamiltonian p̃1 at the first order.

p̃1 = G
( p0
eB

p̂ · ∇p0
)
= (4.222)

Ae−ϱ

e sinφ

(
−Φ2 ρ̂ b̂ : ∇b̂− 1

2
ρ̂ · (∇B

B
−∇ϱ)− 1

4
Φ (ρ̂⊥̂⊥⊥+ ⊥̂⊥⊥ρ̂) : ∇b̂

)
Here we have used that Gρ̂ = −⊥̂⊥⊥, G⊥̂⊥⊥ = ρ̂, G⊥̂⊥⊥⊥̂⊥⊥ = 1/4 (ρ̂⊥̂⊥⊥+ ⊥̂⊥⊥ρ̂).

At this stage the fluctuating part of the first order solution p̃1 have been obtained.
Now we proceed with the second order differential equation in order to find the
gyroaveraged part to the first order Hamiltonian ⟨p1⟩.

Obtaining ⟨p1⟩. Solution of the second order averaged equation

The procedure of the intrinsic gyroaveraging applied to the eq. (4.215) leads to the
partial differential equation 19 20:

cosφ b̂ · ∂x′⟨p1⟩ −
1

2
sinφ

(
∇ · b̂

)
∂φ⟨p1⟩ =

A e−ϱ

e

[
Φ2

2

[
b̂ ·
(
∇× (b̂ · ∇b̂)

)
−
(
b̂×∇ϱ

)
· (b̂ · ∇b̂)

]
(4.223)

+
1

4

[
(b̂×∇) · b̂

] [
∇ · b̂

]]
19Here we continue to distinguish two spatial positions x and x′, before and after the projection

on the intrinsic basis. We remind that ∇ ≡ ∂x = ∂x′ + ∂xφ∂φ + ∂x⊥̂⊥⊥ · ∂⊥̂⊥⊥
20Such an equation is consistent with the first order differential equation for the constant of

motion A (4.70)
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The details about its obtaining can be found in the Appendix G.1.
Now we are looking for the solution in the following form21:

⟨p1⟩ =
A e−ϱ

e sinφ
Φ ϖ(x) (4.224)

In this case

cosφ b̂ · ∂x⟨p1⟩ =
A e−ϱ

e
Φ2 b̂ · ∂xϖ(x) (4.225)

sinφ ∂φ⟨p1⟩ = −
A e−ϱ

e
ϖ(x)

(
2Φ2 + 1

)
(4.226)

This ansatz permits us to separate the terms of the equation according to the power
of Φ. Each group of terms give us an independent equation. Two groups of terms
appears.

The first one is the group of the terms multiplied by Φ0, its cancelation leads to
the expression for ϖ(x)

ϖ(x) =
1

2

[
(b̂×∇) · b̂

]
(4.227)

The following group of a terms, multiplied by Φ2 will give us the second condition
for the function ϱ

1

2

(
b̂× (b̂ · ∇b̂)

)
·∇ϱ = b̂ ·∂xϖ(x)+(∇· b̂) ϖ(x)− 1

2
b̂ ·
(
∇× (b̂ · ∇b̂)

)
(4.228)(

b̂× (b̂ · ∇b̂)
)
· ∇ϱ = ∇ ·

([
(b̂×∇) · b̂

]
b̂
)
− b̂ ·

(
∇× (b̂ · ∇b̂)

)
(4.229)

Finally:

⟨p1⟩ =
A e−ϱ

2 e sinφ
Φ
[
(b̂×∇) · b̂

]
(4.230)

4.6.2 Final result for second order solution

The first and the second order (in powers of square root of the constant of motion√
A) decomposition of the Hamiltonian normal form are given by:

p (x, ⊥̂⊥⊥(x), φ(x),A) =
√
A B

sinφ
e−ϱ/2

+
Ae−ϱ

e sinφ

(
−Φ2 ρ̂ b̂ : ∇b̂− 1

2
ρ̂ · (∇B

B
−∇ϱ)

)
+
A e−ϱ

2 e sinφ
Φ

[
(b̂×∇) · b̂− 1

2
(ρ̂⊥̂⊥⊥+ ⊥̂⊥⊥ρ̂) : ∇b̂

]
+O

(
A3/2

)
(4.231)

21Note that this is one of possible solutions. Probably another solution can be more suitable.
This opportunity need to be exploited.
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where the function ϱ = ϱ(x) must satisfy two following conditions:

b̂ · ∇ϱ(x) = 0 (4.232)

k b̂2 · ∇ϱ(x) = ∇ ·

((
(b̂×∇) · b̂

)
b̂

)
− b̂ ·

(
∇× (b̂ · ∇b̂)

)
≡ σ (4.233)

where b̂2 ≡ b̂× (b̂·∇b̂)
k

and k ≡ |b̂ · ∇b̂| denotes the curvature of magnetic field.
In fact this is two conditions on the the directional derivatives of the function ϱ

in two perpendicular directions.
From the first order equation, we know that in parallel to magnetic field direction,

its derivative is equal to zero. From the second order equation, we obtain that its
derivative in the directions perpendicular to the magnetic field b̂ × (b̂ · ∇b̂) must
be equal to some quantity σ

Such a quantity can be expressed using only the second order derivatives of the
magnetic field direction b̂. These two conditions may be interpreted as solvability
conditions. We can suppose here, that we have an ordering in magnetic field line
derivatives, so that, the second condition must be taken into account when solving
the general equation at the next order.

4.6.3 Discussion

First of all we remark that the conditions on the function ϱ obtained just above are
similar to the condition imposed by Littlejohn [3] on the gyrogauge function ξ:

b̂ · ∇ξ = 1

2
b̂ · ∇ × b̂+ b̂ ·R (4.234)

Such a condition allows to remove geometrical terms from the guiding-center Hamil-
tonian H = µ B + 1/2 p2||.

The crucial difference here is that no fixed basis vectors b̂1 and b̂2 was used when
arriving at the conditions (4.232),(4.233). Therefore no derivatives of the fixed basis
vectors are involved in the expression for the function σ and then the gyrogauge
vector R does not appear explicitly.

Here we discuss several issues for the function ξ = ξ(x).
The first one is to deal with solution of the system of directional differential

equations (4.232),(4.233) in order to find the corresponding solution for ξ. Further
discussion of solvability of such a system of differential equations will be needed.
For example it will be necessary to verify some Newcomb - like condition22 on the

22The Newcomb condition states that the differential equation b̂ · ∇ξ = σ possesses a single

valued solution if the following condition is accomplish:

∮
dl

B
σ = 0 where the integral is taken

around the closed magnetic field line
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function σ. Note that it was shown by Hagan and Frieman that in the case of the
Littlejohn equation on the gyrogauge function ξ the Newcomb condition is violated.
However no inconsistency within the general method occurs because of the angle-like
nature of the gyrophase function ζ.

Another opportunity is to impose a standard gyrokinetic ordering on the mag-
netic field derivatives LB ∇b̂ ∼ ε, where LB represents a characteristic length scale
for magnetic field variation. Then the function σ containing second order magnetic
field derivatives, can be omitted at the first order and will need to be considered at
the second order.

The other way to treat the function ξ is to put it equal to zero. In this case the
first condition will be automatically satisfied, and no inconsistency in solution of the
zeroth order differential equation will appear, because p0 =

√
AB/ sinφ satisfies the

first order differential equation (4.217).
Then the second condition should be treated as a geometrical restriction for

magnetic field:

∇ ·

((
(b̂×∇) · b̂

)
b̂

)
= b̂ ·

(
∇× (b̂ · ∇b̂)

)
(4.235)

Such a condition is satisfied in slab geometry by the vanishing of both sides of
this equation. In a the general magnetic geometry case such a condition adds a
supplementary constraint on the magnetic field and the solubility of the iterative
procedure (4.215).

This way to proceed with conditions (4.232) is similar to those proposed by L.
Sugiyama in [59] when discussing the solvability of the Littlejohn condition (4.234)
on the gyrogauge function. As was shown by Hagan and Frieman, this equation does
not possess any single valued solution because of violation of Newcomb’s condition.

Due to this fact, in order to find another manner to obtain a single - valued
solution of the eq.(4.234), Sugiyama claim that each of the terms τ = b̂ · ∇ × b̂
τg = b̂ ·R in the r.h.s. of the eq. (4.234) is equal to zero. This implies the serious
restriction on the magnetic field that it be torsion free.

On the other hand, it was remarked by Brizard in [65] that there is no incon-
sistency in the fact that the solution of the eq. (4.234) cannot be single valued.
Because the function ξ is angle-like in nature and therefore multi-valued. Finally as
Littlejohn said in his work on phase anholonomy in the classical adiabatic motion
[58], “there will inevitably occur terms depending on the perpendicular unit vectors
which cannot be transformed away, and that it is best to live with these terms and to
understand their gauge dependence”. Perturbative Lie-transform theory introduced
in [3], developed in [5] and explicit in [45] possesses a perturbation expansion, based
on gyrogauge invariant Lie generators, that leads to gyrogauge invariant equations
for parallel dynamics and to the gyrophase dynamical equation that explicitly de-
pends naturally on the gyrogauge vector R. The geometrical origin of R insures
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the validity of this approach. The difference of our method with respect to the
Lie-transform approach is such that no explicit dependence on the fixed unit vec-
tors (b̂1, b̂1) during the dynamical reduction procedure appears. The constraints
imposed on the function ξ are defined only by the magnetic field itself. On the
other hand, further discussion of the solvability conditions (4.232),(4.233) as well as
an alternative manner to deal with second order partial differential equation (4.223)
will be necessary in the following in order to make sure the solvability of the intrinsic
iterative procedure at any order.

4.7 Summary

New abstract methods for the guiding-center dynamical reduction have been intro-
duced in this work. The rigorous derivation does not rely on the definition of the
basis vectors in the perpendicular plane and thus is free from the gyrogauge and
“Sugiyama” problems. The derivation presented in this work may result in the for-
mulation of a gyrokinetic theory that is accurate and includes consistently all terms
associated with the non-uniformity of the magnetic field.
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Chapter 5

Conclusions and discussion

In this thesis a theoretical investigation into improvement of fusion plasma con-
finement by plasma control, with possible barrier formation, was undertaken from
different points of view.

In Chapter 2 Hamiltonian control tools were applied for considering transport
reduction for the E × B drift model suited for test particles. Then, in Chapter 3
an investigation of intrinsic plasma rotation mechanisms was pursued through the
derivation of the momentum conservation law for the gyrokinetic Maxwell-Vlasov
model. Here the dynamical reduction for the Maxwell-Vlasov equations was realized
by using Lie-transform perturbation methods and a suitable constrained variational
principle. There are some important remarks to make about these two studies.

First of all, in both cases electrostatic turbulence (coupling particle motion with
electric field) was considered. Such an approach is well suited to magnetically con-
fined plasmas and is widely used by physicists. However it would be interesting in
the future to explore the problem of barrier formation and to reveal intrinsic rotation
mechanisms in the case of electromagnetic turbulence. This could provide an oppor-
tunity to go into depth in the understanding of effects related to the self-consistency
of field-particle interaction.

Concerning the implementation of the Hamiltonian control tools for the E ×B
model, an important step was the implementation of methods of abstract Hamilto-
nian theory for the concrete physical problem. The analytical expression for electric
potential used here is well suited to the theoretical investigation presented in [66]. In
such a situation, the corresponding control term possesses also an analytical expres-
sion. In order to obtain a transport barrier that completely stops particle diffusion
at a chosen position, the control term must be implemented at each point of the
poloidal section of a machine. In a real situation, the electric field can be measured
at a finite number of points and the implementation of the control term is limited
by engineering features like for example restriction on the number and position of
the actuators that control the electric field. The first step in exploration of the ro-
bustness of such a control term by truncation of Fourier series was explored in this
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dissertation. We saw that for a rather chaotic system,by inducing only the two first
Fourier harmonics the turbulent transport throughout the barrier could be halved.
On the other hand, one of the powerful points of this method is its low additional
cost of energy.

Moreover, the experimental realization of this control in a Traveling Wave Tube
(PIIM laboratory, Marseille, [21]), opens the possibility to practically achieve the
control of a wide range of systems. In such a device, the interaction between elec-
trons and electrostatic waves was considered. An interesting final issue for appli-
cation of this method could be its implementation in a fusion device taking into
account all experimental constraints. Presently there is a work in progress by the
Non-Linear Dynamics team (Marseille) concerning its implementation for the linear
device Vineta, Greifswald; the corresponding results will be published in [67].

Concerning the derivation of gyrokinetic momentum conservation law through a
constrained variational principle for the full and electrostatic gyrokinetic Maxwell-
Vlasov system, the strong point of this method is providing an exact statement
that depends on the nonlinear gyrokinetic physics. General mechanisms of intrinsic
plasma rotation were identified for the electrostatic turbulence case. Currently an
article in collaboration with A. J. Brizard is in preparation. Its goal is to derive the
momentum conservation law in the case of the gyrokinetic electromagnetic Maxwell-
Vlasov system and to identify new intrinsic rotation mechanisms that lie behind it.

At the same time, these investigations were accompanied by construction of an
alternative dynamical reduction method for the Maxwell-Vlasov system by applying
Hamiltonian perturbation tools. As was previously remarked, for the Maxwell-
Vlasov system the electric field plays the role of the mechanism that couples fields
and particles. Then, as in the case of the Lie-transform perturbation method, the
first stage in the strategy consists of dynamical reduction for a particle moving in
an external non-uniform magnetic field in a six-dimensional phase space. As shown
in Chapter 4, those problem reveals fundamental questions related to the geometry
of the magnetic field configuration. For example, concerning the definition of gy-
roangle, necessary for separating the scales of motion, the gyrogauge dependence of
dynamics is induced.

In order to encompass these problems, an intrinsic formalism for construction
of constants of motion, in the case of an uncoupled system is built in Chapter 4 of
this dissertation. Such a procedure does not involve the definition of the gyroangle
and thereby avoids the problems related to the gyrogauge dependence. Here some
questions related to the iterative construction strategy for the resolution of the final
system of partial differential equations will need to be discussed.

The next step of such a reduction procedure consists of reintroduction of a per-
turbative field-particle coupling into the system.

Then at each order, by introducing a small modification into the system, the
constant of motion should be reconstituted. One of the possible issues is to use the
general Hamiltonian control method for this purpose. Finally, the perturbative field-
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particle coupling series for the constant of motion of the full Maxwell-Vlasov system
should be constructed. This part of the work is still presently being undertaken.
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Appendix A

Eulerian variations for
Maxwell-Vlasov action

This Appendix deals with a detailed decomposition of the general expression for the
Eulerian variation of the Maxwell-Vlasov Lagrangian density (3.6) in its Noether’s
part and its dynamical part (3.14).

δA =

∫
d4x δL ≡

∫
d4x δLM︸ ︷︷ ︸
≡δAM

+

∫
d4x δLV l︸ ︷︷ ︸
≡δAV l

(A.1)

A.1 Eulerian variation for Maxwell part of action

In this Section we consider the perturbed Maxwell-Vlasov equations and the contri-
bution to the Noether terms of Maxwell’s part of action. The Eulerian variation of
Maxwell’s part of Lagrangian density is given by:

δLM ≡
1

4π

(
ϵ2 δE1 · E1 − ϵ δB1 ·B

)
(A.2)

We use that
E1 = −∇Φ1 − c−1∂tA1 (A.3)

and δE1 = −∇δΦ1 − c−1∂tδA1 in order to rearrange the electrostatic part of the
variation:

δE1 · E1 = ∇δΦ1 · ∇Φ1 +
1

c
∇δΦ1 · ∂tA1 +

1

c
∂tδA1 · ∇Φ1 +

1

c2
∂tδA1 · ∂tA1 (A.4)

Then we apply the Leibnitz rule on each term in this expression in order to sep-
arate it in the full derivative and the terms multiplied by the variations (δΦ1, δA1).
For example, for the first term we have:

δ∇Φ1 · ∇Φ1 = ∇ · (δΦ1∇Φ1)− δΦ1∇2Φ1 (A.5)
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Similarly proceeding with the rest three terms, and using the relationA.3, we can
rewrite the electrostatic part of the variation as:

δE1 · E1 = −∇ · (δΦ1 E1)−
1

c

∂

∂t
(δA1 · E1) (A.6)

+ δΦ1 (∇ · E1) + δA1
1

c

(
∂E1

∂t

)
(A.7)

The next step consists in rearranging similarly the magnetic part of the variation.
We need to use the following tensor relation:

(∇×C) ·D = ∇ · (C×D) +C · (∇×D) (A.8)

for any tensors C and D. Then we obtain:

δB1 ·B = (∇× δA1) ·B = ∇ · (δA1 ×B) + δA1 · (∇×B) (A.9)

By combining the rearranged expressions for the variations od electric and magnetic
field (A.3) and (A.9), we can group Noether’s terms and dynamic terms (multiplied
by the variations (δΦ1, δA1):

δLM =
1

4π

[
−∇ ·

(
ϵ2δΦ1 E1 + ϵ δA1 ×B

)
− 1

c

∂

∂t

(
ϵ2δA1 · E1

)]
+

1

4π

[
ϵ2δΦ1 (∇ · E1) + δA1 ·

(
ϵ2
1

c
∂t E1 − ϵ (∇×B)

)]
(A.10)

The two first terms represents contribution to the Noether’s terms from Maxwell’s
part of Lagrangian density. The two last terms will be considered during derivation
of the Maxwell-Vlasov perturbed equations. The latter calculation is discussed in
the general part of this text, see Section (3.3.2).

A.2 Eulerian variation for Vlasov part of action

This section deals with detailed decomposition of the term δAV l ≡
−
∫
d8Z H {S,F}ext in its dynamical part and its Noether’s part.1 By using the

Leibnitz rule for the extended canonical Poisson bracket, we can write:∫
d8Z H {S,F}ext =

∫
d8Z {SH,F}ext +

∫
d8Z S {F ,H}ext

≡ −
∫
d4x δLV lN −

∫
d4x δLV ldyn (A.11)

The first term here is an exact bracket, so we will group it to others Noether’s
components. The second term will give us Vlasov equation (see Appendix A.2.2 for
details). In two following sections we give details about each of these terms.

1Note that the following decomposition can also be applied to the case of reduced gyrocenter
dynamics. One should replace the extended Poisson bracket by the reduced gyrocenter bracket.

126



A.2. EULERIAN VARIATION FOR VLASOV PART OF ACTION

A.2.1 Noether’s term for Vlasov part

Our work in this subsection is related to the rearrangement of the first term into
the expression A.11. First, we rewrite the Poisson bracket as follows:

{SH,F}ext = −{F , SH}ext = −
∂F
∂Za

Jab
∂(SH)
∂Zb

= − ∂

∂Za

(
F ∂

∂Zb
(SH)

)
Jab

+ F ∂2(SH)
∂Za∂Zb

Jab︸ ︷︷ ︸
=0

(A.12)

the latter term here is equal to zero because of symmetry of second derivative and
antisymmetry of the extended Poisson matrix Jab, further we multiply and we divide
our expression by the Jacobian J , and we apply one more time the Leibnitz rule:

1

J
∂

∂Za

(
F ∂

∂Zb
(SH)

)
J Jab = − 1

J
∂

∂Za
(
J Jab

)
︸ ︷︷ ︸

=0

+
1

J
∂

∂Za
(J F{Za, SH}ext)

(A.13)
where we use the Liouville identity for Poisson bracket and that

Jab
∂(SH)
∂Zb

≡ {Za, SH}ext.
Finally we obtain that:

{SH,F}ext = −
1

J
∂

∂Za
(J F{Za, SH}) (A.14)

The integral over all extended phase space of an exact Poisson bracket is equal to
zero. It suffice to prove it in the canonical coordinates, by integrating by parts. To
translate this proof in the case of the reduced phase space we have to use the fact the
there is a diffeomorphism between the canonical coordinates and the guiding-center
(gyrocenter) coordinates.

In order to obtain the contribution of the integral
∫
d8Z {SH,F}ext to the

Noether part of the Lagrangian density variation, we should first integrate over
momentum part of the phase space and then evaluate all non-vanishing terms∫

d8Z {SH,F}ext (A.15)

= −
∫
d 4x

∫
d 3p c−1 dw

1

J
∂

∂Za
(J F{Za, SH}) = 0

here we use that d8Z ≡ d4x d4p ≡ d4xd3p c−1 dw Further we remark that:

{Za, SH}ext = S {Za,H}ext +H {Za, S}ext (A.16)
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and we apply the physical constraint H ≡ 0 in order to vanish the second term, so
only the first term will contribute:

0 =

∫
d3p dw

∂

∂Za
( J F S {Za,H}ext)

=

∫
d3p dw

(
∂

∂w
(J F S{w,H}) + ∂

∂pi
(J F S{pi,H})

)
︸ ︷︷ ︸

≡0

+

∫
d3p dw

(
∂

∂xi
(J F S{xi,H}) +

∂

∂t
(J F S{ct,H})

)
=

∂

∂xi

(∫
d3p dw (J F S{xi,H})

)
+

∂

∂t

( ∫
d3p dw (J F S{ct,H})

)
(A.17)

With {ct,H}ext = c and {x,H}ext = ẋ 2 we have the following expression for
Noether’s part of Vlasov Lagrangian density :

δLV lN = − ∂

∂t

∫
d 4p F S −∇ ·

∫
d 4p F ẋ S (A.18)

A.2.2 Vlasov equation on a 6 dimensional phase space

Here we present details about obtaining the Vlasov equation on a 6 dimen-
sional phase space from the relation of commutation on extended phase space be-
tween the extended Vlasov distribution function and the extended Hamiltonian:∫
dw {F ,H}ext = 0. First we explicitly rewrite this expression into the canonical

variables 3:

{F ,H}ext = ∇F ·
∂H
∂p
− ∂F
∂p
· ∇H −

(
∂F
∂t

∂H
∂w
− ∂F
∂w

∂H
∂t

)
(A.19)

2This expression in the case of gyrocenter reduced dynamics is replaced by {X,Hgy}ϵ = Ẋgy

where {X,Hgy}ϵ is an extended guiding center bracket, X is the guiding-center position and Xgy

is the gyrocenter position
3This proof will be also convenient in the case of the reduced gyrocenter dynamics due to the

diffeomorphism between the canonical variables and the gyrocenter variables [44]
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We rearrange each term by using the Leibnitz rule ∇ · (AB) = (∇ ·A)B+A · ∇B:

∇F · ∂H
∂p

= ∇ ·
(
F ∂H

∂p

)
−F ∇ ·

(
∂H
∂p

)
(A.20)

∂F
∂p
· ∇H =

∂

∂p
· (F ∇H)−F ∂

∂p
· (∇H) (A.21)

∂F
∂t

∂H
∂w

=
∂

∂t

(
F ∂H
∂w

)
−F

(
∂2H
∂t∂w

)
(A.22)

∂F
∂w

∂H
∂t

=
∂

∂w

(
F ∂H

∂t

)
−F

(
∂2H
∂w∂t

)
(A.23)

Then we obtain the following expression for the extended Poisson bracket:

{F ,H}ext = ∇ ·
(
F ∂H

∂p

)
− ∂

∂p
· (F ∇H)− ∂

∂t

(
F ∂H
∂w

)
+

∂

∂w

(
F ∂H

∂t

)
(A.24)

Now we should integrate this expression over variable w by substituting the expres-
sion for the extended Vlasov distribution function F = δ(w−H) F and the extended
Hamiltonian H = H − w :∫

dw {F ,H}ext =
∫
dw δ(w −H)

[
∂F

∂t
+∇ ·

(
F
∂H

∂p

)
− ∂

∂p
· (F ∇H)

]
(A.25)

Note that here we exchange the derivative and the integral over independent vari-
ables (x,p) and we use that: ∂wH = −1. The key moment of this proof is vanishing
of the integral: ∫

dwF δ(w −H) (H − w) = 0 (A.26)

in fact
∫
dw δ(w−H) = 1 if and only if H = w, and then automatically the integral

is equal to zero.

By rearranging terms into the expression A.25 according to the Leibnitz rule:

∇ ·
(
F
∂H

∂p

)
= ∇F · ∂H

∂p
+ F ∇ · ∂H

∂p
(A.27)

∂

∂p
· (F ∇H) =

∂F

∂p
· ∇H + F

∂

∂p
· ∇H (A.28)

and according to the Hamilton principle, we obtain:

0 =
∂F

∂t
+∇F · ∂H

∂p
− ∂F

∂p
· ∇H ≡ ∂F

∂t
+ {F,H} (A.29)
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Gyrokinetic Vlasov equation on a 6 dimensional phase space

In the case of electrostatic gyrokinetic Maxwell-Vlasov model considered in the sec-
tion 3.5 , the Poisson bracket in the expression (A.29) is the guiding-center Poisson
bracket defined on the reduced guiding-center phase space za = (X, p ||, θ, µ):

{F,G}gc = ϵ−1
gc

Ω

B

(
∂F

∂θ

∂G

∂µ
− ∂F

∂µ

∂G

∂θ

)
(A.30)

+
B∗

B∗
||
·
(
∇∗F

∂G

∂p ||
− ∂F

∂p ||
∇∗G

)
− ϵgc

c b̂

e B∗
||
(∇∗F ×∇∗G)

where ∇∗ = ∇+R ∂/∂θ, R∗ = ∇⊥̂⊥⊥ · ρ̂+ 1/2 (b̂ · ∇ × b̂) b̂ and

B∗ = B+ ϵ B
p ||

mΩ
∇× b̂+ . . . (A.31)

from which B || = B∗ · b̂.
To obtain the gyrokinetic Vlasov equation we use the phase-space divergence

form of the guiding-center Poisson bracket:

{F,Hgy}gc =
1

B∗
||

∂

∂za
(
B∗

||F {za, Hgy}gc
)

(A.32)

where Hgy is the electrostatic gyrocenter gyrophase-independent Hamiltonian

Hgy = µB0 +
p2||
2m

+ ϵ e⟨Φ1gc⟩ −
ϵ2

2
e ⟨{Ψ1gc,Φ1gc}gc⟩ (A.33)

with ∂θΨ1gc = Φ̃1gc. Using the gyrocenter equations of motion 4

Ẋ =
B∗

B∗
||

∂Hgy

∂p ||
+

c b̂

eB∗
||
×∇Hgy (A.34)

˙p || = −B∗

B∗
||
· ∇Hgy (A.35)

θ̇ =
Ω

B

∂Hgy

∂µ
+

B∗

B∗
||
·
(
R∗ ∂Hgy

∂p ||

)
(A.36)

µ̇ = − Ω

B∗
||

∂Hgy

∂θ
= 0 (A.37)

4Note that by supposing that all the fields here B∗
||, b̂0 and R∗ are evaluated into the gyro-

center position, the corresponding gyrocenter dynamic is completely independent of the gyroangle
coordinate. We have for example Ẋ = ⟨Ẋ⟩
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with ∂θF ≡ 0 we obtain that

{F,Hgy}gc =
1

B∗
||
∇ ·
(
B∗

|| Ẋ F
)
+

1

B∗
||

∂

∂p ||

(
B∗

|| ṗ || F
)

(A.38)

Then taking into the account the Liouville identity

1

B∗
||

∂

∂za
(
B∗

|| ż
a
)
= 0 (A.39)

we can rewrite the gyrokinetic Vlasov equation as

∂F

∂t
= −Ẋ · ∇F − ṗ ||

∂F

∂p ||
(A.40)

Note that in the case of time-independent background magnetic field B0 phase-space
diverge form of the Vlasov equation is

∂(B∗
||F )

∂t
+∇ ·

(
B∗

|| Ẋ F
)
+

∂

∂p ||

(
B∗

|| ṗ || F
)
= 0 (A.41)
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Appendix B

Proof of Momentum conservation

In this Appendix we give an explicit proof of momentum conservation. More pre-
cisely we show how to simplify the eq.(3.55) by using the equations of motion for the
perturbed Maxwell-Vlasov system. We start with the first term in the r.h.s. of the
expression (3.55). We substitute the Vlasov equation in its phase-space divergence
form (3.56) and then we apply the Leibnitz rule.

∫
∂F

∂t

(
p∗ − ϵ

e

c
A1

)
d3p = −

∫
∂

∂p
·
(
F ṗ

(
p∗ − ϵ

e

c
A1

))
d3p

− ∇ ·
∫ (

F ẋ
(
p∗ − ϵ

e

c
A1

))
d3p (B.1)

+

∫
F ẋ · ∇

(
p∗ − ϵ

e

c
A1

)
d3p+

∫
F ṗ · ∂

∂p

(
p∗ − ϵ

e

c
A1

)
d3p

The first term in the r.h.s. of this equation is equal to zero as an integral over
momentum part of the phase space (d3p) of momentum divergence ∂p. The two
latter terms can be rewritten as∫

F ẋ · ∇
(
p∗ − ϵ

e

c
A1

)
d3p+

∫
F ṗ · ∂

∂p

(
p∗ − ϵ

e

c
A1

)
d3p (B.2)

= −
∫

F {
(
p∗ − ϵ

e

c
A1

)
, H}d3p (B.3)

We now continue the simplification of the equation (3.55) by considering Maxwell
terms ∂tE1 × B1 and E1 × ∂tB1. The first term transforms according to the per-
turbed Ampere equation (3.23) and the tensor identity above combined with the
electromagnetic constraint ∇ ·B = 0

(∇×C)×D = ∇ · (D C)− (∇ ·D)C− (∇C) ·D (B.4)
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ϵ2

4πc

∂E1

∂t
×B1 =

ϵ2

4π
(∇×B)×B1 − ϵ e

∫
F
(v
c
×B1

)
d3p

= − ϵ

4π
∇B0 ·B1 −

ϵ2

8π
∇ (B1 ·B1) +

ϵ

4π
∇ · (B1 ·B)

− ϵ e

∫
F
(v
c
×B1

)
d3p (B.5)

The second term transforms according to the perturbed Poisson equation (3.22) and
the second electromagnetic constraint ∂tB1 = −c (∇× E1).

ϵ2

4π c
E1 ×

∂B1

∂t
= − ϵ

2

4π
E1 × (∇× E1)

= − ϵ
2

8π
∇ (E1 · E1) +

ϵ2

4π
∇ · (E1 E1)− ϵ e

∫
F E1 d

3p (B.6)

here we have also applied the tensor identity (B.4). Finally we can rewrite the
Maxwell part of the eq.(3.55) as

ϵ2

4π c

(
∂E1

∂t
×B1 + E1 ×

∂B1

∂t

)
= − ϵ

4π
∇B0 ·B1 −

ϵ2

8π
∇
(
|E1|2 + |B1|2

)
+

ϵ

4π
∇ · (B1B+ ϵE1E1)

− ϵ e

∫
F
((v

c
×B1

)
+ E1

)
d3p (B.7)

By combining equations (B.7,B.5 and B.6) we obtain the equation 3.57.
In order to obtain the eq.(3.60) we use

∇B0 ·
∂LM
∂B0

=
1

4π
(∇B0 ·B) =

1

8π
∇ (B0 ·B0) +

ϵ

8π
∇B0 ·B1 (B.8)

where LM denotes the Maxwell part of Lagrangian density. Then we remark that

∇ ·ΠM −∇B0 ·
∂LM
∂B0

=

− ϵ

4π
∇B0 ·B1 −

ϵ2

8π
∇
(
|E1|2 + |B1|2

)
+

ϵ

4π
∇ · (B1B+ ϵE1E1) (B.9)

whereΠM denotes the Maxwell part of the canonical momentum stress tensor (3.54).
By substituting the fundamental relation v ≡ ẋ = {H,x} into the Vlasov part

of the canonical momentum stress tensor (3.54), we can associate with ∇·ΠV l with
∇ ·
∫ (

F ẋ
(
p∗ − ϵ ecA1

))
d3p from eq. (B.2), then we obtain

∂P

∂t
= −∇ ·Π+∇B0 ·

∂LM
∂B0

+∇B0 ·
∂LV l
∂B0

(B.10)

+

∫
F

[
− d

dt

(
p∗ − ϵ

e

c
A1

)
+ ϵ e

(
E1 +

v

c
×B1

)
−∇B0 ·

∂LV l
∂B0

]
d3p
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here we add and we subtract
∂LV l
∂B0

= −
∫
d3p F

∂H

∂B0

in order to complete the

expression above up to the eq.(3.60).
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Appendix C

Particle canonical equation of
motion

In this Appendix we show how to derive the fundamental dynamical equation for
particle moving into external electromagnetic fields. The Hamiltonian in canonical
variables (p,x)

H =
1

2m

(
p− e

c
A
)
+ e Φ (C.1)

then the Hamiltonian equations (with using the canonical Poisson bracket) are

ẋ =
∂H

∂p
=

1

m

(
p− e

c
A
)
≡ v (C.2)

ṗ = −∂H
∂x

=
e

c
∇A · v − e∇Φ (C.3)

Then we substitute the eq.(C.2) in the l.h.s. of the eq.(C.3) and we use that
d

dt
≡

∂

∂t
+ v · ∇

m
dv

dt
=
e

c
∇A · v − e

c
v · ∇A︸ ︷︷ ︸

=
e

c
v ×B

+e

(
−∇Φ− 1

c

∂

∂
A1

)
︸ ︷︷ ︸

= E

(C.4)

here we have used that

(∇D) ·C− (C · ∇)D = C× (∇×D) (C.5)

and B = ∇ × A, E = −∇Φ − c−1∂tA. Then we obtain the equation of motion
driven by the Lorenz force

m
dv

dt
= e

(v
c
×B+ E

)
(C.6)
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Appendix D

Gyrocenter magnetization

In this Appendix, we derive the first-order gyrocenter contribution to the partial
derivative:

∂Hgy

∂B0

=
∂Hgc

∂B0

+ ϵ e
∂⟨ϕ1gc⟩
∂B0

+ . . . (D.1)

of the gyrocenter Hamiltonian (3.69).

D.1 Functional dependence on B0

Before starting the calculation of
∂Hgy

∂B0

, we need to emphasize some important

details. First of all, here we take into account the fact that the magnetic momentum
µ is an independent of B0 phase space variable and the Larmor frequency Ω is
expressed as Ω = eB0

mc
.

So in further calculations:

ρ0 ≡
√

2µ B0

mΩ2
ρ̂ (D.2)

then

ρ0 =

√
2µB0

m

m2c2

e2B2
0

ρ̂ =
c

e

√
2µm

B0

ρ̂ (D.3)

B0 ≡ (B0 ·B0)
1/2 ⇒ ∂B0

∂B0

=
B0

B0

≡ b̂0 (D.4)

∂ρ

∂B0

= −1

2

c

e

√
2µm

B0

B
5/2
0

= −c
e

√
µm

2B0

b̂0

B0

(D.5)

We remark also that
∂b̂0

∂B0

=
1

B0

− b̂0b̂0

B0

≡ 1⊥

B0

(D.6)
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D.2 Hgc

Hgc = µ B0 +
p2||
2m

(D.7)

here B0 = (B0 ·B0)
1/2 is the norm of the background magnetic field. so

∂Hgc

∂B0

= µ
B0

B0

≡ µb̂0 (D.8)

D.3 ϵ ⟨ϕ1gc⟩
In order to realize this calculation, we make a series expansion on the guiding center
Larmor radius ρ0 for scalar electric potential ϕ1gc:

ϕ1gc = ϕ1(X+ ρ0) = Φ1(X) + ρ0 · ∇ϕ1(X) +
1

2
ρ0ρ0 : ∇∇ϕ1(X) + . . . (D.9)

⟨ϕ1gc⟩ = ϕ1(X) +
1

2

c 2

e 2

µm

B0

(ρ̂ρ̂+ ⊥̂⊥⊥⊥̂⊥⊥) : ∇∇ϕ1(X) + . . . (D.10)

∂⟨ϕ1gc⟩
∂B0

= −c
2mµ

2 e 2

B0

B3
0

(ρ̂ρ̂+ ⊥̂⊥⊥⊥̂⊥⊥) : ∇∇ϕ1 =

= − µ

2mΩ2
b̂0 (ρ̂ρ̂+ ⊥̂⊥⊥⊥̂⊥⊥) : ∇∇ϕ1

= − µ

2mΩ2
b̂0 1⊥ : ∇∇ϕ1 (D.11)

Using the fact that E1 = −∇ϕ1 and

1⊥ : ∇E1 = (ρ̂ρ̂+ ⊥̂⊥⊥⊥̂⊥⊥) : ∇E1 = (ρ̂ · ∇)(E1 · ρ̂) + (⊥̂⊥⊥ ·∇)(E1 · ⊥̂⊥⊥) = ∇ ·E⊥ (D.12)

we have:
∂

∂B0

⟨ϕ1gc⟩ =
µ

2mΩ2
b̂0 (∇ · E1⊥) (D.13)
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Appendix E

Gyrokinetic momentum
conservation application

Gyrokinetic momentum conservation law in axisymmetric geometry In this Ap-
pendix we give a detailed projection of the gyrokinetic momentum conservation
law (3.96) in axisymmetric geometry. Following [68] we start with introducing some
generalities about the curvilinear coordinates.

E.1 Curvilinear coordinates

It is well known that the convenient choice of coordinates plays an important role in
classical physics. Let us discuss here the procedure of introduction of the curvilinear
coordinates.

In general case any three quantities, which in follows will be denoted as
(y1, y2, y3), can be used as coordinates if they are well-behaved (diffeomorphism)
functions of the Cartesian coordinates and vice versa. The functions that give the
direct transformation (from curvilinear to Cartesian) are:

x = x(y1, y2, y3) (E.1)

y = y(y1, y2, y3) (E.2)

z = y(y1, y2, y3) (E.3)

The inverse transformation (from curvilinear to Cartesian) can be obtained by solv-
ing the above system of equations for the arguments (y1, y2, y3):

y1 = y1(x, y, z) (E.4)

y2 = y2(x, y, z) (E.5)

y3 = y3(x, y, z) (E.6)

A given point x ∈ R3 may be described by specifying either the set (x, y, z) or
(y1, y2, y3). Each of the equations yi = yi(x, y, z), that define the inverse trans-
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formation (E.6), describes a surface in the new coordinates and the intersection of
three such surfaces locates the point in the three-dimensional space. The surfaces
yi = const are called the coordinate surfaces; the space curves formed by their inter-
section in pairs are called the coordinate lines. The coordinate axes are determined
by the tangents to the coordinate lines at the intersection of three surfaces. They are
not in general fixed directions in space, as is true for simple Cartesian coordinates.
The quantities (y1, y2, y3) are the curvilinear coordinates of a point x.

Then the Jacobian of the direct transformation:

J = det
∂ (x, y, z)

∂ (y1, y2, y3)
= det



∂x

∂y1
,
∂x

∂y2
,
∂x

∂y3

∂y

∂y1
,
∂y

∂y2
,
∂y

∂y3

∂z

∂y1
,
∂z

∂y2
,
∂z

∂y3


(E.7)

cannot be infinite. Note that the expression for the Jacobian J can be rewritten as
(here we use the decomposition of the Jacobian matrix by the first column)

J ≡ ∂x

∂y1
·
(
∂x

∂y2
× ∂x

∂y3

)
(E.8)

that represents an elementary volume.
The Jacobian of the inverse transformation:

J −1 = det
∂ (y1, y2, y3)

∂ (x, y, z)
= det



∂y1

∂x
,
∂y1

∂y
,
∂y1

∂z

∂y2

∂x
,
∂y2

∂y
,
∂y2

∂z

∂y3

∂x
,
∂z

∂y
,
∂y3

∂z


(E.9)

cannot be correspondingly equal to zero. Similarly to direct transform case, this
relation can be rewritten as (here we use the decomposition of the Jacobian matrix
by the first line)

J −1 ≡ ∇y1 ·
(
∇y2 ×∇y3

)
(E.10)

where ∇yi ≡ (∂xy
i, ∂yy

i, ∂zy
i)

E.1.1 Covariant and contravariant representation

Basis vectors are usually associated with a coordinate system by two methods:
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• they can be built along the coordinate axes (collinear to axes), tangent vectors
∂x/∂ya

• they can be built to be perpendicular (normal) to the coordinate surfaces given
by gradient of three coordinates ∇yi

In the first case we deal with the covariant basis vector representation and in the
second case with the contravariant basis vector representation: They are related by
the orthogonality relation

∇ya · ∂x
∂yb

= δab (E.11)

The corresponding relation for the Jacobian is

J =
∂x

∂y1
·
(
∂x

∂y2
× ∂x

∂y3

)
≡
(
∇y1 ·

(
∇y2 ×∇y3

))−1
(E.12)

Cylindrical coordinates

Direct coordinate transformation:

x(R, θ, Z) = R sinϕ x̂+R cosϕ ŷ + Z ẑ (E.13)

with Cartesian unit vectors: (x̂, ŷ, ẑ). Note that here we do not make a difference

between covariant and contravariant Cartesian vectors, for example:
∂x

∂x
= ∇x ≡ x̂,

because the corresponding metric tensor is equal to the identity tensor in the both
cases.

The covariant (tangent) vectors in the new coordinates (r, ϕ, Z)

∂x

∂R
=

 sinϕ
cosϕ
0

 ,
∂x

∂ϕ
= R

 cosϕ
− sinϕ

0

 ,
∂x

∂Z
=

 0
0
1

 (E.14)

The contravariant vectors in new coordinates

∇R =

 sinϕ
cosϕ
0

 ,∇ϕ =
1

R

 − cosϕ
sinϕ
0

 ,∇Z =

 0
0
1

 (E.15)

The covariant vectors in old (Cartesian) coordinates

∂x

∂R
=

1√
x2 + y2

 x
y
0

 ,
∂x

∂ϕ
=

 y
−x
0

 ,
∂x

∂Z
=

 0
0
1

 (E.16)
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and the contravariant vectors

∇R =
1√

x2 + y2

 x
y
0

 ,∇ϕ =
1

x2 + y2

 y
−x
0

 ,∇Z =

 0
0
1

 (E.17)

Here R =
√
x2 + y2 and tanϕ =

x

y
≡ ∂xR

∂yR

E.1.2 Metric tensor

The metric tensor in the covariant and the contravariant representations is given by

gab =
∂x

∂ya
· ∂x
∂yb

(E.18)

gab = ∇ya · ∇yb (E.19)

In what follows we will consider axisymmetric coordinates system (ϕ, θ, ψ) where
ϕ = y1 denotes the toroidal coordinate and θ and ψ corresponds to two remaining
orthogonal directions, which we will represent for instance as ya, where a ∈ {2, 3}.

When the basis vectors are orthogonal, the metric tensor is diagonal

gab =

 gϕϕ 0 0
0 gθθ 0
0 0 gψψ

 (E.20)

gab =

 gϕϕ 0 0
0 gθθ 0
0 0 gψψ

 (E.21)

where the coefficients are given by

gϕϕ =
∂x

∂ϕ
· ∂x
∂ϕ

=

∣∣∣∣∂x∂ϕ
∣∣∣∣2 = R2 (E.22)

gθθ =
∂x

∂θ
· ∂x
∂θ

=

∣∣∣∣∂x∂θ
∣∣∣∣2 (E.23)

gψψ =
∂x

∂ψ
· ∂x
∂ψ

=

∣∣∣∣∂x∂ψ
∣∣∣∣2 (E.24)

gϕϕ = ∇ϕ · ∇ϕ = |∇ϕ|2 = 1/

∣∣∣∣∂x∂ϕ
∣∣∣∣2 = 1

R2
(E.25)

gθθ = ∇θ · ∇θ = |∇θ|2 = 1/

∣∣∣∣∂x∂θ
∣∣∣∣2 (E.26)

gψψ = ∇ψ · ∇ψ = |∇ψ|2 = 1/

∣∣∣∣∂x∂ψ
∣∣∣∣2 (E.27)
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The Jacobian

det(gab) = gϕϕ gθθ gψψ = J 2 (E.28)

det(gab) = gϕϕ gθθ gψψ = J −2 (E.29)

Coefficients transformation

The correspondence between the coefficients of the tensor C in the covariant and
the contravariant representations

C = Ca∇ya + Cϕ∇ϕ = Ca ∂x

∂ya
+ Cϕ∂x

∂ϕ
(E.30)

is given by the metric tensor Ca = gabC
b, Ca = gabCb

E.1.3 Dyadic identity tensor and gradient

The covariant basis vectors
∂x

∂ϕ
,
∂x

∂θ
,
∂x

∂ψ
(E.31)

with their norm ∣∣∣∣∂x∂ϕ
∣∣∣∣ = √gϕϕ = R ,

∣∣∣∣∂x∂θ
∣∣∣∣ = √gθθ , ∣∣∣∣∂x∂ψ

∣∣∣∣ = √gψψ , (E.32)

So the dyadic tensor has a form

I =
1

R2

∂x

∂ϕ

∂x

∂ϕ
+

1

gθθ

∂x

∂θ

∂x

∂θ
+

1

gψψ

∂x

∂ψ

∂x

∂ψ
(E.33)

Note also that

∇ =
∂

∂x
(E.34)

so
∂x

∂ϕ
· ∇ =

∂

∂ϕ
(E.35)

Finally into the covariant basis

∇ = I · ∇ =
1

R2

∂x

∂ϕ

(
∂

∂ϕ

)
+

1

gθθ

∂x

∂θ

(
∂

∂θ

)
+

1

gψψ

∂x

∂ψ

(
∂

∂ψ

)
(E.36)

For the contravariant basis decomposition:

|∇ϕ| = 1
√
gϕϕ

=
1

R
, |∇θ| = 1

√
gθθ

, |∇ψ| = 1
√
gψψ

, (E.37)
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So the dyadic tensor

I =
1

gϕϕ
∇ϕ∇ϕ+ 1

gθθ
∇θ∇θ+ 1

gψψ
∇ψ∇ψ = R2∇ϕ∇ϕ+gθθ∇θ∇θ+gψψ∇ψ∇ψ (E.38)

∇ϕ · ∇ =
1

R2

∂

∂ϕ
, ∇θ · ∇ =

1

gθθ

∂

∂θ
, ∇ψ · ∇ =

1

gψψ

∂

∂ψ
, (E.39)

And finally

∇ = ∇ϕ ∂

∂ϕ
+∇θ ∂

∂θ
+∇ψ ∂

∂ψ
(E.40)

E.2 Momentum conservation law projection

In this Section we consider toroidal gyrokinetic momentum conservation equation
(3.112).

The gyrokinetic momentum stress tensor in the electrostatic perturbation case
(E.38) has a dyadic form. Here we evaluate

∂x

∂ϕ
· ∇ · Π̄gy = (E.41)

ϵ2

8π

∂x

∂ϕ
· ∇ ·

(
|E1|2 I

)
− ϵ2

4π

∂x

∂ϕ
· ∇ · (E1E1)

+

∫
m
∂x

∂ϕ
· ∇ ·

(
F Ẋgy Ẋgy

)
d3p (E.42)

In what follows we use the next formula for projection of the divergence of the
dyadic tensor CC on the toroidal direction ∂x/∂ϕ

∂x

∂ϕ
·∇·(CC) = Cϕ

(
1

J
∂

∂ya
(JCa) +

∂Cϕ

∂ϕ

)
−Ca

(
∂Cϕ
∂ya
− ∂Ca

∂ϕ

)
+
1

2

∂

∂ϕ

(
CaC

a + CϕC
ϕ
)

(E.43)

E.2.1
∂x

∂ϕ
· ∇ · |E1|2I

First we need to identify the covariant and the contravariant coordinates for the
tensor |E1|2I.

Following the equation (E.36) for covariant representation of the dyadic identity
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tensor, we identify its coordinates in the covariant basis :

|E1|2 I =(
|E1|

1

R

∂x

∂ϕ
|E1|

1

R

∂x

∂ϕ
+ |E1|

1
√
gθθ

∂x

∂θ
|E1|

1
√
gθθ

∂x

∂θ
+ |E1|

1
√
gψψ

∂x

∂ψ
|E1|

1
√
gψψ

∂x

∂ψ

)
⇒ C = |E1|

1

R

∂x

∂ϕ
+ |E1|

1
√
gθθ

∂x

∂θ
+ |E1|

1
√
gψψ

∂x

∂ψ
(E.44)

⇒ Cϕ = |E1|
1

R
, Ca = |E1|

1
√
gaa

(E.45)

At the same time using the eq.(E.38)for contravariant representation of the dyadic
identity tensor, we identify its coordinates in the contravariant basis :

|E1|2 I =(
|E1| R ∇ϕ|E1| R ∇ϕ+ |E1|

√
gθθ

∂x

∂θ
|E1|
√
gθθ

∂x

∂θ
+ |E1|

√
gψψ

∂x

∂ψ
|E1|
√
gψψ

∂x

∂ψ

)
⇒ C = |E1|R∇ϕ+ |E1|

√
gθθ∇θ + |E1|

√
gψψ∇ψ (E.46)

⇒ Cϕ = |E1|R, Ca = |E1|
√
gaa (E.47)

Now we can apply the formula (E.43) in order to obtain
∂x

∂ϕ
· ∇ · |E1|2I.

Cϕ

(
1

J
∂

∂ya
(JCa) +

∂Cϕ

∂ϕ

)
=

(|E|R)
(

1

J
∂

∂θ

(
J |E| 1

√
gθθ

))
+ (|E|R)

(
1

J
∂

∂ψ

(
J |E| 1

√
gψψ

))
+ |E|R 1

R

∂

∂ϕ
|E|

= |E| 1
√
gθθgψψ

(
∂

∂θ

(
R
√
gψψ|E|

)
+

∂

∂ψ
(R
√
gθθ|E|)

)
+

1

2

∂

∂ϕ
|E|2 (E.48)

−Ca

(
∂Cϕ
∂ya
− ∂Ca

∂ϕ

)
=

−|E| 1
√
gθθ

(
∂(|E|R)
∂θ

−
∂(|E|√gθθ)

∂ϕ

)
− |E| 1

√
gψψ

(
∂(|E|R)
∂ψ

−
∂(|E|√gψψ)

∂ϕ

)
= −|E| 1

√
gθθ

∂(|E|R)
∂θ

− |E| 1
√
gψψ

∂(|E|R)
∂ψ

+
∂|E|2

∂ϕ
(E.49)

1

2

∂

∂ϕ

(
CaC

a + CϕC
ϕ
)
=

1

2

∂

∂ϕ
|E|2 (E.50)

So finally we obtain:

∂x

∂ϕ
· ∇ · |E1|2I = (E.51)

=
1

2

|E1|2R√
gθθgψψ

(
∂

∂θ

√
gψψ +

∂

∂ψ

√
gθθ

)
+

∂

∂ϕ
|E1|2
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E.2.2
∂x

∂ϕ
· ∇ · E1E1

Here we deal with the second term in the expression (E.42). By applying the formula
(E.43) we obtain:

Cϕ

(
1

J
∂

∂ya
(JCa) +

∂Cϕ

∂ϕ

)
= Eϕ

(
1

J
∂

∂θ

(
JEθ

))
+ Eϕ

(
1

J
∂

∂ψ

(
JEψ

))
+ Eϕ

∂Eϕ

∂ϕ
=

Eϕ
∂Eθ

∂θ
+ Eϕ

∂Eψ

∂ψ
+

1

J

(
Eθ ∂J

∂θ
+ Eψ ∂J

∂ψ

)
+ Eϕ

∂Eϕ

∂ϕ
(E.52)

−Ca

(
∂Cϕ
∂ya
− ∂Ca

∂ϕ

)
= −Eθ ∂Eϕ

∂θ
+ Eθ ∂Eθ

∂ϕ
− Eψ ∂Eϕ

∂ψ
+ Eψ ∂Eψ

∂ϕ
(E.53)

1

2

∂

∂ϕ

(
CaC

a + CϕC
ϕ
)
=

1

2

∂

∂ϕ
|E1|2 (E.54)

Note that

Eϕ
∂Eϕ

∂ϕ
= Eϕ∂Eϕ

∂ϕ
=
∂
(
EϕE

ϕ
)

∂ϕ
(E.55)

because

Eϕ = R2Eϕ , Eϕ =
1

R2
Eϕ ⇒ EϕE

ϕ = EϕEϕ (E.56)

and
∂J
∂ϕ

= 0 (E.57)

Then finally the blue terms gives the derivative of the norm of E

Eϕ
∂Eϕ

∂ϕ
+ Eθ

∂Eθ

∂ϕ
+ Eψ

∂Eψ

∂ϕ
=

1

2

∂|E|2

∂ϕ
(E.58)

Lastly, for the second term we have:

∂x

∂ϕ
· ∇ · E1E1 = (E.59)(

Eϕ
∂Eθ

∂θ
− Eθ ∂Eϕ

∂θ

)
+

(
Eϕ

∂Eψ

∂ψ
− Eψ ∂Eϕ

∂ψ

)
+

1

J
Eϕ

(
Eθ ∂J

∂θ
+ Eψ ∂J

∂ψ

)
+

∂

∂ϕ
|E1|2
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E.2.3 Vlasov term

Here we will need to use the following tensor relation:

∂x

∂ϕ
· ∇ · (f CC) = f

∂x

∂ϕ
· ∇ · (CC) + Cϕ (C · ∇f) (E.60)

where f is some scalar function.
then we apply this formula on order to project the Vlasov part of eq. (E.42).
Using the eq.(E.43) we obtain:

m

∫
d3p F ẊẊ = m

∫
d3p F

[(
Ẋϕ

∂Ẋθ

∂θ
− Ẋθ ∂Ẋϕ

∂θ

)
(E.61)

+

(
Ẋϕ

∂Ẋψ

∂ψ
− Ẋψ ∂Ẋϕ

∂ψ

)
+

1

J
Ẋϕ

(
Ẋθ ∂J

∂θ
+ Ẋψ ∂J

∂ψ

)
+

∂

∂ϕ
|Ẋ|2

]
(E.62)

+m

∫
d3p Ẋϕ

(
Ẋ · ∇F

)
here X ≡ Xgy

E.2.4 Final result: general axisymmetric geometry

By combining the equations (E.51),(E.59),(E.63) we have:

∂x

∂ϕ
· ∇ · Π̄gy = (E.63)

ϵ2

8π

|E1|2
√
gϕϕ

√
gθθgψψ

(
∂

∂θ

√
gψψ +

∂

∂ψ

√
gθθ

)
− ϵ2

4π

∂

∂ϕ
|E1|2 + (E.64)

− ϵ
2

4π

[(
Eϕ

∂Eθ

∂θ
− Eθ ∂Eϕ

∂θ

)
+

(
Eϕ

∂Eψ

∂ψ
− Eψ ∂Eϕ

∂ψ

)
+

1

J
Eϕ

(
Eθ ∂J

∂θ
+ Eψ ∂J

∂ψ

)]
+m

∫
d3p F

[(
Ẋϕ

∂Ẋθ

∂θ
− Ẋθ ∂Ẋϕ

∂θ

)
(E.65)

+

(
Ẋϕ

∂Ẋψ

∂ψ
− Ẋψ ∂Ẋϕ

∂ψ

)
+

1

J
Ẋϕ

(
Ẋθ ∂J

∂θ
+ Ẋψ ∂J

∂ψ

)
+

∂

∂ϕ
|Ẋ|2

]
(E.66)

+m

∫
d3p Ẋϕ

(
Ẋ · ∇F

)
E.2.5 Final result:cylindrical geometry

In the case of cylindrical geometry gRR = gRR = gZZ = gZZ = 1 and gϕϕ = R2, then
J ≡ R
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In this case the result of the projection on the toroidal direction for momentum
conservation law has the following form:

∂x

∂ϕ
· ∇ · Π̄gy = (E.67)

− ϵ
2

4π

[
∂

∂ϕ
|E1|2 +

(
Eϕ

∂EZ

∂Z
− EZ ∂Eϕ

∂Z

)
+

(
Eϕ

∂ER

∂R
− ER∂Eϕ

∂R

)
+

1

R
EϕE

R

]
+m

∫
d3p F Ẋϕ

[
∂ẊZ

∂Z
+

1

R
ẊR +

∂ẊZ

∂Z
+ Ẋ · ∇F

]
−m

∫
d3p F

[
ẊZ ∂X

ϕ

∂Z
+

∂

∂ϕ
|Ẋ|2

]
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Appendix F

Local Poisson bracket

F.1 Calculation of the brackets {zi, zj}old
Here is presented the calculation which leads to the expression (4.39)

{ζ,x} =
∂ζ

∂p
· ∂x
∂r

= − p̂2

p sinφ

{φ,x} =
∂φ

∂p
· ∂x
∂r

=
p̂1

p

{p, ζ} =
∂p

∂p
· ∂ζ
∂r
− ∂p

∂r
· ∂ζ
∂p
− eB ∂p

∂p
× ∂ζ

∂p
= − p̂0 ·M · p̂1

sinφ
+ eB ·

(
p̂0 ×

p̂2

p sinφ

)
=

− p̂1 ·M · p̂0

sinφ
− eB · ( p̂1

p sinφ
) = − p̂1 ·M · p̂0

sinφ
− eB b̂0 · p̂1

p sinφ
= − p̂1 ·M · p̂0

sinφ
+
eB

p

{p, φ} =
∂p

∂p
· ∂φ
∂r
− ∂p

∂r
· ∂φ
∂p
− eB ∂p

∂p
× ∂φ

∂p
= −p̂0 ·M · p̂2 − eB

(
p̂0 × p̂1

p

)
=

−p̂0 ·M · p̂2 − eB
b̂0 · p̂2

p
= −p̂0 ·M · p̂2

{ζ, φ} =
∂ζ

∂p
· ∂φ
∂r
− ∂ζ

∂r
· ∂φ
∂p
− eB ·

(
∂ζ

∂p
× ∂φ

∂p

)
=

p̂1 ·M · p̂1

p sinφ
+

p̂2 ·M · p̂2

p sinφ
+ eB(

p̂2

p sinφ
× p̂1

p
) =

1

p sinφ

(
p̂1 ·M · p̂1 + p̂2 ·M · p̂2 −

eB cosφ

p

)
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Appendix G

Series decomposition for
Hamiltonian normal form.

G.1 Second order

Here we proceed with detailed calculation which leads to the second order partial
differential equation for the Hamiltonian normal form. This equation provides the
averaged part of the first order correction ⟨p1⟩ and the fluctuating part of the second
order correction p̃2

Dp̃2 = − p0
eB

(
b̂ cosφ+ ⊥̂⊥⊥ sinφ

)
· ∇ (⟨p1⟩+ p̃1)

− (⟨p1⟩+ p̃1)

eB

(
b̂ cosφ+ ⊥̂⊥⊥ sinφ

)
· ∇p0 (G.1)

We start with deriving ∇p̃1

∇p̃1 =
Ae−ϱ

e sinφ

(
−∇Φ2ρ̂ b̂ : ∇b̂− Φ2(∇b̂) · (∇b̂) · ρ̂− Φ2b̂ · ∇∇b̂ · ρ̂− Φ2 b̂i (∂i b̂k) (∂j ρ̂k)

− 1

2
∇ρ̂ ·

(
∇B
B
−∇ϱ

)
− 1

2
ρ̂i ∂j

∂iB

B
+

1

2
ρ̂ · ∇∇ϱ− 1

4
∇Φ(ρ̂⊥̂⊥⊥+ ⊥̂⊥⊥ρ̂) : ∇b̂ (G.2)

− 1

4
Φ(∇ρ̂ · ∇b̂ · ⊥̂⊥⊥+∇⊥̂⊥⊥ · ∇b̂ · ρ̂)

− 1

4
Φ(⊥̂⊥⊥ · ∇∇b̂ · ρ̂+ ρ̂ · ∇∇b̂ · ⊥̂⊥⊥)− 1

4
Φ(⊥̂⊥⊥i ∂i b̂k ∂j ρ̂k + ρ̂i ∂i b̂k ∂j ⊥̂⊥⊥k)

+ (−∇ϱ+ Φ∇b̂ · ⊥̂⊥⊥)(−Φ2ρ̂ b̂ : ∇b̂− 1

2
ρ̂ · (∇B

B
−∇ϱ)− 1

4
Φ(ρ̂⊥̂⊥⊥+ ⊥̂⊥⊥ρ̂) : ∇b̂)

)
(G.3)

Obtaining ⟨p1⟩.Second order averaged equation

In this subsection we show how to get the gyroaveraged part of the first order
correction of our Hamiltonian, which we express as ⟨p1⟩. First we apply the operator
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R to both parts of the equation (G.1). Here ⟨p1⟩ = ⟨p1⟩(x, φ(x)), but ∇⟨p1⟩ =
∇⟨p1⟩(x, φ(x), ⊥̂⊥⊥(x)). Due to the fact that b̂ = b̂(x), we can identify operators ∇
and ∂x.

p0
eB

cosφ R
(
b̂ · ∇ ⟨p1⟩

)
1
+
p0
eB

sinφ R
(
⊥̂⊥⊥ · ∇ ⟨p1⟩

)
2
+
p0
eB

cosφ R
(
b̂ · ∇ p̃1

)
3

+
p0
eB

sinφ R
(
⊥̂⊥⊥ · ∇ p̃1

)
4
+
⟨p1⟩
eB

cosφ R
(
b̂ · ∇ p0

)
5
+
⟨p1⟩
eB

sinφ R
(
⊥̂⊥⊥ · ∇ p0

)
6

+ cosφ R
(
p̃1
eB

b̂ · ∇ p0

)
7

+ sinφ R
(
p̃1
eB
⊥̂⊥⊥ · ∇ p0

)
8

= 0 (G.4)

Theorem 5 The second order gyroaveraged equation is given by

cosφ b̂ · ∂x⟨p1⟩ −
1

2
sinφ

(
∇ · b̂

)
∂φ⟨p1⟩ (G.5)

= A e−ϱ
[
Φ2

2

[
b̂ ·
(
∇× (b̂ · ∇b̂)

)
−
(
b̂×∇ϱ

)
· (b̂ · ∇b̂)

]
+

1

4

[
(b̂×∇) · b̂

] [
∇ · b̂

]]
Proof 5

In what follows we treat each term of this equation. First of all we remind the
expression for the spatial derivative ∇ ≡ ∂x in new coordinates (x′, ϕ, ⊥̂⊥⊥)

∇ ≡ ∂x′ + ∂xφ ∂φ + ∂x⊥̂⊥⊥ · ∂⊥̂⊥⊥ (G.6)

= ∂x′ − ⊥̂⊥⊥ · ∂xb̂ ∂φ −
[
(∇ b̂ · ⊥̂⊥⊥) b̂+ Φ(∇ b̂ · ρ̂) ρ̂

]
∂⊥̂⊥⊥

term 1

p0
eB

cosφ R
(
b̂ · ∇ ⟨p1⟩

)
=

p0
eB

cosφ
(
b̂ · ∂x⟨p1⟩

)
(G.7)

term 2 Here we need to use:

R(⊥̂⊥⊥ ⊥̂⊥⊥) = 1

2

(
⊥̂⊥⊥ ⊥̂⊥⊥+ ρ̂ ρ̂

)
(G.8)

(⊥̂⊥⊥ ⊥̂⊥⊥+ ρ̂ ρ̂+ b̂ b̂) : ∇b̂ = 1 : ∇b̂ = ∇ · b̂ (G.9)

Note that due to the Leibnitz rule, b̂ ·∇b̂ · b̂ = 0, so we can add this term anywhere
we need.

p0
eB

sinφ R
(
⊥̂⊥⊥ · ∇ ⟨p1⟩

)
=

p0
eB

sinφ R
(
⊥̂⊥⊥ · ∂x ⟨p1⟩ − ⊥̂⊥⊥ · ∇b̂ · ⊥̂⊥⊥ ∂φ ⟨p1⟩

)
= −1

2

p0
eB

sinφ
(
∇ · b̂

)
(G.10)
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term 3 The evaluation of this term contains several steps. The first one consists
to prove the following theorem.

Theorem 6 R(b̂ · ∇p̃1)=0

Proof 6 We know that the average of the monomials containing odd number
of vectors ρ̂, ⊥̂⊥⊥ is equal to zero. So we will only evaluate the terms containing
monomials with even number of these vectors.

First of all we present a short list of the key proprieties necessary for this proof.

R
(
ρ̂ b̂ ⊥̂⊥⊥ b̂

)
:
: ∇b̂∇b̂ = R

(
⊥̂⊥⊥ b̂ ρ̂ b̂

)
:
: ∇b̂∇b̂ = 0 (G.11)

In fact

R
(
ρ̂ b̂ ⊥̂⊥⊥ b̂

)
:
: ∇b̂∇b̂ =

1

2

(
ρ̂ b̂ ⊥̂⊥⊥ b̂− ⊥̂⊥⊥ b̂ ρ̂ b̂

)
:
: ∇b̂∇b̂

=
1

2

([
⊥̂⊥⊥ b̂ : ∇b̂

] [
ρ̂ b̂ : ∇b̂

]
−
[
ρ̂ b̂ : ∇b̂

] [
⊥̂⊥⊥ b̂ : ∇b̂

])
= 0 (G.12)

R (ρ̂ ⊥̂⊥⊥) = −R (⊥̂⊥⊥ ρ̂) (G.13)

The derivative of the norm of an unit vector is equal to zero, Leibnitz rule give us
some useful information in this case.

∂k (b̂i b̂i) = 2 (∂k b̂i)b̂i = 0 ⇒ (∇b̂) · b̂ = 0 (G.14)

Here we note Φ ≡ cot φ, so by applying the chain rule, we have ∇Φ = −(1 +
Φ2)∇φ = (1 + Φ2) ∇b̂ · ⊥̂⊥⊥. In what follows we group the terms according to the
key property which we use for it canceling. The first key property concerns the 3
following terms:

R
(
b̂ · (∇ Φ2) ρ̂ b̂ : ∇b̂

)
= 2 Φ (1 + Φ2) R

(
ρ̂ b̂ ⊥̂⊥⊥ b̂

)
:
: ∇b̂ ∇b̂ = 0(G.15)

similarly

R
(
Φ2 b̂j b̂i (∂i b̂k) (∂j ρ̂k)

)
= Φ3 R

(
b̂i (∂i b̂k) b̂j ( ∂j b̂n ) ρ̂n ⊥̂⊥⊥k

)
= Φ3 R

(
⊥̂⊥⊥ b̂ ρ̂ b̂ : ∇b̂∇b̂

)
= 0 (G.16)

and

−Φ

4
R
(
b̂ · (∇ρ̂) · (∇b̂) · ⊥̂⊥⊥+ b̂ · (∇⊥̂⊥⊥) · (∇b̂) · ρ̂

)
= −Φ

8
R
(
(⊥̂⊥⊥ b̂ ρ̂ b̂ + ρ̂ b̂ ⊥̂⊥⊥ b̂)::∇b̂∇b̂

)
= 0 (G.17)
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The second key property is useful for the 3 following terms. First it permit us to
cancel two of this terms together.

−1

2
R
(
b̂ · ∇ρ̂ · (∇B

B
−∇ϱ)

)
= −Φ

2
b̂j(∂j b̂n) R

(
ρ̂n ⊥̂⊥⊥k

)(∂kB
B
− ∂k ϱ

)
= −Φ

4

(
ρ̂n ⊥̂⊥⊥k − ⊥̂⊥⊥n ρ̂k

)(∂kB
B
− ∂kϱ

)
b̂j ∂j b̂n =

= −Φ

4

(
(b̂ · ∇ b̂)× b̂

)
·
(
∇B
B
−∇ϱ

)
(G.18)

−Φ

2
R
(
(⊥̂⊥⊥ b̂ : ∇b̂) ρ̂ ·

(
(
∇B
B
−∇ϱ

))
= −Φ

2
b̂j (∂j b̂n) R

(
⊥̂⊥⊥n ρ̂k

) (∂kB
B
− ∂kϱ

)
=

Φ

4

(
(b̂ · ∇ b̂)× b̂

)
·
(
∇B
B
−∇ϱ

)
(G.19)

In fact, the sum of (G.18) and (G.19) is equal to zero. Finally for the third term
we have:

−Φ

4
R
(
b̂i ⊥̂⊥⊥j(∂i ∂j b̂k) ρ̂k + b̂i ρ̂j(∂i ∂j b̂k) ⊥̂⊥⊥k

)
= −Φ

8
R
(
ρ̂k ⊥̂⊥⊥j + ⊥̂⊥⊥k ρ̂j

)
b̂i ∂i b̂k (G.20)

= −Φ

8

(
ρ̂j ⊥̂⊥⊥k − ⊥̂⊥⊥j ρ̂k + ⊥̂⊥⊥k ρ̂j − ρ̂k ⊥̂⊥⊥j

)
b̂i ∂i b̂k = 0

The latter property is applied to the following term:

−Φ

4

(
(⊥̂⊥⊥i ∂i b̂k) (b̂j ∂j ρ̂k) + (ρ̂i ∂i b̂k) (b̂j ∂j ⊥̂⊥⊥k)

)
(G.21)

=
Φ

4

b̂j (∂j b̂n) ρ̂n (⊥̂⊥⊥i ∂i b̂k) b̂k + b̂j (∂j b̂n) ⊥̂⊥⊥n ρ̂i (∂i b̂k) b̂k︸ ︷︷ ︸
=0

 = 0

�
The average of all the other terms obtained as a result of contraction b̂ · ∇ p̃1 is

equal to zero because of containing the odd number of vectors ⊥̂⊥⊥, ρ̂.

Finally the term 3 does not give the contribution to the (G.4).

term 4
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Theorem 7

R(⊥̂⊥⊥ · ∇p̃1) =
A e−ϱ

e sinφ

[
−Φ2

2
(ϵljk b̂l ∂j b̂i) (∂i b̂k)−

Φ2

2

(
ϵljk b̂l (b̂i ∂i) ∂j

)
b̂k

+
1

4

[
(b̂×∇) · b̂

] [
b̂ ·
(
∇B
B
−∇ϱ

)]
+

Φ2

2

(
(b̂×∇) ϱ

)
·
(
b̂ · ∇b̂

)]
(G.22)

Proof 7

We start this proof with listing the proprieties which will be useful here. the first
one:

R(ρ̂⊥̂⊥⊥) = 1

2
(ρ̂⊥̂⊥⊥ − ⊥̂⊥⊥ρ̂) (G.23)

Further we remark that:

ρ̂× ⊥̂⊥⊥ = (b̂× ⊥̂⊥⊥)× ⊥̂⊥⊥ = −⊥̂⊥⊥× (b̂× ⊥̂⊥⊥) = −b̂ (G.24)

Each time when it is possible we reorganize the vectors as follows:

ρ̂k (⊥̂⊥⊥i ∂i)− ⊥̂⊥⊥k (ρ̂i ∂i) = −(ρ̂× ⊥̂⊥⊥)×∇ = b̂×∇ (G.25)

Using the proprieties below (G.24, G.25) permits to evaluate the gyroaverage of
the following terms:

−R
(
Φ2⊥̂⊥⊥j (∂j b̂i) (∂i b̂k) ρ̂k

)
= −Φ2R(ρ̂k⊥̂⊥⊥j) (∂j b̂i) (∂i b̂k) =

− Φ2

2
(ρ̂k⊥̂⊥⊥j − ⊥̂⊥⊥kρ̂j) (∂j b̂i) (∂i b̂k) = −Φ2

2
(ϵljk b̂l ∂j b̂i) (∂i b̂k)

−R
(
Φ2b̂i⊥̂⊥⊥j (∂j∂i b̂k) ρ̂k

)
= −Φ2R(ρ̂k ⊥̂⊥⊥j)(∂j∂i b̂k) b̂i = −

Φ2

2
(ρ̂k⊥̂⊥⊥j − ⊥̂⊥⊥kρ̂j)(∂j∂ib̂k) b̂i

= −Φ2

2
ϵljk b̂l (b̂i ∂i) ∂j b̂k (G.26)

−1

2
R
(
⊥̂⊥⊥ · ∇ρ̂

)
·
(
∇B
B
−∇ϱ

)
=

1

2
R
(
⊥̂⊥⊥j (∂j b̂l) ρ̂l b̂k

) (∂kB
B
− ∂kϱ

)
=

1

4
(ρ̂l ⊥̂⊥⊥j − ⊥̂⊥⊥l ρ̂j) (∂j b̂l) b̂k

(
∂kB

B
− ∂kϱ

)
=

1

4
(ϵij l b̂i ∂j b̂l) b̂k

(
∂kB

B
− ∂kϱ

)
≡ 1

4
(b̂×∇) · b̂ b̂ ·

(
∇B
B
−∇ϱ

)
(G.27)
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Φ2 R
(
⊥̂⊥⊥ · ∇ϱ ρ̂ b̂ : ∇b̂

)
= Φ2 R

((
⊥̂⊥⊥j ∂jϱ

)
b̂i ∂i b̂k ρ̂k

)
= Φ2 R

(
ρ̂k⊥̂⊥⊥j

)
∂jϱ b̂i ∂i b̂k

=
Φ2

2

(
ρ̂k⊥̂⊥⊥j − ⊥̂⊥⊥kρ̂j

)
∂jϱ b̂i ∂i b̂k

=
Φ2

2

(
(b̂×∇) ϱ

)
·
(
b̂ · ∇b̂

)
(G.28)

1

2
R
(
⊥̂⊥⊥ · ∇ϱ ρ̂ · ∇B

B

)
=

1

4

(
ρ̂k ⊥̂⊥⊥j − ⊥̂⊥⊥k ρ̂j

)
∂jϱ

∂kB

B

=
1

4

(
(b̂×∇)ϱ

)
· ∇B
B

(G.29)

∂j ρ̂k = −(∂j b̂l) ρ̂l b̂k + Φ (∂j b̂l) ρ̂l ⊥̂⊥⊥k (G.30)

Using the Leibnitz rule, (G.14) we have

R
(
−Φ2 b̂i (∂i b̂k) ⊥̂⊥⊥j (∂j ρ̂k)

)
= −Φ2 R

(
⊥̂⊥⊥j ∂j ρ̂k

)
b̂i ∂i b̂k

= Φ2R
(
⊥̂⊥⊥j (∂jb̂l) ρ̂l b̂k

)
b̂i ∂i b̂k (G.31)

= Φ2 R
(
ρ̂l ⊥̂⊥⊥j

)
(∂j b̂l) b̂i (∂i b̂k) b̂k︸ ︷︷ ︸

=0

= 0

Because of the symmetry of the second derivative ∂k∂iB = ∂i∂kB , ∂kB∂iB =
∂iB∂kB and ∂k∂iϱ = ∂i∂kϱ

−1

2
R
(
⊥̂⊥⊥kρ̂i

) (
∂k

∂iB

B
− ∂i ∂kϱ

)
(G.32)

= −1

4

(
⊥̂⊥⊥k ρ̂i − ρ̂k ⊥̂⊥⊥i

) (
∂k
∂iB

B
− ∂k∂iϱ

)
= 0 (G.33)

The gyroaverage of the four latter terms containing the odd number of vectors
ρ̂, ⊥̂⊥⊥ is equal to zero. To obtain this result, we need to use the following property,
which can be easily obtained by computing the gyroaverage:

R
(
ρ̂ ⊥̂⊥⊥ ⊥̂⊥⊥ ⊥̂⊥⊥+ ⊥̂⊥⊥ ρ̂ ⊥̂⊥⊥ ⊥̂⊥⊥

)
= −R

(
ρ̂ ⊥̂⊥⊥ ρ̂ ρ̂− ρ̂ ⊥̂⊥⊥ ⊥̂⊥⊥⊥̂⊥⊥

)
(G.34)

= R
(
ρ̂ ρ̂ ρ̂ ⊥̂⊥⊥ − ⊥̂⊥⊥ ⊥̂⊥⊥ ρ̂ ⊥̂⊥⊥

)

R
(
ρ̂ ⊥̂⊥⊥ ⊥̂⊥⊥ ⊥̂⊥⊥+ ⊥̂⊥⊥ ρ̂ ⊥̂⊥⊥ ⊥̂⊥⊥

)
=

1

4

(
ρ̂ ρ̂ ρ̂ ⊥̂⊥⊥ − ρ̂ ⊥̂⊥⊥ ρ̂ ρ̂

)
+

1

4

(
ρ̂ ρ̂ ⊥̂⊥⊥ ρ̂− ⊥̂⊥⊥ ρ̂ ρ̂ ρ̂

)
+

1

4

(
⊥̂⊥⊥ ρ̂ ⊥̂⊥⊥ ⊥̂⊥⊥ − ⊥̂⊥⊥ ⊥̂⊥⊥ ⊥̂⊥⊥ ρ̂

)
+

1

4

(
ρ̂ ⊥̂⊥⊥ ⊥̂⊥⊥ ⊥̂⊥⊥ − ⊥̂⊥⊥ ⊥̂⊥⊥ ρ̂ ⊥̂⊥⊥

)
(G.35)
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Then we remark that for tensor ∇b̂∇b̂ the two following contractions give the
same result:

a a c a :
: ∇b̂∇b̂ = c a a a :

: ∇b̂∇b̂ (G.36)

because one can always exchange the place of two scalars:

a a c a :
: ∇b̂∇b̂ =

[
aj ∂jb̂k ck

] [
ai ∂ib̂n an

]
=[

ai ∂ib̂n an

] [
bj ∂jb̂k ck

]
= c a a a :

: ∇b̂∇b̂ (G.37)

replacing a and b by ρ̂ and ⊥̂⊥⊥ correspondingly, we will see that all the terms in
the expression (G.35) will be canceled.

−1

4
(1 + Φ2) R

(
⊥̂⊥⊥ ⊥̂⊥⊥ : ∇b̂ (ρ̂ ⊥̂⊥⊥+ ⊥̂⊥⊥ ρ̂) : ∇b̂

)
=

−1

4
(1 + Φ2) R

(
⊥̂⊥⊥ ⊥̂⊥⊥ ρ̂ ⊥̂⊥⊥+ ⊥̂⊥⊥ ⊥̂⊥⊥ ⊥̂⊥⊥ ρ̂

)
:
: ∇b̂ ∇b̂ = 0 (G.38)

Using the following expressions for derivatives of basis vectors which we have
obtained in the previous chapter:

∂j ⊥̂⊥⊥k = −(∂j b̂n) ⊥̂⊥⊥n b̂k − Φ (∂j b̂n) ρ̂n ρ̂k (G.39)

∂j ρ̂k = −(∂j b̂n) ρ̂n b̂k + Φ (∂j b̂n) ρ̂n ⊥̂⊥⊥k (G.40)

and keeping only the terms with even number of vectors ⊥̂⊥⊥, ρ̂, we obtain:

− Φ

4
R
(
⊥̂⊥⊥j (∂j ⊥̂⊥⊥k) ρ̂l + ⊥̂⊥⊥j (∂j ρ̂k) ⊥̂⊥⊥l

)
(∂k b̂l)

= −Φ2

4
R
(
⊥̂⊥⊥j (∂j b̂n) ρ̂n ρ̂k ρ̂l − ⊥̂⊥⊥j (∂j b̂n) ρ̂n ⊥̂⊥⊥k ⊥̂⊥⊥l

)
(∂k b̂l)

= −Φ2

4
R
([
⊥̂⊥⊥j (∂j b̂n) ρ̂n

] [
ρ̂k (∂k b̂l)ρ̂l

]
−
[
⊥̂⊥⊥j (∂j b̂n) ρ̂n

] [
⊥̂⊥⊥k (∂k b̂l)⊥̂⊥⊥l

])
= −Φ2

4
R
([

ρ̂ ⊥̂⊥⊥ : ∇b̂
] [

ρ̂ ρ̂ : ∇b̂
]
−
[
ρ̂ ⊥̂⊥⊥ : ∇b̂

] [
⊥̂⊥⊥ ⊥̂⊥⊥ : ∇b̂

])
≡ −Φ2

4
R
([

ρ̂ ρ̂ ρ̂ ⊥̂⊥⊥ − ⊥̂⊥⊥ ⊥̂⊥⊥ ρ̂ ⊥̂⊥⊥
]

:
: ∇b̂ ∇b̂

)
= 0 (G.41)

The similar procedure is applied for the next non-zero average term:

−Φ

4
R
(
⊥̂⊥⊥i (∂i b̂k) ⊥̂⊥⊥j (∂j ρ̂k) + ρ̂i (∂i b̂k) ⊥̂⊥⊥j (∂j ⊥̂⊥⊥k)

)
=

−1

4
Φ2 R

(
ρ̂ ⊥̂⊥⊥ ρ̂ ρ̂− ρ̂ ⊥̂⊥⊥ ⊥̂⊥⊥ ⊥̂⊥⊥

)
:
: ∇b̂∇b̂ = 0 (G.42)
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−Φ3

4
R
(
(⊥̂⊥⊥ ⊥̂⊥⊥ : ∇b̂)(ρ̂ ⊥̂⊥⊥+ ⊥̂⊥⊥ ρ̂) : ∇b̂

)
=

−1

4
Φ3 R

(
ρ̂ ⊥̂⊥⊥ ⊥̂⊥⊥ ⊥̂⊥⊥+ ⊥̂⊥⊥ ρ̂ ⊥̂⊥⊥ ⊥̂⊥⊥

)
:
:∇b̂∇b̂ = 0 (G.43)

The remaining terms in R(⊥̂⊥⊥ ·∇p̃1) have a gyroaverage equal to zero because of

containing the odd number of the vectors ⊥̂⊥⊥, ρ̂
�

term 5 and term 6 This terms cancels due to the choice b̂ · ϱ = 0 which we have
made in the previous order of the perturbative expansion.

Theorem 8 Contribution of the term 7 cancels the contribution of term 8.

Proof 8

We start with consideration of the term 7.

term 7 The result of its gyroaveraging is given by:

cosφ R
(
p̃1
eB

b̂ · ∇ p0

)
(G.44)

=
Φ2

4

A 3
2 B− 1

2

sinφ
e−

3
2
ϱ

(
b̂×

(
∇B
B
−∇ϱ

))
·
(
b̂ · ∇b̂

)
To obtain this result we start with the following expansion:

(
p̃1
eB

b̂ · ∇ p0

)
=
A 3

2 B− 1
2

sin2 φ
e−

3
2
ϱ ×(

−Φ2 ρ̂ b̂ : ∇b̂− 1

2
ρ̂ ·
(
∇ B

B
−∇ϱ

)
− 1

4
Φ
(
ρ̂ ⊥̂⊥⊥+ ⊥̂⊥⊥ ρ̂

)
: ∇b̂∇b̂

)
×(

b̂ · ∇B
2B

− b̂ · ∇ϱ
2

+ Φ ⊥̂⊥⊥ b̂ : ∇b̂

)
(G.45)
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We remark that the terms which will make contribution to the result of gyroaver-
aging are:

R
(
p̃1
eB

b̂ · ∇ p0

)
=
A 3

2 B− 1
2

sin2 φ
e−

3
2
ϱ × (G.46)

R

(
−Φ3 ρ̂ b̂ ⊥̂⊥⊥ b̂ :

: ∇b̂∇b̂︸ ︷︷ ︸
bp 0 a

− Φ

2
ρ̂ ·
(
∇B
2B
− ∇ϱ

2

) (
⊥̂⊥⊥ b̂ : ∇b̂

)
︸ ︷︷ ︸

bp 0 b

−Φ

8

[(
ρ̂ ⊥̂⊥⊥+ ⊥̂⊥⊥ ρ̂

)
: ∇b̂

] [
b̂ ·
(
∇B
2B
− ∇ϱ

2

)]
︸ ︷︷ ︸

bp 0 c

)

Now we proceed with consideration of each term in the latter expression:

•

R(bp 0 a) = 0 (G.47)

due to the property (G.11,G.12) that we have used during the calculation of
the gyroaverage of the term 3

•

R(bp 0 b) = Φ

4

(
b̂×

(
∇B
B
−∇ϱ

))
·
(
b̂ · ∇b̂

)
(G.48)

• Finally, with (G.23) it is evident that R(⊥̂⊥⊥ρ̂ + ρ̂ ⊥̂⊥⊥) = 0, and we obtain that
the average of the latter term is equal to zero:

R(bp 0 c) = 0 (G.49)

So finally, we obtain the result (G.45). �
Now we proceed with gyroaveraging of the term 8

term 8

sinφ R
(
p̃1
eB

b̂ · ∇ p0

)
=

−Φ2

4

A 3
2 B− 1

2

sinφ
e−

3
2
ϱ

(
b̂×

(
∇B
B
−∇ϱ

))
·
(
b̂ · ∇b̂

)
(G.50)
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(
p̃1
eB
⊥̂⊥⊥ · ∇ p0

)
=
A 3

2 B− 1
2

sin2 φ
e−

3
2
ϱ ×(

−Φ2 ρ̂ b̂ : ∇b̂− 1

2
ρ̂ ·
(
∇ B

B
−∇ϱ

)
− 1

4
Φ
(
ρ̂ ⊥̂⊥⊥+ ⊥̂⊥⊥ ρ̂

)
: ∇b̂∇b̂

)
×(

⊥̂⊥⊥ · ∇B
2B

− ⊥̂
⊥⊥ · ∇ϱ

2
+ Φ ⊥̂⊥⊥ ⊥̂⊥⊥ : ∇b̂

)

Here the terms that will contribute to the gyroaverage are

R
(
p̃1
eB
⊥̂⊥⊥ · ∇ p0

)
=
A 3

2 B− 1
2

sin2 φ
e−

3
2
ϱ × (G.51)

R

−Φ2
[
ρ̂ b̂ : ∇b̂

] [
⊥̂⊥⊥ ·
(
∇B
2B
− ∇ϱ

2

)]
︸ ︷︷ ︸

⊥̂⊥⊥ p 0 a

− 1

2

[
ρ̂ ·
(
∇B
2B
− ∇ϱ

2

)] [
⊥̂⊥⊥ · ∇B

B

]
︸ ︷︷ ︸

⊥̂⊥⊥ p 0 b

+
1

2

[
ρ̂ ·
(
∇B
2B
− ∇ϱ

2

)] [
⊥̂⊥⊥ · ∇ϱ

]
︸ ︷︷ ︸

⊥̂⊥⊥ p 0 c

−Φ3
(
ρ̂ ⊥̂⊥⊥ ⊥̂⊥⊥ ⊥̂⊥⊥+ ⊥̂⊥⊥ ρ̂ ⊥̂⊥⊥ ⊥̂⊥⊥

)
:
: ∇b̂∇b̂︸ ︷︷ ︸

⊥̂⊥⊥ p 0 d



R(⊥̂⊥⊥ p 0 a) =
Φ2

4

((
∇B
B
−∇ϱ

)
× b̂

)
·
(
b̂ · ∇b̂

)
(G.52)

The contribution of the terms ⊥̂⊥⊥ p 0 b and ⊥̂⊥⊥ p 0 c is canceled:

R(⊥̂⊥⊥ p 0 b) =
1

8B

(
∇ϱ× b̂

)
· ∇B
B

(G.53)

R(⊥̂⊥⊥ p 0 c) = − 1

8B

(
∇ϱ× b̂

)
· ∇B
B

(G.54)

Using the property (G.35,G.36,G.37) we obtain that the gyroaverage of the latter

term ⊥̂⊥⊥ p 0 d is equal to zero

R(⊥̂⊥⊥ p 0 d) = 0 (G.55)

And we have the result (G.50). We remark that the contributions of the terms 7
and 8 into the gyroaveraged equation G.4 are canceled.

�
Finally we obtain the equation G.6.
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Appendix H

Equations of motion in
axisymmetric magnetic geometry

In this Appendix we resume the main steps for obtaining the local particle equations
of motion in a general axisymmetric magnetic geometry. In this case the magnetic
surfaces represent a set of a nested curves, which possesses an analytical expres-
sion (diffeomorphism) in cylindrical coordinates. Then we consider an example of
a bi-cylindrical geometry, when the magnetic surfaces represent a set of a nested
concentric circles. We integrate the equations of motion in this particular case with
Mathematica package in order to study trapped particle trajectories presented in
4.4.1.

H.1 General axisymmetric geometry

The transformation from the Cartesian coordinates to the general axisymmet-
ric coordinates is given by eq. (4.75). To simplify the following expressions,
here we rename the norms of the basis vectors as |∇ψ|−1 =

√
gψψ ≡ Ωψ(ψ, θ) and

|∇θ|−1 =
√
gθθ ≡ Ωθ(ψ, θ), |∇ϕ|−1 =

√
gϕϕ = R(ψ, θ).1.

We start with a definition of the fixed basis associated to the vector of magnetic
field direction b̂ given by (4.110). Note that there is some freedom while choosing
the basis vectors b̂1 and b̂2 in a perpendicular to magnetic field line plane. This
leads to the gyro-gauge dependence of dynamics (the gyro-gauge vector is defined as
R = ∇b̂1 ·b̂2). One of the possible issues to make dynamics gyro-gauge independent
is presented in 4.5.

For example in the case of a general magnetic geometry discussed in the section
4.3, the curvature vector b̂·∇b̂ is chosen as one of the basis vectors b̂1 while deriving
the corresponding equations of motion. In an axisymmetric geometry, while the
vector b̂ has only the toroidal and poloidal components, a more simple choice is

1The same notations are used in the Mathematica code
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possible. One can simply take the vector b̂1 equal to the third (radial) basis vector

∇̂ψ.

b̂ = sin η∇̂θ + cos η∇̂ϕ, b̂1 = −∇̂ψ, b̂2 = b̂× b̂0 = cos η∇̂θ − sin η∇̂ϕ (H.1)

where we have assumed that the coordinate vectors are organized as follows: ∇̂θ ×
∇̂ψ = ∇̂ϕ.

Note that we consider that the function η = η(ψ) is only the function of the
radial coordinate, so that cotan η(ψ) ≡ q(ψ), the particular choice of the q-profile
will be made just before the integration of the equations of motion.

Now we decompose the unit kinetic momentum vector in the basis (∇ϕ,∇θ,∇ψ)
as:

p̂ = A0∇̂ϕ+B0∇̂θ + C0∇̂ψ (H.2)

with the coefficients:

A0 = cos η cosφ+ sin η sinφ cos ζ (H.3)

B0 = sin η cosφ− cos η sinφ cos ζ (H.4)

C0 = sinφ sin ζ (H.5)

Then we can obtain the three first equations of motion for the spatial coordinates:

ẋ = ε p̂ in axisymmetric geometry. Here we introduce the small parameter ε ≡ p

eB0

,

which represents the ratio between the modulus of the particle kinetic momentum p
and the characteristic magnitude of the magnetic field B0 (4.116). Note that such a
ratio has a length dimension. In order to obtain dimensionless small parameter, we
can introduce a characteristic length scale, which can be given by the small tokamak

radius a, which is equal to 1 m for Tore Supra, for example. Then we have x→ x

a
,

ε→ 1

a

p

eB0

. Note that with assumption c = 1 which we have made in the beginning,

this operation will lead to dimensionless equations of motion.

ϕ̇ = ε
∇̂ϕ
R
· ẋ = ε

A0

R
(H.6)

θ̇ = ε
∇̂θ
Ωθ

· ẋ = ε
B0

Ωθ

(H.7)

ψ̇ = ε
∇̂ψ
Ωψ

· ẋ = ε
C0

Ωψ

(H.8)

Two other momentum basis vectors (p̂1, p̂2) can be defined as follows:

p̂1 = A1∇̂ϕ+B1∇̂θ + C1∇̂ψ (H.9)

p̂2 = − 1

sinφ

[
A2∇̂ϕ+B2∇̂θ + C2∇̂ψ

]
(H.10)
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with

A1 =
∂A0

∂φ
= − cos η sinφ+ sin η cosφ cos ζ (H.11)

B1 =
∂B0

∂φ
= − cos η cosφ cos ζ + sin η sinφ (H.12)

C1 =
∂C0

∂φ
= cosφ sin ζ (H.13)

and

A2 =
∂A0

∂θ
= − sin η sinφ sin ζ (H.14)

B2 =
∂B0

∂θ
= − cos η sinφ sin ζ (H.15)

C2 =
∂C0

∂θ
= sinφ cos ζ (H.16)

The fundamental object which we need to calculate in order to obtain the equa-
tions of motion for momentum part of the phase space (φ, ζ), is the vector of mo-
mentum curvature p̂ · ∇p̂. First we decompose the scalar differential operator p̂ · ∇
in the axisymmetric basis with

∇ =
1

R
∇̂ϕ ∂

∂ϕ
+

1

Ωθ

∇̂θ ∂
∂θ

+
1

Ωψ

∇̂ψ ∂

∂ψ
(H.17)

then

p̂ · ∇ =
A0

R

∂

∂ϕ
+
B0

Ωθ

∂

∂θ
+
C0

Ωψ

∂

∂ψ
(H.18)

By applying this differential operator to the expression (H.2) for decomposition of

the unit momentum vector p̂ in the basis (∇̂ϕ, ∇̂θ, ∇̂ψ), and then by using the
expressions for derivatives of the basis vectors in a general axisymmetric magnetic
case obtained in 4.4.1 we have:

p̂ · ∇p̂ = ∇̂ϕ
[
A0

R

(
B0

Ωθ

∂R

∂θ
+
C0

Ωψ

∂R

∂ψ

)
+
B0

Ωθ

(
∂A0

∂θ

)
+
C0

Ωψ

(
∂A0

∂ψ

)]
+∇̂θ

[
− A2

0

R Ωθ

∂R

∂θ
+
B0

Ωθ

(
∂B0

∂θ
+
C0

Ωψ

∂Ωθ

∂ψ

)
+
C0

Ωψ

(
∂B0

∂ψ
− C0

Ωθ

∂Ωψ

∂θ

)]
+∇̂ψ

[
− A2

0

R Ωψ

∂R

∂ψ
+
B0

Ωθ

(
∂C0

∂θ
− B0

Ωψ

∂Ωθ

∂ψ

)
+
C0

Ωψ

(
∂C0

∂ψ
+
B0

Ωθ

∂Ωψ

∂θ

)]
≡ ∇̂ϕ Pϕ + ∇̂θ Pθ + ∇̂ψ Pψ

(H.19)

Now by using the above expression for the momentum curvature and the equations
(H.9),(H.10) for the axisymmetric decomposition of the momentum basis vectors
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(p̂1, p̂2) , we obtain the equations of motion for pitch angle and gyrophase in a
general axisymmetric geometry:

φ̇ = ε
(
(p̂ · ∇p̂) · p̂1

)
= ε (Pϕ A1 + Pθ B1 + Pψ C1) (H.20)

ζ̇ =
1

R sin η
+ ε

1

sinφ

(
(p̂ · ∇p̂) · p̂2

)
=

=
1

R sin η
− ε 1

sin2 φ
(Pϕ A2 + Pθ B2 + Pψ C2) (H.21)

The next step is to chose a particular example of axisymmetric coordinates by
defining the functions R(ψ, θ),Ωψ(ψ, θ),Ωθ(ψ, θ).

H.2 Bi-cylindrical coordinates

In what follows we deal with a bi-cylindrical system of coordinates, for which

R = R0 + ψ cos θ, Z = ψ sin θ (H.22)

the corresponding norms of the basis vectors

Ωψ =
√
∂ψR2 + ∂ψZ2 = 1 (H.23)

Ωθ =
√
∂θR2 + ∂θZ2 = ψ (H.24)

Note that the equations of motion for space coordinates of the phase space are not
affected by the calculation of the momentum curvature vector. It can be directly
obtained from (H.8) by substituting the expression above for the norms of the basis
vectors. We remark here that in the bi-cylindrical geometry case the dynamics is
totally independent of toroidal angle ϕ, so only the equation for radial and poloidal
coordinates will be necessary.

In order to obtain the equations of motion for momentum part of the phase space
we substitute the expressions for (R,Ωψ,Ωθ) in (H.19). First, we obtain momentum
curvature vector in our particular case: 2

p̂0 · ∇p̂0 = ∇̂ϕ
[
A0

1

R
(C0 cos θ −B0 sin θ) + C0

∂A0

∂ψ
+B0

1

ψ

∂A0

∂θ

]
+∇̂θ

[
A2

0

1

R
sin θ +B0

1

ψ

(
∂B0

∂θ
+ C0

)
+ C0

∂B0

∂ψ

]
+∇̂ψ

[
−A2

0

1

R
sin θ +B0

1

ψ

(
∂C0

∂θ
−B0

)
+ C0

∂C0

∂ψ

]
≡ Pϕ∇̂ϕ+ Pθ∇̂θ + Pψ∇̂ψ

(H.25)

2This calculation is realized analytically and then is verified by realizing the substitution of the
bi-cylindrical geometry coefficients with Mathematica
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Then similarly to the general axisymmetric geometry, we obtain the corresponding
equations of motion for the pitch angle variable φ and the gyrophase variable ζ.

In what follows we use the q-profile defined as 3:

cotan η(ψ) = q0 + s0 ψ
2 (H.26)

Then by substituting the next expression into the equations of motion by using
Mathematicapackage

sin η =
1√

1 + (q0 + s0 ψ2)2
, cos η =

q0 + s0 ψ
2√

1 + (q0 + s0 ψ2)2
(H.27)

we obtain:

θ̇ =
cosφ− (q0 + s0 ψ

2) cos ζ sinφ

ψ
√
1 + (q0 + s0 ψ2)2

(H.28)

ψ̇ = sin ζ sin θ (H.29)

φ̇ =
(
ψ
(
1 + (q0 + s0 ψ

2)2
)
(R0 + ψ cosϕ)

)−1

×[
sinφ

(
R0 (q0 + s0ψ

2) cos ζ sin ζ + s0 ψ
2 (R0 + ψ cos θ) sin(2ζ)

−ψ
√
1 + (q0 + s0 ψ2)2 cos2 ζ sin θ

)
(H.30)

− cosφ
((
R0 + ψ (1 + (q0 + s0 ψ

2)2) cos θ
)
sin ζ

ψ (q0 + s0 ψ
2)
√

1 + (q0 + s0 ψ2)2 cos ζ sin θ
)]

In order to increase the integration time in numerical simulations, we implement
lowest order equation of motion for gyrophase:

ζ̇ =

√
1 + (q0 + s0 ψ2)2

R0 + ψ cos θ
(H.31)

The full dynamical equation for gyrophase coordinate, which includes the momen-
tum curvature contribution is also obtained.

In what follows we integrate with Mathematica the equations
(H.28),(H.28),(H.30),(H.30), (H.31) in order to study trapped particle trajec-
tories.

3Note that in numerical simulations we use the values of the parameters s0 = 1 and q0 = 4.
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equations in Euler-Poincaré form. Journal of Mathematical Physics, 39(6):3138–
3157, 1998.

[38] A.J Brizard. New Variational Principle for the Vlasov-Maxwell Equations.
Physical Review Letters, 84(25):5768–5771, 2000.

[39] V.I. Arnold. Mathematical methods of classical mechanics. Springer, 1989.

[40] A.J.Brizard. Variational principles for reduced plasma physics. 169(012003),
2009.

[41] A.J. Brizard. Exact energy conservation laws for full and truncated nonlinear
gyrokinetic equations. Physics of Plasmas, 17(042303), 2010.

[42] H. Sugama. Gyrokinetic field theory. Physics of Plasmas, 7(2):1–24, 2000.

[43] A.J.Brizard. Variational principle for nonlinear gyrokinetic Vlasov-Maxwell
Equations. Physics of Plasmas, 7(21):4816–4822, 2000.

[44] A.J. Brizard and T.S Hahm. Foundations of nonlinear gyrokinetic theory. Re-
view of Modern Physics, 79(2):421–468, 2007.

[45] A.J. Brizard. Relativistic Guiding-center Lie-Transform Perturbation Analysis.
arXiv: submit/0096219 [phys. plasm.- ph], 2010.

[46] J.E. Rice, E.S. Marmar, F. Bombarda, and L. Qu. X-ray observations of central
toroidal rotation in ohmic Alcator C-Mod plasmas. Nuclear Fusion, 37(3):421–
426, 1997.

[47] J.L.Luxon. A design retrospective of the DIII-D tokamak. Nuclear Fusion,
42(5):614–633, 2002.

172



BIBLIOGRAPHY

[48] M Ono, SM Kaye, YKM Peng, G Barnes, W Blanchard, MD Carter,
J Chrzanowski, L Dudek, R Ewig, D Gates, RE Hatcher, T Jarboe, SC Jardin,
D Johnson, R Kaita, M Kalish, CE Kessel, HW Kugel, R Maingi, R Majeski,
J Manickam, B McCormack, J Menard, D Mueller, BA Nelson, BE Nelson,
C Neumeyer, G Oliaro, F Paoletti, R Parsells, E Perry, N Pomphrey, S Ramakr-
ishnan, R Raman, G Rewoldt, J Robinson, AL Roquemore, P Ryan, S Sabbagh,
D Swain, EJ Synakowski, M Viola, M Williams, JR Wilson, and NSTX Team.
Exploration of spherical torus physics in the nstx device. Nuclear Fusion, 40(3Y,
Sp. Iss. 3):557–561, 2000.

[49] P.H. Diamond and O.D. Gurkan. Physics of non-diffusive turbulent transport of
momentum and the origins of spontaneous rotation in tokamaks. Nucl. Fusion,
49(045002), 2009.

[50] C. J. McDevitt, P. H. Diamond, O. D. Gurcan, and T. S. Hahm. Toroidal
rotation driven by the polarization drift. Physical Review Letters, 103(20),
2009.

[51] C. J. McDevitt, P. H. Diamond, O. D. Gurcan, and T. S. Hahm. A novel
mechanism for exciting intrinsic toroidal rotation. Physics of Plasmas, 16(5),
2009.

[52] T.S.Hahm et al. O.D.Gurkan, P.H.Diamond. Intrinsic rotation and electric field
shear. Phys.Plasmas, 14(042306), 2007.

[53] A. G. Peeters, C. Angioni, and D. Strintzi. Toroidal momentum pinch velocity
due to the coriolis drift effect on small scale instabilities in a toroidal plasma.
Physical Review Letters, 98(26), 2007.

[54] O.D.Gurkan et al. T.S.Hahm, P.H.Diamond. Nonlinear gyrokinetic theory of
toroidal pinch. Phys.Plasmas, 14(072302), 2007.

[55] R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton. Gyrokinetic theory
and simulation of angular momentum pinch. Physics of Plasmas, 14(12), 2007.

[56] T.G. Northrop. Adiabatic motion of charged particles.

[57] W.K. Hagan and E.A. Frieman. Dynamics of energetic ion orbits in magneti-
cally confined plasmas. Physics of Fluids, 28(2641), 1985.

[58] R.G. Littlejohn. Phase anholonomy in the classical adiabatic motion of charged-
particles. Physical Review A, 38(12):6034–6045, DEC 15 1988.

[59] L. Sugiyama. Guiding center plasma models in three dimensions. Physics of
Plasmas, 15(092112), 2008.

173



BIBLIOGRAPHY

[60] A.J.Brizard. Nonlinear Gyrokinetic Tokamak Physics. PhD thesis, Princeton
University, 1990.

[61] J.A. Krommes. Comment on ”Guiding center plasma models in three dimen-
sions” of L.Sugiyama. Physics of Plasmas, 16(084701), 2009.

[62] L. Sugiyama. Response to ”Comment on ”Guiding center plasma models in
three dimensions” of L.Sugiyama”. Physics of Plasmas, 16(084702), 2009.

[63] J.A. Rome and Y-K.M. Peng. The topology of tokamak orbits. Nuclear fusion,
19(9):1193–1205, 1979.

[64] L.G. Eriksson and F. Porcelli. Dynamics of energetic ion orbits in magnetically
confined plasmas. Plasma Physics and Controlled Fusion, 43, 2001.

[65] A.J. Brizard. Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic
co-ordinates. Journal of Plasma Physics, 41(3):541–559, 1989.

[66] N. Tronko, M. Vittot, C. Chandre, P. Ghendrih, and G. Giraolo. Barriers for
the reduction of transport due to the E × B drift in magnetized plasmas . J.
Phys.A, Math. Theor., 42(085501), 2009.

[67] I. Izacard, N. Tronko, C. Chandre, M. Giraolo, G.and Vittot, and P. Ghendrih.
Transport barrier for the radial diffusion due to the E × B drift motion of
guiding-centers . Preprint, 2009.

[68] A.H. Boozer. Physics of magnetically confined plasmas. Review of Modern
Physics, 76(4):1071–1141, 2004.

174


