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Time correlation functions yield profound information about the dynamics of a physical system and
hence are frequently calculated in computer simulations. For systems whose dynamics span a wide
range of time, currently used methods require significant computer time and memory. In this paper,
we discuss the multiple-tau correlator method for the efficient calculation of accurate time
correlation functions on the fly during computer simulations. The multiple-tau correlator is
efficacious in terms of computational requirements and can be tuned to the desired level of accuracy.
Further, we derive estimates for the error arising from the use of the multiple-tau correlator and
extend it for use in the calculation of mean-square particle displacements and dynamic structure
factors. The method described here, in hardware implementation, is routinely used in light scattering
experiments but has not yet found widespread use in computer simulations. © 2010 American
Institute of Physics. �doi:10.1063/1.3491098�

I. INTRODUCTION

According to the fluctuation-dissipation theorem, the in-
stantaneous equilibrium fluctuations, of long wavelength and
low frequency, of a dynamical function f�t� around its aver-
age, �f�t�= f�t�− �f�, relax to the equilibrium value �the av-
erage�, following the same laws as macroscopic small distur-
bances �for instance, see Ref. 1�. Upon closer inspection, the
instantaneous value of �f�t� appears chaotic. However, inter-
esting, nonchaotic information about the dynamics of the
system can be extracted by considering the autocorrelations
of these fluctuations at different times, ��f�t��f�0��. The
sign � � here represents an average over all possible initial
conditions of the system. Invoking the ergodic hypothesis,
the ensemble average can be replaced by the time average �a
definition is provided later�.

Time correlation functions �TCFs� reveal relaxation
properties of physical systems and consequently are often
calculated in computer simulations.2,3 According to theory,
TCFs calculated at equilibrium are directly related to the
linear response functions and using the Green–Kubo rela-
tions yields the transport coefficients as integrals over the
equilibrium TCF. However, the calculation of TCF consumes
significant CPU time and memory resources, especially if the
fluctuations decay over many decades in time. In this paper,
after a brief review of the calculation of time correlation
functions mainly to establish notation, we present an algo-
rithm that allows accurate calculation of TCF on the fly dur-
ing computer simulations, without excessive additional
memory and computational cost. The algorithm is based on a

well known multiple-tau correlator method frequently used
in dynamic light scattering experiments.4–6 The main idea
behind the method is the use of averages for data storage. For
the calculation of the time correlation function between two
points at a given time lag, one can average the data over
some interval around the two points without significant loss
of information, if the size of the averaging interval is suffi-
ciently smaller than the distance between the points. This
averaging process considerably reduces the amount of stor-
age required to calculate the full TCF. However, if the simu-
lation spans a wide range of time scales, to accurately calcu-
late the TCF, we need to vary the averaging size. This idea of
varying the averaging time is naturally included in the
multiple-tau correlator method that we analyze and extend in
this paper. The algorithm in its smoothing version has al-
ready been used successfully in a series of papers by the
same authors.7–12 The aim of this paper is to draw the atten-
tion of the wider computer simulation community to this
efficient method for calculating TCF and to analyze the error
due to the use of this algorithm. In addition, we show how
the method can be easily adapted for the calculation of both
the mean-square particle displacement and the single chain
dynamic structure factor during computer simulations.

II. METHODS

A. Standard calculation of time correlation functions

In general, given a simulation trajectory of duration T,
the time autocorrelation of a dynamical function f�t� can be
expressed asa�Electronic mail: jorge.ramirez@upm.es.
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F��� =
1

T − �
�

0

T−�

f�t + ��f�t�dt , �1�

where � is called the lag time. In a simulation with N−1
steps of length �t and trajectory length T, such that T= �N
−1��t, we can discretize Eq. �1� as

Fj =
1

N − j
	
i=0

N−j−1

f if i+j , �2�

where Fj 
F�j�t� and f i
 f�i�t�. Due to the typically large
value of N �currently simulations with N�107–108 are com-
mon and this value is only expected to increase in the fu-
ture�, it is usually not possible to store all the values of f i in
memory. This is especially true if one has to calculate a large
number of correlation functions, for example, several corre-
lation functions per particle �typically 104–106�. Therefore,
these correlations are usually calculated by postprocessing
the data collected during the simulation and stored in a disk
file. The number of operations required to calculate a single
value of the time correlation function Fj scales linearly with
N. Sometimes the TCF can contain useful information over a
very wide range of time scales, and the correlation function
may have a low but still relevant value at late times �for a
particular example from polymer dynamics, we refer the
reader to Ref. 10�. To improve accuracy and statistical effi-
ciency, it is necessary to include as many of the available
values of f i as possible while calculating the TCF. Typically,
the desired number of points in the TCF Fj is known, say M.
M will depend on the expected features of the TCF, and the
points Fj will be either linearly or logarithmically distributed
in time. Thus, the total number of operations grows as NM.
This number can be reduced significantly if the values of the
function f i are either collected only every � steps or only the
average over � steps is stored. However, this will make in-
formation about the correlation function unavailable for t
���t and will lead to errors for t���t �an example of this
can be observed in the stress relaxation from molecular dy-
namics �MD� simulations of polymers10,12�. The main prob-
lem is that all N values of f i should ideally be in memory at
the time of calculation of the TCF, which is not usually pos-
sible due to the large value of N. Considering that the data
need to be read from a disk, possibly several times, the cal-
culation of a time correlation function can be excruciatingly
slow. In addition, it is common to calculate more than one
correlation function from a single simulation, so the compu-
tational and memory load may be several times higher. For
example, in MD simulations it is frequently useful to analyze
the mean-square displacement of every single particle, so a
TCF is needed for each particle in the system, and this num-
ber may be well over 105. It would be very useful to have a
method that deals with the array f i and calculates the TCF Fj

on the fly and therefore obviates the need for repeatedly ac-
cessing the disk.

It is also germane to comment on the accuracy of the
time correlation functions calculated with Eqs. �1� and �2�.
According to the ergodic hypothesis, Eq. �1� is exact only in
the limit T→�. The finiteness of the simulation run intro-
duces a difficult to avoid inaccuracy in the calculated value

of the TCF. A second source of inaccuracy comes from the
size of the discrete time-step �t used in the computer simu-
lation and the time-stepping algorithm used to integrate the
equations of motion. However, the results are usually satis-
factory as long as both �t and T are far from the character-
istic time scale of the dynamical processes of interest �0, i.e.,
as long as �t��0�T. In this work, we suggest a numerical
algorithm to calculate, in as efficient and accurate way as
possible, the TCF from a simulation where the time-step
size, the time-stepping algorithm, and the simulation length
have been fixed.

B. Time correlation of a time-averaged function

Suppose we have N observations of the function f�t� at
equidistant points in time t=0,�t , . . . , �N−1��t, which we
will denote by f i= f�i�t�. Then, the time correlation function
at the time �= j�t can be calculated by means of Eq. �2�.
Now let us consider the correlation function between the
function f averaged over k neighboring points,

f̄ i,k =
1

k
	
j=0

k−1

f i+j , �3�

F̄j,k =
1

N − j − k + 1 	
i=0

N−j−k

f̄ i,k f̄ i+j,k

=
1

k2�N − j − k + 1� 	
i=0

N−j−k

	
p=0

k−1

	
q=0

k−1

f i+pf i+j+q. �4�

In the limit of large N� j, one can neglect small differences
in the upper limits and obtain

F̄j,k �
1

k2 	
p=0

k−1

	
q=0

k−1

Fj+q−p =
1

k2 	
p=−k+1

k−1

�k − �p��Fj+p. �5�

This simple formula shows that calculating the correlation
function between quantities averaged over k points is equiva-
lent to a smoothing of the correlation function over the in-
terval 	�k−1� with the triangular smoothing function �k
− �p��. In the limit of large k the sums can be replaced by
integrals

F̄��,
� =
1


2�
−





�
 − �t��F�� + t�dt ,

where 
=k�t is the averaging time.
In the limit 
�� the correlation function inside the in-

tegral sign can be expanded in Taylor series,

F�� + t� � F��� + F����t + F����t2/2 + . . . .

Using this expansion and the integral above, we can get an
estimate for the relative error introduced by averaging over
an interval 
,

���,
� 

F��� − F̄��,
�

F���
�


2

12

F����
F���

. �6�

In other words, the approximation is good if the second de-
rivative of the correlation function is not too large, and the
error is quadratic in the averaging time 
. The typical corre-
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lation functions can be locally approximated by either a
power-law or an exponential, so it is interesting to calculate
the error for these two ideal cases.

In case of a power-law relaxation F���=c�−�, where � is
the negative slope of F��� on a log-log scale, we obtain from
Eq. �6�

���,
� =
��� + 1�

12




�
�2

, power-law relaxation. �7�

If 
 is a small fraction of �, this is uniformly small providing
� is not too big.

In the case of an exponential relaxation F���=c exp�
−� /��, where � is the relaxation or terminal time, we obtain

���,
� =
1

12

 


�
�2

, exponential relaxation. �8�

If the averaging time 
 is proportional to the lag time �, i.e.,

=
� with 
�1, this error can become arbitrary large when
��� /
. However, the signal at the times much larger than
the terminal time � becomes exponentially small, and it is
never realistic to get any signal for ��6� or so because of
statistical error.

C. Mean-square displacement

Apart from correlation functions, one can use the same
idea of preaveraging for the calculation of the average mean-
square displacement of a selected particle with position r�t�,

gj =
1

N − j
	
i=0

N−j−1

��ri+j − ri�2� .

Similarly to the previous section, let us define the time-
averaged position of the particle and its mean-square dis-
placement,

r̄i,k =
1

k
	
j=0

k−1

ri+j , �9�

ḡj,k =
1

N − j − k + 1 	
i=0

N−j−k

�r̄i+j,k − r̄i,k�2

=
1

k2�N − j − k + 1� 	p=0

k−1

	
q=0

k−1

	
i=0

N−j−k

�ri+j+p − ri+p�

��ri+j+q − ri+q� . �10�

To simplify this expression, let us consider an auxiliary func-
tion,

wj = 2 	
i=0

N−j−1

ri+jri = 	
i=0

N−j−1

ri+j
2 + 	

i=0

N−j−1

ri
2 − 	

i=0

N−j−1

�ri+j − ri�2.

The first two terms in the last expression differ by

	
i=0

N−j−1

ri+j
2 − 	

i=0

N−j−1

ri
2 = 	

i=N−j+1

N−1

ri
2 − 	

i=0

j−1

ri
2.

If say a simple random walk starts from 0, the first term will
be of order j��r2� �here �r is the stepsize of the random

walk�, whereas other terms in the previous equation are of
order of N��r2�. Thus, if j�N, this difference can be ne-
glected,

	
i=0

N−j−1

ri+j
2 � 	

i=0

N−j−1

ri
2 � 	

i=0

N−1

ri
2.

Similarly, we can neglect differences in the upper limit of all
other sums,

2 	
i=0

N−j−1

ri+jri � 2 	
i=0

N−j−1−p

ri+j+pri+p = wi.

Thus, Eq. �10� can be rewritten as

ḡj,k =
1

2k2 	
p=0

k−1

	
q=0

k−1

�wq−p − wj+p−q − wj+q−p + wp−q�

=
1

k2 	
p=−k+1

k−1

�k − �p��gj+p −
1

k2 	
p=−k+1

k−1

�k − �p��gp, �11�

where we took into account time reversibility, g−p=gp. The
first sum of this equation is exactly the same as in Eq. �5� for
the correlation function. However, in addition to it there is an
extra correction term, which depends on the mean-square
displacement at smaller time scales. Thus, when calculating
the mean-square displacement from averaged positions, each
correlation needs to be corrected by this term. This correc-
tion becomes especially important in case the mean-square
displacement achieves an �almost� constant value as a func-
tion of time.

Yet a different way to calculate the mean-square dis-
placement is by not resorting to averaging. In this case, one
sacrifices statistical accuracy for systematic accuracy—this
will be discussed in Sec. II F.

D. Algorithm proposed by Frenkel

Frenkel3 noted the importance of having a scheme for
measuring time correlation functions which allows for ad-
justable sampling frequencies. In a quest for an algorithm to
calculate time correlation functions with a number of opera-
tions that scales linearly with N and modest memory require-
ments, Frenkel derived a scheme based on time averages.
Frenkel’s approach is explained in detail in his book.3 How-
ever, for the sake of completeness, we summarize it using the
notation of this paper.

We can define a hierarchical structure of block averages
of the function f in the following manner:

f i
�l,m� =

1

m
	

j=�i−1�m+1

im

f j
�l−1,m�, �12�

with f i
�0,m�= f i. Equation �12� is a recursive relation between

block averages of levels l and l−1, where m determines the

size of the average �f i
�l,m� is equivalent to f̄ i,k of Eq. �4� with

k=ml�. This way, the past values of the function are stored
with a resolution that decreases with the lag time �i.e., the
time between current time and the time when the function
was calculated: see the left picture of Fig. 1 for a schematic
depiction of the data structure in Frenkel’s correlator� and the
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time correlation function can be calculated using the aver-
aged values.

The required storage at level l is m per correlation func-
tion. The total required storage for a simulation of length T
=ml�t �or N=ml� is lm, whereas the requirements in the case
of the conventional approach introduced in Sec. II A would
be ml. As explained by Frenkel,3 at each time-step we need to
update f �0,m� and correlate it with all entries in the f �0,m� array,
which requires m operations. The next block average has to
be updated and correlated once every m time-steps, the third
once every m2 steps, and so on. The required number of
operations to calculate the whole correlation function in a
simulation of length N is thus

OF = Nm
1 +
1

m
+

1

m2 + ¯ +
1

mi� � N
m2

m − 1
. �13�

At level i, related to the array f �i,m�, the averaging time 
i

and the minimum lag time between points are the same and
equal to mi time-steps �see Table I, for details�. As seen in
Eqs. �7� and �8� of Sec. II B, the error would be ���
+1� /12 for a power law relaxation and of order of 1/12 in the
region around the terminal time for an exponential relax-
ation, which is undesirably large. This means that, although
the correlator proposed by Frenkel is very good in the sense
of the number of necessary operations and memory usage, it
is not in the sense of the error size. In order to improve this
aspect, it would be desirable to have an algorithm where both
the averaging time and the lag time between averaged values
can be controlled independently.

E. Multiple-tau correlator

In this section we review and analyze the multiple-tau
time correlator that was introduced in the framework of dy-
namic light scattering.4,5 In practical terms, it involves a
small modification with respect to the algorithm of Frenkel
that allows an independent control of the averaging time and
the lag time. The data structure is schematically presented in
Fig. 1.

Similar to Frenkel’s correlator, we define block averages
of the function f according to Eq. �12�. However, at level l,
the correlator array has now length p�m instead of m �typi-
cal values are m=2 and p=16�. Again, the resolution of the
stored function decreases with time. The required storage at
level l is p per correlation function. For a more detailed
explanation of the data structure of the multiple-tau cor-
relator, we refer the reader to Appendix A. The minimum and
maximum lag times at level l are pml−1 and �p−1�ml, respec-
tively, in number of time-steps �see Table I�. The total re-
quired storage for a simulation of length T= �p−1�ml�t is lp,
whereas in the conventional approach it would be �p−1�ml

�see Sec. II A�.
At each time-step, we update level 0 and correlate it with

all p entries in the f �0,m� array, a procedure that needs p
operations. Level 1 has to be updated and correlated every m
steps, but not all the correlations need to be calculated. The
first relevant lag time at level 1 is at position p /m in the
array f �1,m�, all other distances smaller than p /m are already
calculated in the previous correlator level. Therefore, the
minimum lag time that needs to be correlated at level 1 is
p�t, and the number of correlations that need to be calcu-
lated is p�1−1 /m�. The same argument applies to all levels
l�1. The required number of operations is thus

OM = Np + Np
1 −
1

m
�
 1

m
+

1

m2 + ¯ +
1

ml�
� N

p�m + 1�
m

, �14�

which is about p /m times larger than Eq. �13� and also linear
in N. About Np of these operations are employed in the cal-
culation of the first p lag times �a fraction m / �m+1� of the
total number of operations�. If the accuracy of early time
correlations is not an issue, one can simplify or even elimi-
nate the calculation of the correlations at level 0 and gain
some computational resources. However, the main advantage

FIG. 1. Schematic view of the data structure the correlator proposed by
Frenkel �left� and the multiple-tau correlator reviewed in this paper �right�.
Data arrays at different levels are represented, and the arrow symbolically
represents the averaging and transfer of data between different levels of the
correlator.

TABLE I. Summary of relevant features that describe Frenkel’s and multiple-tau correlators: number of corre-
lation points per level Ni, minimum and maximum lag time, �min,i and �max,i, and averaging time 
i, in number
of time-steps, at each block average level i.

Frenkel �m� Multiple-tau �p ,m�

Level i Ni �min,i �max,i 
i NPi �min,i �max,i 
i

0 m 0 �m−1� 1 p 0 �p−1� 1

1 m−1 m �m−1�m m p�1− 1
m

� p �p−1�m m

2 m−1 m2 �m−1�m2 m2 p�1− 1
m

� pm �p−1�m2 m2

] ]

l m−1 ml �m−1�ml ml p�1− 1
m

� pml−1 �p−1�ml ml
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of using the multiple-tau correlator does not lie only in the
use of computational resources but in the combined effects
of adjustable accuracy of the time correlation function and
the optimal use of memory. As will be shown in Appendix A,
the storage needs for the accurate calculation of the time
correlation function of some variable in a realistic molecular
dynamics simulation using the multimple-tau correlator may
be of just 2000 numbers. This fact permits the calculation of
the time correlation functions of many different quantities
during a simulation, including per molecule and even per
atom quantities, an operation that would be very costly using
standard methods.

The main difference between the multiple-tau time cor-
relator and Frenkel’s correlator lies in the ratio between the
averaging time and the minimum lag time at each level of the
correlator, which controls the size of the error in standard
cases, as seen in Sec. II B. In Frenkel’s correlator this ratio is
equal to 1, whereas in the multiple-tau correlator is equal to
m / p. This means that we can tune the relative error intro-
duced by the multiple-tau time correlator by carefully select-
ing m and p. The smaller the ratio m / p, the smaller the
relative error will be.

F. Nonaveraged algorithm

For some observables, such as the mean-square displace-
ment, the systematic error due to averaging can become very
large, which can be resolved using corrections. However, in
general, the derivation of these corrections can become quite
tedious �e.g., for higher moments of the displacement�.
Moreover, they also do not correct the smoothing effect �i.e.,
the first sum of Eq. �11��. Another way of resolving this issue
is not to submit average values to the correlator.

In practice this is implemented as follows. Normally,
every value � is added to the accumulator A and the value
A /m is pushed to the next correlator level �as discussed in
Appendix A�. Instead we only add one out of m values to the
accumulator A, although the counter C is still increased for
each element �. Once C=m, the value of the accumulator is
send to the next level. This corresponds to giving 100%
weight to the first element instead of 1 /m weight to each of
the m elements.

As there is no smoothing involved, there are no system-
atic errors. The obvious drawback of this method is that for
every next correlator level only a fraction 1 /m of the data is
used, the rest of the data is discarded. This will lead to an
increase in the statistical error. Nevertheless, as we will see,
in some situations this increase in the statistical error is al-
most negligible with the added benefit of not having to resort
to correction methods.

III. CASE STUDIES

In this section, we present two real examples of the use
of the multiple-tau correlator, both to illustrate its use and to
analyze the error. First, we apply it to the calculation of the
stress relaxation modulus and the orientation tensor relax-
ation from MD simulations of chain molecules. Then, we
analyze the use of the multiple-tau correlator in Brownian

dynamics �BD� simulations of the well known Rouse
model,13 for which analytical expressions of correlations can
be calculated.

A. Stress from molecular dynamics

The stress autocorrelation function G�t� is notoriously
difficult to calculate in molecular dynamics due to huge fluc-
tuations at early time �caused by bond vibrations�. In order to
analyze different possibilities of computing G�t�, we run mo-
lecular dynamics of the standard Kremer–Grest model de-
scribed elsewhere.10,14 We use a particle density �=0.85,
chain length N=10, and a cubic box of 30 chains. To im-
prove accuracy, we average ��xy�t��xy�0�� over all possible
ways to select a pair of perpendicular axis x and y. The result
is

G�t� =
V

5kBT
���xy�t��xy�0�� + ��yz�t��yz�0��

+ ��zx�t��zx�0��� +
V

30kBT
��Nxy�t�Nxy�0��

+ �Nxz�t�Nxz�0�� + �Nyz�t�Nyz�0��� , �15�

where N�
=���−�

.
There are two sources of errors in the calculated G�t�:

statistical errors due to a finite simulation time and system-
atic errors introduced by the use of averaged correlators. In
order to separate them, we perform 10 �Fig. 2� and 100 simu-
lations �Figs. 3–6� of length T=1.2�105�LJ, which corre-
sponds to 2400 terminal relaxation times � �which is 50�LJ

for our system, �LJ being the Lennard-Jones unit of time�. In
each run we calculate the “exact” correlations according to
Eq. �2� and the correlation using the suggested correlators
with different values of p.

Figure 2 shows G�t� averaged over Nex=10 runs, ob-
tained with the two methods. It is apparent visually that,
apart from saving memory, the use of the multiple-tau cor-

FIG. 2. Stress autocorrelation function averaged over ten runs from the
Kremer–Grest model, N=10, calculating the exact time correlation function
�see the text� and using the multiple-tau correlator with m=2 and p=16. The
bottom curves show the statistical error �the absolute error-bars� for the two
methods. The gaps at early time are due to the use of a logarithmic scale and
the negative value of G�t�.
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relator seems to yield smoother data in the terminal region.
In order to quantify this, we perform statistical analysis and
define the statistical error as the mean deviation from the
average, divided by the square root of the number of inde-
pendent experiments Nex,

�stat�t� =
1

�Nex

� 1

Nex
	
k=1

Nex

Gk
2�t� − 
 1

Nex
	
k=1

Nex

Gk�t��2

. �16�

Figure 2 shows that statistical errors from the multiple-
tau correlator data are smaller than those from Eq. �2�. To
illustrate this in more detail, we plot results for G�t� and its
statistical error �stat�t� obtained by using correlators with dif-
ferent p and m=2 for Nex=100 simulations in Fig. 3. The
point where G�t� intersects with ��t� corresponds to 100%
error. The systematic error is estimated by the difference of
G�t� between small p and the largest p=64, for which the
systematic error is negligible. These systematic errors are
plotted by lines with symbols for p=2 and p=4. We see that
for the low p, the systematic error is significant, whereas for
p=8 and above, it falls below the statistical error for t��LJ.
From Eq. �6� we expect it to decrease as 1 / p2, which is
consistent with the data. We note that usually in realistic
simulations statistical errors are larger than in our case since
we considered 100 very long runs in terms of the terminal
time. Thus, any p�8 can be safely used. A useful finding is
that the statistical error is increasing with increasing p, i.e.,
smoothing actually decreases the statistical error by about a
factor of 4, which is equivalent to running 16 times more
experiments.

An alternative method often used in simulations is to
save the stress tensor averaged over a fixed number of time-
steps into a file, and then postprocess these files using the
exact correlation definition, Eq. �2�. This corresponds to
fixed k in Eq. �4� as opposed to choosing l proportional to
time as in the multiple-tau correlator. The analysis of the
same data using this method is shown in Fig. 4. The case l
=1 corresponds to no averaging, i.e., using exact Eq. �2�. We
see that this produces a statistical error of ��t��2�10−3,

which is independent of time and crosses G�t� at t=150�LJ,
i.e., at about three relaxation times. Therefore, even after
running 100 experiments for 2400 longest relaxation times �
each exact correlation function is still too noisy to produce
an accurate estimate of the terminal region.

Note that the reason for the statistical error appearing to
be independent on the lag time t on a logarithmic scale is that
the number of independent samples is about �T− t� /� render-
ing a relative error of approximately �� / �T− t�, which is in
zeroth order independent of t.

Averaging over 100 time-steps reduces the statistical er-
ror to �=0.6�10−3, which is still worse than �stat�100�
�0.3�10−3 obtained by using the multiple-tau correlator
with p=16 for times around the terminal time. Using a larger
fixed averaging time l is not practical since the range of the
accurately obtained function will be very narrow.

In order to check that our results are not limited to the
stress relaxation function, we use the same simulations to
obtain the orientation tensor autocorrelation function. We de-
fine the orientation tensor as

O�
�t� =
1

Nbonds
	

all bonds
u�u
,

where u is a bond vector, and the sum is performed over all
bonds in the system. The autocorrelation function S�t� is then
defined similar to Eq. �15�. Figures 5 and 6 show the same
analysis as Figs. 3 and 4, but for the orientation autocorrela-
tion function. One can see that averaging here has less effect
on the statistical accuracy �i.e., averaging over 1000 points
reduces the error by a factor of 1.6 instead of factor of 5 in
the G�t� calculations�. This is explained by the absence of
large oscillations in S�t� at early time as compared to G�t�.
However, the relative statistical error without preaveraging is
smaller, and thus the systematic error plays a slightly bigger
role: the p=8 correlator still has noticeable error of about
1%, but use of p=16 is safely below the statistical noise
apart from the little region around t�0.3�LJ, where the sec-
ond derivative is large. Even in this region it is below 0.5%.
In view of the previous results, we can safely conclude that

FIG. 3. Stress autocorrelation function averaged over 100 runs obtained
using multiple-tau correlators with p=2,4 ,16,64, statistical error �lines at
the bottom� and systematic error for p=2 and 4. Systematic error for higher
p is below statistical error �not shown�.

FIG. 4. Stress autocorrelation function averaged over 100 runs obtained
with fixed preaveraging over l=1,10,100,1000 points. Statistical errors are
shown by horizontal curves, whereas systematic errors for l=100 and l
=1000 are shown by symbols.
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the best choice is p=16. A larger p value is worse from the
statistical point of view, whereas smaller values result in sys-
tematic error.

B. Brownian dynamics simulations of Rouse chains

Brownian dynamics simulations of single chain models
are frequently used for comparison with experimental data or
to test new physical ideas. Apart from being much simpler to
calculate and yielding smoother results than molecular dy-
namics simulations, they are very useful to test numerical
methods because they can be compared in simple cases
against known analytical results. One of our goals in this
paper is to test the accuracy of the error estimates produced
in Sec. II. In particular, we intend to check the error correc-
tions derived for the standard time correlation function �Eq.
�5�� and the mean-square displacement �Eq. �11��. Moreover,
we want to see what the influence on the statistical error is
when the nonsmoothing algorithm, as described in Sec. II F,
is applied.

For these purposes, we run Brownian dynamics simula-
tions of a linear Rouse chain of N=20 bonds, with the posi-

tion of the first bead fixed at the origin. As it is well known,
the relaxation dynamics of the Rouse model can be deter-
mined completely by recurring to normal mode analysis. In
particular, the expressions for the relaxation modulus or the
mean-square displacement of the center of mass or of any
given monomer can be easily obtained. In contrast to the
stress or orientation relaxation functions, averaged mean-
square displacements are monotonically increasing func-
tions. By fixing the position of one of the chain ends, mean-
square displacements become asymptotically bounded at late
times. We have identified this as a critical case for the use of
the multiple-tau correlator, so this particular version of the
Rouse model has been selected for the present section.

Let us focus first on the stress relaxation. In Fig. 7, the
analytical calculation of the relaxation modulus of a Rouse
chain with an end fixed is shown as a bold black line. It
clearly shows the expected Rouse features: �1/2 power law
regime ended by a terminal exponential relaxation at the ter-
minal time �R, which is proportional to the square of the
chain length. For simplicity, in this and the following plots,
we use units where kBT=1, the friction coefficient �=1, and
the averaged squared bond length b2=1; in these units, the
longest relaxation or Rouse time is �R�4N2�0, with �0

=1 /3�2. As we did in Sec. II for molecular dynamics simu-
lation, we are going to analyze the two contributions to the
relaxation modulus calculated with the multiple-tau cor-
relator: the statistical error due to finite length of the statis-
tical ensemble and other computational aspects of the simu-
lation �integration algorithm and time-step size�; and the
systematic error coming from the use of the multiple-tau
correlator. In Fig. 7, we present the results from a simulation
of 1000 chains run for 1000 terminal times, where m=2 is
fixed and p is changed over a wide range. The statistical
errors, calculated using Eq. �16�, are shown as lines at the
bottom. The systematic error is calculated as the difference
between the numerical value of G�t� obtained from the

FIG. 5. Similar to Fig. 3 but for the orientation tensor autocorrelation
function.

FIG. 6. Similar to Fig. 4 but for the orientation tensor autocorrelation
function.

FIG. 7. Relaxation modulus, calculated from the stress-stress autocorrela-
tion function of Rouse chains of length N=20 with the chain ends fixed at
the origin. The bold line shows the analytical solution obtained from normal
mode analysis; the thin lines at the bottom show the error bars of the
multiple-tau correlators with m=2 and p=4,8 ,16,32,64 calculated from
Brownian dynamics simulations; the symbols show the systematic error
from the simulations, in good agreement with the predictions of Eq. �5�
shown in lines.
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multiple-tau correlator for each p �not shown on the plot� and
the analytical value �bold line�, and is shown as symbols,
along with the predictions of Eq. �5�, shown as lines. The
agreement between predicted and calculated systematic er-
rors is excellent, except for the first few data points. For
these initial points, which correspond to the first level in the
multiple-tau correlator, Eq. �5� predicts no error. Obviously,
the simulation yields errors of computational origin also for
those points. As seen in molecular dynamics, the systematic
error is significant for low values of p but gets below the
level of the statistical error for p�8. It must be noted that
our simulations are rather precise. In practice, due to limited
computational availability, Brownian dynamics simulations
are calculated on smaller ensembles and over a shorter
lengths. We once again see that the statistical error is smaller
for lower values of p, but the effect is clearly less important
than in molecular dynamics.

For the sake of completeness, we repeat the same analy-
sis for a fixed value of p=32 and changing values of m. The
results are shown in Fig. 8. In this case, the statistical errors
are almost the same for all values of m investigated, and
therefore they are shown as a single dashed line. The system-
atic error is significant �from Eq. �6�, we expect it to grow as
m2�, but falls below the level of the statistical error for m
�8. In fact, as can be easily extracted from Table I, for a
given lag time t, the averaging time in the multiple-tau cor-
relator is bounded from above by mt / p. In the power law
relaxation region of G�t�, according to Eq. �7� where �
=1 /2, we expect the relative systematic error to be bounded
by �m /4p�2. We can use this estimate to chose the proper
ratio p /m so that the error is always below the desired level.
For example, if p /m�8, the relative systematic error will be
smaller than 0.1% in the power law region. A similar type of
analysis can be done for the exponential terminal relaxation
region. As a general conclusion, a choice of p /m�8 seems
most appropriate. It is clear that a very large value of m may
compromise the resolution of the results. From a balance
between storage needs and precision, we conclude that the
preferred choice of parameters is p=16 and m=2.

We turn our attention now to the mean-squared displace-
ment �MSD� of the middle monomer, or g1,mid, of our end-
attached Rouse chain of length N=20. In Fig. 9, the analyti-
cal solution of g1,mid is shown as a bold black line. As
expected, it shows a clear 1/2 slope roughly from �0 to �R

followed by a flat region at later times whose value depends
simply on the size of the chain. The calculations with the
multiple-tau correlator from the simulations have the usual
two errors. The statistical errors, shown as thin colored lines
at the bottom of Fig. 9, have the same trend as before: for
fixed m, the size of the error increases with p. However, the
size of the statistical error in this case is more than three
orders of magnitude below the value of g1,mid. This observa-
tion will be used later on. The main contribution to the error
clearly comes from the systematic error, shown as symbols
in Fig. 9. The agreement with the prediction of Eq. �11�,
shown as lines, is again excellent. The systematic error has a
clear steplike shape in which the different levels of the
multiple-tau correlator can be easily differentiated. It can be
seen that the size of the systematic error grows monotoni-
cally, eventually getting equal to g1,mid in the terminal region,
which is unacceptably large. It is therefore important to
eliminate or reduce as much as possible the systematic error
from the results of the multiple-tau correlator.

We will employ two methods to achieve this. One
method will be to completely eliminate the systematic error
in the MSD, but it sacrifices some statistical accuracy, as
discussed in Sec. II F. The other method will employ a cor-
rection, which lead to a considerable decrease in the system-
atic error, without affecting the statistical accuracy.

In Fig. 9 the statistical error for the nonsmoothing ver-
sion of the algorithm is shown as dashed lines. We see that
before the saturation of the MSD, the increase in the statis-
tical error is nearly negligible as compared to the smooth-
ened version in which all simulation data are used. The rea-
son for this seems to be connected to the fact that the
fluctuations in the MSD increase with lag time, so that ne-

FIG. 8. Same as Fig. 7 with p=32 and m=8,16,32. The error bars �dashed
line� are the same for all correlators. Again, symbols and lines show the
systematic error from the simulations and the predictions of Eq. �5�,
respectively.

FIG. 9. Mean-squared displacement of the middle monomer �i=10� of the
Rouse simulations shown in previous figures. The bold line shows the ana-
lytical solution; the thin lines at the bottom show the error bars of the
multiple-tau correlators with m=2 and p=4,8 ,16,32,64; the symbols show
the systematic error from the simulations, in good agreement with the pre-
dictions of Eq. �11� shown with lines. The dashed lines at the bottom show
the statistical error when no averaging is applied �in which case the system-
atic error equals zero�. Arrows point toward increasing p.
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glecting some of the high-frequency data with small fluctua-
tions does not really affect the statistical error. Only in the
flat regime of the MSD, the statistical error for the nonaver-
aged case starts to deviate significantly from the averaged
one, with the deviation starting later for larger p. As the
statistical error is so small, one can afford an increase—at
t=106�0, far beyond the terminal time, the error in the MSD
is still two orders of magnitude smaller than the MSD itself
for p=16.

Let us now inspect the second method, correcting the
systematic error. The systematic error of Eq. �11� has two
terms. The second one is equivalent to the mean-squared
displacement at times earlier than the averaging time. As the
averaging time grows monotonically with the lag time, this
second term becomes dominant at late times. Since we know
the exact averaging time k at each correlator level, we can
correct for the systematic error using the following expres-
sion, taken from Eq. �11�:

ek � −
1

k2 	
p=−k+1

k−1

�k − �p��g1,mid,p = −
2

k2 	
p=1

k−1

�k − p�g1,mid,p,

�17�

where time reversibility and the fact that g1,mid,0=0 have
been used. This correction is constant at each level of the
multiple-tau correlator, which is consistent with the steplike
shape of the systematic errors in Fig. 9. In the last equation,
the values of g1,mid,p can be extracted from the multiple-tau
correlator itself. Since the values in the correlator are stored
with decreasing resolution, it is necessary to interpolate be-
tween different values of g1,mid,p in order to calculate the sum
in Eq. �17�. The results of the multiple-tau correlator cor-
rected with the expression above are shown in Fig. 10 by
symbols. When compared with the previous figure, it can be
clearly seen that the correction reduces the size of the sys-
tematic error, shown as symbols, by several orders of mag-
nitude. The remaining systematic error has the same origin as
in the stress correlation functions, i.e., due to smoothing �first
sum in Eq. �11��. The systematic error even falls below the

level of the statistical error for our preferred set of correlator
parameters, p=16 and m=2. Note also that, by correcting the
systematic error of g1,mid, we have also eliminated the effect
of p on the statistical error. This is a sign that the systematic
error has an important contribution to the statistics of the
results.

If the correction in Eq. �17� is considered to be too com-
plicated, a simpler alternative for the correction is possible.
The systematic error can be approximated by shifting the
values of g1,mid at each correlator level by a constant, such
that the first point at each level is aligned with the last two
points in the previous level. This simpler correction, al-
though of a pure phenomenological origin, yields acceptable
results �a reduction of the error of almost two orders of mag-
nitude for p=16 and m=2�, as can be seen in Fig. 10, where
they are represented as thin lines.

Upon comparing the nonsmoothing algorithm and the
algorithm in which a correction is applied, we see that there
is not a large difference in the final accuracy; hence both are
viable methods. However, the nonsmoothing algorithm can
be applied to any observable without having to derive an
analytical correction.

We conclude this section by showing the statistical er-
rors of our simulations in the terminal time region for the
relaxation modulus and the mean-squared displacement of
the middle monomer. These are shown in Fig. 11 for G�t�
�black line and symbols� and g1,mid �red line and symbols� as
a function of the total number of “experiments” Nexp. For the
BD simulations we use the product of the ensemble size
�number of independent chains Nch� times the length of the
simulation �in number of terminal times T /�R�, Nexp

=NchT /�R. We note that the BD simulations were run using a
predictor-corrector integration method with a time-step �t
=0.02 �in the units of the simulation�. As expected, the error
depends linearly on Nexp

−1/2. As a simple rule, we can conclude
that the error in percent of G�t� in the terminal region for a

FIG. 10. Same as Fig. 9 but adding the second term of the correction of Eq.
�11�. The error bars �dashed line� are the same for all correlators. The sys-
tematic errors for p=4,8 ,16 after correction with Eq. �17� are shown with
symbols; the lines show the systematic errors using a simpler correction
detailed in the text.

FIG. 11. Error bar of the relaxation modulus G�t� �black� and the mean-
squared displacement of the middle monomer g1,mid, as percentage of the
value of the function at the terminal time, plotted as a function of the
number of experiments Nexp=NchT /�R for BD and Nexp=NsimT /� for MD.
The numbers show the slope of the least-squares linear fitting to the BD
data.

154103-9 Efficient time correlation functions J. Chem. Phys. 133, 154103 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



BD simulation of bead-spring chains with 21 beads is ap-
proximately equal to 600 /�Nexp, i.e., one needs about
360 000 experiments to get the value of the correlation func-
tion exact within 1% near the terminal time. Also shown is
the result for the accuracy in G�t� at the terminal time � from
the MD simulations. As G�t� is affected by cross-correlations
between chains, we took the number of independent simula-
tions Nsim instead of Nch for calculating the number of inde-
pendent experiments Nexp.

We recommend to select carefully the size of the simu-
lation, Nexp, so that the size of the statistical error is known,
and then choose the appropriate set of parameters for the
multiple-tau correlator �the ones that we recommend are p
=16 and m=2�. This way, the results will have the desired
accuracy with the least memory and computational effort.

IV. CONCLUSION

In this paper, we have reviewed and analyzed the
multiple-tau correlator, a method for the calculation of time
correlation functions on the fly during computer simulations,
which is optimal in the sense of memory and computational
requirements, and can be tuned to get the desired level of
accuracy. The method is well known in the area of experi-
mental light scattering but, to the best of our knowledge, is
not so well known to researchers doing computer simula-
tions, where time correlation functions are frequently calcu-
lated. We have derived some expressions which allow error
estimation due to the multiple-tau correlator and extended
these definitions for the calculation of mean-square displace-
ments, also common in simulations. In Appendix B we also
developed a correlator for the calculation of the dynamic
structure factor in isotropic systems.

The multiple-tau correlator is based on the idea of preav-
eraging the data, with changing averaging time, before the
calculation of time correlations. It has two parameters: m,
which controls the number of values averaged every time,
and p, which sets the amount of stored data at each reso-
lution level. The combination sets the resolution of the re-
sults. Theoretical considerations show that the ratio p /m con-
trols the minimum lag time between points at each level of
the multiple-tau correlator, which in turns controls the size of
the relative error. A careful analysis of the results of the
multiple-tau correlator applied to molecular dynamics and
Brownian dynamics simulations indicates that the best
choice of correlator parameters is p=16 and m=2. This
choice ensures that the systematic error is always below the
level of the statistical error of the simulation �mostly deter-
mined by the ensemble size and simulation length�. For the
particular case of the mean-squared displacements, we have
shown that two methods can be employed. One either cor-
rects the results according to systematic error estimators pro-
vided. If this is done correctly, the multiple-tau correlator can
be used very advantageously to calculate diffusion data and
its error can be kept below the statistical error. The other way
is to resort to the nonsmoothing version of the multiple-tau
algorithm, which renders the systematic error void and still

leads to an acceptable level of the statistical error. This ver-
sion can be easily applied to other observables such as higher
moments of displacements.

We are hoping that this work will attract some interest in
the simulation community, specially in the area of computer
simulation of dynamical properties of complex systems. The
efficient method reviewed in this paper opens a lot of possi-
bilities for the analysis of data from simulations and can help
researchers to extract more useful information from their
own work. For a more detailed explanation of the algorithm
used for the multiple-tau correlator, we point the reader to
Appendix A. Samples of the use of this algorithm in simple
codes can be obtained by contacting the authors or directly
from http://www.personal.reading.ac.uk/~sms06al2/.
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APPENDIX A: DETAILED DATA STRUCTURE OF THE
MULTIPLE-TAU CORRELATOR

The multiple-tau correlator with parameters m and p is
composed of a series of S+1 levels. Each level i contains
three arrays of size p, Dij to store the data, Cij to store the
correlation results and Nij, a counter used to calculate aver-
ages; in addition, each level contains an accumulator Ai and
a counter Mi �the first index i=0. . .S always refers to the
level, and the second index j=0. . . p−1 to the elements of
arrays inside each level�. All the arrays are initialized to zero
at the start of the simulation.

When a new data value � is sent to correlator level i, the
following sequence of operations takes place.

�1� � is stored at the position 0 of the data array, pushing
already stored values to the right �the performance of
this operation can be improved by using data pointers�,

Dij = Dij−1, j = 1 . . . p − 1, Di0 = � .

�2� The correlation array and correlation counter are up-
dated,

Cij = Cij + Di0Dij, Nij = Nij + 1,

where the calculation runs from j=0. . . p−1 at level 0
and from j= p /m . . . p−1 otherwise �lag distances
smaller than p /m are already calculated at previous lev-
els�.

�3� � is added to the accumulator and the counter is incre-
mented,

Ai = Ai + �, Mi = Mi + 1.

In the nonsmoothened version � is only added if Mi

=0.
�4� If Mi=m, the averaged accumulator Ai /m is sent to the

next level, i+1, and both Ai and Mi are reset to zero. In
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the nonsmoothened version, the only difference is that
Ai instead of Ai /m is send to the next level.

Although it is not absolutely necessary, for the sake of
simplicity, it is recommended that p is a multiple of m. The
actual step where the correlation is calculated �step 2� can be
adapted to the calculation of different time correlation func-
tions, for example, mean-square displacements, vector-vector
correlations, cross-correlations, or dynamic structure factors.

Data values coming from the simulation �values of the
stress, pressure, velocity, etc.� are sent to correlator level 0
every �t �which may be equal to the simulation time-step or
a multiple of it�. Averaged values from level i are sent to
level i+1 every m steps. Therefore, the lag time between
values stored in the array Dij is mi�t. A schematic view of
the hierarchical structure of the data array Dij is depicted on
the right hand side of Fig. 1. Some other characteristics of
the multiple-tau correlator, such as the number of points, the
averaging time, and the minimum and maximum lag times
per level, can be found in Table I �along with the equivalent
values for the correlator proposed by Frenkel�. When the
counter on the last correlator level MS=m, the values of this
level counter and accumulator are simply reset to zero, and
no value is sent to another level.

At any time during the simulation, the resulting time
correlation function fk= f�tk� can be easily recovered by run-
ning a loop over the different levels of the multiple-tau cor-
relator and averaging the values of correlation array: tk

= jmi�t, fk=Cij /Nij, where i=0. . .S and, again, j=0. . . p−1
on level 0 and j= p /m . . . p−1 otherwise.

The total storage requirements for the multiple-tau cor-
relator are 3�S+1�p numbers for the arrays Dij, Cij, and Nij,
plus 2�S+1� numbers for the arrays Ai and Mi. The maxi-
mum value of the lag time available in the correlator is �p
−1�mS�t or �p−1�mS time-steps. Our preferred set of values
is p=16, m=2, and S=40 �these values might be slightly
different depending on the problem at hand�. With these val-
ues we can reach 1.65�1013 time-steps with a reasonable
storage of just over 2000 numbers. The maximum number of
operations that can take place in a single time-step is
bounded by 2S�p+1� �and this happens only when a time-
step is multiple of mS, something that, with the previous
values of m and S, only happens every 1012 steps�. This
number is reasonably small compared to the number of op-
erations that are usually needed in an atomistic simulation in
order to calculate the forces, and therefore allow the calcu-
lation of the time correlation function on the fly during the
computer simulation. A simple C�� code for the multiple-tau
correlator, with examples and wrappers for C and FORTRAN,
can be obtained from http://www.personal.reading.ac.uk/
~sms06al2/.

APPENDIX B: SINGLE CHAIN DYNAMIC STRUCTURE
FACTOR

The dynamics of individual molecules can be studied in
simulations by means of the dynamic structure factor. This
function is also interesting because it can be compared with
experimental data from dynamic light scattering or neutron
spin-echo and in some cases, it can be related to theoretical

concepts such as the tube diameter from polymer dynamics.
The expression for the coherent dynamic structure factor for
a single chain with N�=N+1 scattering beads is15

S�q,t� =
1

N + 1 	
n,m=0

N

�exp�iq · �Rn�t� − Rm�0���� , �B1�

where the brackets � � indicate an average over equilibrium
conditions. If the system under study is isotropic, one can
average over all possible orientations of the scattering vector
q. It is common in practice to average only over three dif-
ferent orthogonal vectors q’s. In the latter case, it is possible
to express Eq. �B1� in a form that is suitable for the multiple-
tau correlator. Averaging over three orthogonal vectors along
the axes of coordinates, qi, qj, and qk, and taking the real
part only, Eq. �B1� becomes

S�q,t� =
1

3�N + 1� 	
n,m=0

N

	
�=x,y,z

cos�q�Rn��t� − Rm��0��� .

After expanding the cosine of the difference and splitting the
sums, we get

S�q,t� =
1

3�N + 1� 	
�=x,y,z

�	
n=0

N

cos�qRn��t��

�	
m=0

N

cos�qRm��0��

+ 	
n=0

N

sin�qRn��t��	
m=0

N

sin�qRm��0��� .

So, if we define the following time dependent functions:

C��t� = 	
n=0

N

cos�qRn��t�� ,

S��t� = 	
n=0

N

sin�qRn��t�� ,

the calculation of the chain dynamic structure factor will be
simply

S�q,t� =
1

3�N + 1� 	
�=x,y,z

�C��t�C��0� + S��t�S��0�� . �B2�

This function can be easily calculated by using six different
correlators for each molecule. We just need to add the quan-
tities C� and S� to each correlator at each time-step and sum
the correlation functions at the end.
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