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Optimal Foraging in Semantic Memory

Thomas T. Hills
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Do humans search in memory using dynamic local-to-global search strategies similar to those that animals use
to forage between patches in space? If so, do their dynamic memory search policies correspond to optimal
foraging strategies seen for spatial foraging? Results from a number of fields suggest these possibilities,
including the shared structure of the search problems—searching in patchy environments—and recent
evidence supporting a domain-general cognitive search process. To investigate these questions directly, we
asked participants to recover from memory as many animal names as they could in 3 min. Memory search was
modeled over a representation of the semantic search space generated from the BEAGLE memory model of
Jones and Mewhort (2007), via a search process similar to models of associative memory search (e.g.,
Raaijmakers & Shiffrin, 1981). We found evidence for local structure (i.e., patches) in memory search and
patch depletion preceding dynamic local-to-global transitions between patches. Dynamic models also signif-
icantly outperformed nondynamic models. The timing of dynamic local-to-global transitions was consistent
with optimal search policies in space, specifically the marginal value theorem (Charnov, 1976), and partici-
pants who were more consistent with this policy recalled more items.
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Animals often search for resources that occur in spatial patches,
such as the berries on separate bushes or nuts beneath a cluster of
trees. Humans also search for cognitive resources that can be seen as
patchy with respect to some metric other than space, such as memory
representations of words grouped by semantic categories (Bousfield
& Sedgewick, 1944; Raaijmakers & Shiffrin, 1981; Romney, Brewer,
& Batchelder, 1993), or sets of solutions that can be navigated by
working memory processes in a problem-solving task (Hills, Todd, &
Goldstone, 2008; Payne, Duggan, & Neth, 2007; Wilke, Hutchinson,
Todd, & Czienskowski, 2009). In spatial environments, adaptive
foraging involves making appropriate global transitions between lo-
cally exploited resource clusters: decisions that prevent animals from
staying too long in overexploited patches and from giving up too early
on patches full of resources yet to be found (Stephens & Krebs, 1987).
A classic model of optimal foraging theory (Charnov, 1976) predicts
that the overall rate of return is optimized if the forager leaves a patch

when the rate of finding new targets within the patch falls below the
long-term average rate achieved by following the optimal strategy.
We explore whether a version of this principle applies to search for
items in semantic memory. Specifically, do humans move between
memory patches when global opportunities outweigh local benefits,
just as bumblebees forage between flower patches in an open field?

To investigate the parallel between spatial and memory search, we
built models of participants’ search through semantic memory when
engaged in a fluency task (e.g., “name all the animals you can think
of”; Lezak, 1995; Thurstone, 1938), and compared model fit to a
classic model of optimal foraging in space—the marginal value the-
orem (Charnov, 1976). Two sources are used to represent the seman-
tic space searched in the fluency task: hand-coded categorizations
from Troyer, Moscovitch, and Winocur (1997) and lexical semantic
representations from BEAGLE (bound encoding of the aggregate
language environment), a corpus-based semantic space model (Jones
& Mewhort, 2007). This approach allowed us to address two ques-
tions: (a) Does search in semantic memory involve switching between
local exploitation of specific memory patches and global exploration
between patches, and, if so, (b) is the switching between local and
global search in semantic memory consistent with optimal search
policies defined for animals foraging in space? In what follows we
first explore the structural and neural parallels between spatial search
and memory search that motivate this study. Then we develop the two
questions above, before describing our data collection and modeling
efforts to assess semantic foraging.

Structural and Neural Parallels Between Search in
Space and Memory

Structural similarities between spatial and nonspatial environ-
ments have motivated a number of studies on human search
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behavior. The key assumption underlying these investigations is
that when information is distributed in clusters, or patches (local
high-density areas of resources separated by regions with little
resource availability), the optimal foraging policy of humans
searching for information should share features associated with
animals foraging for food in space. Research has demonstrated
these parallels across spatial and cognitive search in tasks involv-
ing finding fish in virtual ponds (where patches are ponds and
items are fish caught in each pond; Hutchinson, Wilke, & Todd,
2008), search for words in multiword anagrams (where patches are
sets of random letters and items are words created from subsets of
those letters; Hills et al., 2008; Wilke et al., 2009), and search for
information on the web and in other naturalistic environments
(where patches can be sets of similar web pages; Pirolli, 2007;
Pirolli & Card, 1999).

Critical to the success of the forager in all these cases is the
appropriate modulation between local and global search behav-
iors—deciding when to continue exploiting the current resource
patch versus when to leave that patch and explore to find a new
one. One particularly common strategy for making these ongoing
trade-offs, observed in a wide range of animal species, is called
area-restricted search in the ecological literature (Grünbaum,
1998; Karieva & Odell, 1987). This strategy involves restricting
one’s search to the local neighborhood for as long as resources
continue to be found there and then at some point moving away
from that area (sometimes gradually, and typically after the rate of
finding resources falls off).

A comparative analysis of the underlying neural and molecular
architectures guiding area-restricted search (Hills, 2006) gives rise
to the second reason for the proposed parallel between spatial
search and memory search: evidence for a generalized cognitive
search process. Research from a number of fields has demonstrated
that molecular and neural mechanisms that appear to have evolved
initially for the purpose of area-restricted search in external envi-
ronments have subsequently been exapted in later species for the
purpose of modulating attention and search in internal environ-
ments (Hills, 2006). This exaptation hypothesis is supported by the
observation that, across species, neural processes similar to those
generally devoted to area-restricted search in space now modulate
goal-directed behaviors and attention in search for information
(e.g., Dulawa, Grandy, Low, Paulus, & Geyer, 1999; Floresco,
Seamans, & Phillips, 1996; Hills, Brockie, & Maricq, 2004; Sawa-
guchi & Goldman-Rakic, 1991; Schultz, 2004), including search in
human memory (Berke & Hyman, 2000; Kischka et al., 1996;
Newman, Weingartner, Smallberg, & Calne, 1984; Wittmann et
al., 2005). Thus, both shared environmental structure and shared
mechanisms suggest the possibility of shared adaptive foraging
policies for search in space and memory.

Dynamic Search in Semantic Memory

Giving up on one patch to move to another assumes that the
memory search space is distributed in a patchy way, analogous to
the distribution of many resources in the spatial environment. The
patchiness of memory is evident in a variety of contexts including
lexical decision tasks and, more importantly for our purposes,
studies of free recall from natural categories, with clustered recall
of related items noted in the earliest such studies (Bousfield &
Sedgewick, 1944; Johnson, Johnson, & Mark, 1951). More recent

work on free recall from natural categories and list learning has
consistently found that groups of semantically similar words are
produced together (Bousfield & Barclay, 1950; Gruenewald &
Lockhead, 1980; Howard, Jing, Addis, & Kahana, 2007; Romney
et al., 1993).

This grouping of semantically similar words in recall is consis-
tent with a cognitive foraging process that modulates between
local and global memory cues, with the former producing clusters
and the latter producing transitions between clusters. This dynamic
search strategy is common to several different models of long-term
memory retrieval (Gronlund & Shiffrin, 1986; Metcalfe & Mur-
dock, 1981). One of the best known is the search of associative
memory (SAM) model (Raaijmakers & Shiffrin, 1980, 1981). In
SAM, memory is probed with cues that lead to activation and
retrieval of memory items. Sets of cues make up the memory
probe, which can change over the course of the retrieval period in
a fashion similar to that outlined for patch-based foraging policies
like area-restricted search. Initially, the probe consists of a global
retrieval cue, related to the context and the category cue (i.e., the
superordinate category that defines the boundaries of the search
space; e.g., “animals”). Following successful item recovery, the
probe is modified to include the most recently recovered item as a
cue (e.g., DOG), which is a form of local information. This
increases activation for items that are semantically proximal to the
most recent cue (e.g., CAT). Following failures to retrieve an item,
the memory probe eventually loses its local cue, and returns to its
global form. This is area-restricted search in memory, dynamically
moving between local and global search efforts.

The cluster–switching hypothesis is a similar but less formal
model that has been investigated in the clinical literature (Troyer et
al., 1997). This process involves “clustering” (the production of
words in a semantic subcategory) and “switching” (making the
transition from one subcategory to another; Robert et al., 1998;
Troyer et al., 1997; Troyer, Moscovitch, Winocur, Leach, &
Freedman, 1998). The cluster–switching model defines patches
based on shared category membership (provided by hand-coded
categorizations from Troyer et al., 1998), and offers a preliminary
means for evaluating patch structure in memory. As we show next,
this allowed us to map hand-coded categorizations directly to
semantic similarity.

When and how does memory search transition from local
within-patch search to global between-patch search? Recent re-
search has investigated the algorithm-level question of what cues
can lead to this transition, by modifying the standard free-recall
paradigm, allowing participants to determine when to terminate
memory search for items from a learned list (Dougherty & Har-
bison, 2007; Harbison, Dougherty, Davelaar, & Fayyad, 2009). In
particular, Harbison et al.’s (2009) results suggest that when par-
ticipants begin primarily to recover items that have already been
retrieved, they are more likely to terminate the search process and
revert to a global cue. Similar processes may drive patch switching
prior to search termination (as proposed by Raaijmakers & Shif-
frin, 1981). However, optimal foraging theory also focuses on a
different level of description—rather than just the cues used to
decide when to make a transition (the mechanistic or algorithmic
level), it emphasizes the costs and benefits of deciding when to
abandon a patch (the computational level)—that is, what opportu-
nity costs are associated with staying or abandoning a given patch
in memory. Thus, we focus here on asking the question of how the
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memory system should make local–global transitions and whether
people’s search patterns are consistent with optimal foraging
theory.

Optimal Foraging in Semantic Memory

In the animal foraging literature, dynamic responses to the
environment are often assessed with respect to an optimal model
representing a hypothesis about the trade-offs that must be nego-
tiated in a given behavior–environment relationship. One of the
first and most successful models of optimal patch foraging at this
level is the marginal value theorem (Charnov, 1976). The marginal
value theorem assumes that resources are distributed in patches
that are monotonically depleted during foraging. The animal seeks
to maximize the gain per unit time of foraging defined as the
average resource intake, R, over all patches:

R !
g!tW"

tW " tB
, (1)

where tW is the time spent foraging within each resource patch, tB
is the average time spent traveling between patches, and g(tW) is
the cumulative gain within a patch.

Equation 1 provides a measure of resources per time unit, as a
function of an individual’s control over their time tW within a
patch. This is subject to patch quality, reflected by g(tW), and travel
time tB between patches. The organism is predicted to spend the
optimal amount of time in a patch (t!) such that R is maximized:

R! ! g#!t!". (2)

To maximize this resource intake, the optimal foraging policy is to
leave a patch at time t! when the instantaneous rate (or marginal
value) of resource gain, g#(t!), is equal to the long-term average
resource intake over the entire environment (patches and time
between), R!. In other words, the organism will switch to between-
patch search when the within-patch rate (which usually starts high
in a new, undepleted patch) drops to R!. With respect to memory,
the corresponding prediction is that individuals should leave the
current memory patch when the benefits associated with searching
further locally within it fall to the level of the expected benefits of
searching elsewhere in memory. Indeed, the evidence for stopping
rules in SAM based on failed retrievals (i.e., Harbison et al., 2009)
suggests that patch depletion does lead to departure from local
memory patches, but it is unclear whether such patch departures
are consistent with optimal foraging theory. In the rest of this
article, we test this prediction.

The Present Study

To test more directly the applicability of the marginal value
theorem to human memory search, we had participants produce
items from the category of “animals.” We analyzed the search
paths taken through memory in terms of the sequences of items
produced. Search paths were assessed with two semantic repre-
sentations. We first evaluated patch boundaries with the hand-
coded subcategorization of animal terms (into specific subsets like
“pets” and “water animals”) derived by Troyer et al. (1997). We
then compared search paths to the results of dynamic search
models applied to a representation of the semantic space built by

BEAGLE, the lexical semantic memory model of Jones and Me-
whort (2007). BEAGLE provides measures of semantic proximity
between words based on their distributional regularities in a nat-
ural language corpus, with a level of local structural detail not
possible with the nominal category-based representations of
Troyer et al. Having a formal model of semantic proximity among
animal names offers a quantification of the semantic search space,
which we can then use to predict the retrieval of specific animals
from memory and compare this with the search data we collected
from people; the same approach can also be directly extrapolated
to other categories (which is not the case for hand-coded subcat-
egorization schemes).

By using both types of semantic representation, we extend prior
work in memory search by making item-specific predictions,
rather than merely recording number of items produced or retrieval
time. Furthermore, these representations solve many of the tech-
nical difficulties previously associated with characterizing item
similarity in memory (Bousfield & Sedgewick, 1944; Romney et
al., 1993; for a similar approach, see Howard et al., 2007) or with
using a random memory structure (Raaijmakers & Shiffrin, 1981).
Semantic representations based on human coding or statistical
regularities in language offer considerably more constraint to a
model compared with randomly generated structures, which often
allow excessive freedom for an incorrect process model to fit the
data when it would have been rejected if the correct representa-
tional structure were used (Johns & Jones, 2010).

To model the search over these representational spaces, we
applied a generic model of memory retrieval common to the
frameworks of SAM (Raaijmakers & Shiffrin, 1981) and ACT–R
(adaptive control of thought–rational; Anderson, 1993; Anderson
& Lebiere, 1998). We then used various versions of these models
to evaluate retrieval patterns and assess the dynamics of memory
search and their correspondence with the marginal value theorem.

Method

Participants

Participants were 141 undergraduates (46 men and 95 women)
at Indiana University, Bloomington, who received partial course
credit. Participants were seated at a computer and followed in-
structions on-screen.

Procedure

Participants were asked to produce items from each of seven
categories (animals, foods, vehicles, occupations, sports, cities,
and movie titles), which were presented one at a time in a random
order. Participants typed as many items in a given category as they
could in 3 min. Entries were later corrected for spelling. Here we
focus solely on the category “animals,” for which we have the
predetermined subcategories from Troyer et al. (1997). Some
entries for this category were nonanimal items (e.g., “paw”), and
these were omitted from the analyses. Together, participants pro-
duced 5,187 valid animal entries, consisting of 369 unique animal
names. The mean number of animals per participant was 36.8
(SD $ 8.5). There was no correlation between order of category
appearance and number of items produced (p $ .32).
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Modeling Search in Semantic Memory

To model search in semantic memory, a structural representa-
tion of the search space is required in addition to a model of the
search process. To represent the structure of semantic memory, we
use both hand-coded (Troyer) and statistically derived (BEAGLE)
schemes. We describe these two structural models next, followed
by a description of the process model that will be applied to these
structural representations.

Representing the structure of semantic memory. The
Troyer et al. (1997; see also Troyer, 2000) categorization scheme
contains 22 nonexclusive animal categories (e.g., “African ani-
mals,” “water animals,” “beasts of burden”). Support for the
Troyer et al. categories comes via their usefulness in detecting
specific clinical conditions in individuals, such as Alzheimer’s
disease, depression, and Parkinson’s disease (e.g., Fossati, Le
Bastard, Ergis, & Allilaire, 2003; Murphy, Rich, & Troyer, 2006;
Raoux et al., 2008; Troyer et al., 1998). The categorization scheme
contains 155 unique animal names, which we supplemented with
214 additional names to cover the 369 animals reported by our
participants. We classified the new animals according to the orig-
inal 22 categories found in Troyer et al., based on the descriptions
of the additional animals found on Wikipedia. Our additions thus
did not change Troyer et al.’s categorization coding scheme, so
that our new investigations remain fully compatible with previous
results. Our extended categorization coding is available in the
supplemental materials (in Appendix 1).

To compute more fine-grained semantic similarities between
words, we used the lexical semantic representations from the
BEAGLE model (Jones, Kintsch, & Mewhort, 2006; Jones &
Mewhort, 2007). BEAGLE representations have seen success at
accounting for a variety of human semantic data including seman-
tic typicality, categorization, and sentence completion (Jones &
Mewhort, 2007), as well as for a range of semantic priming data
(Jones et al., 2006). In the simulations here, we specifically used
the version of BEAGLE that learns from only contextual informa-
tion, similar to other high-dimensional semantic space models
(e.g., Landauer & Dumais, 1997; Lund & Burgess, 1996).

The model begins by assigning each word an initial vector with
vector elements sampled randomly from a Gaussian distribution
with % $ 0 and & $ 1/!D, where D is the arbitrary vector
dimensionality (set to 1,000 in these simulations). As the text
corpus is processed, each time a particular word is encountered a
second vector, its memory vector, is updated as the sum of the
initial vectors for the other words appearing in context with it.
When the entire corpus has been learned, a word’s memory rep-
resentation is then a vector pattern reflecting the word’s history of
co-occurrence with other words. By this method, words that fre-
quently co-occur will develop similar vector patterns (e.g., bee and
honey), as will words that commonly occur in similar contexts,
even if they never directly co-occur (e.g., bee and wasp). For all
our comparisons, the similarity metric used is the vector cosine (a
normalized dot-product) between two word vectors.

BEAGLE was trained on a 400-million-word Wikipedia corpus
(Willits, D’Mello, Duran, & Olney, 2007), and its memory repre-
sentations were used to compute the pairwise cosine similarity
matrix for a list of 765 animals. The additional 396 animals that
were not produced by our participants were added to the list to
generate a richer memory space representing the semantic organi-

zation of the entire category of animals. In addition, it is expected
that items will affect search in semantic space even if they are not
produced by participants, just as berries on a bush affect foragers’
external search behavior even if not consumed (e.g., by attracting
the foragers to search in particular rich-looking areas of the bush).
Details of the corpus preprocessing are found in the supplemental
materials (in Appendix 2, as well as BEAGLE code and the animal
similarity matrix).

Modeling the search process. The model framework we
used to simulate the process of search is common to both the SAM
and ACT–R architectures (described in Anderson, 1993; Raaij-
makers & Shiffrin, 1981). The foundational assumption of our
model is that recall is achieved by probing retrieval structures in
memory with a specific cue set, that is, the memory probe. With I
representing a possible target item for recovery in the search space,
the probability of retrieving I is computed as the product of the
individual retrieval strengths for I across a probe set of M cues,
with S(Q, I) representing the semantic similarity between cue Q
and item I. This is incorporated into an overall probability of
retrieval for item I via the ratio rule:

P(Ii"Q1,Q2, . . ., QM) !

#
j $ 1

M

S!Qj, Ii"
'j

$
k $ 1

N #
j $ 1

M

S!Qj, Ik"
'j

, (3)

where N represents the total number of items available in the
category for retrieval and ' represents the saliency (or attention
weight) assigned to a given cue.

We examined various static and dynamic models (defined next),
using either one or both of two possible cues: frequency and/or the
previous item recalled. Frequency represents a global search cue,
which generates a retrieval strength S(Q, I) for each item based on
that item’s frequency of occurrence in the Wikipedia corpus. The
previous-item cue represents a local search cue, which generates a
retrieval strength for a new item based on its semantic similarity
with that item—here the S(Q, I) value is the cosine similarity in
BEAGLE between the previous item generated and item I. Using
the maximum likelihood method, we fit ' to each participant’s
data, for both cue types, using the participant’s individually gen-
erated sequence of items. This produced a log-likelihood fit, which
was penalized based on the number of free parameters via the
Bayesian information criterion. Results are presented as the me-
dian improvement in the Bayesian information criterion relative to
a random model specifying that all remaining items in the search
space are equally likely to be retrieved. Specific details of param-
eter optimization and model comparison may be found in the
supplemental materials (in Appendix 3).

In our terminology, the static models we tested use the same
memory probe (i.e., set of cues) over the entire retrieval interval,
effectively ignoring the patchy structure of the environment. In
contrast, dynamic models exploit that patchy structure, switching
from patch to patch by changing the contents of the memory probe
where local-to-global transitions occur. Specifically, when leaving
a patch, dynamic models switch from the use of the previous-item
cue (similarity-based local search) to the frequency cue (context-
based global search) to find a new appropriate patch, and then back
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again to the previous-item cue as the new patch is entered. For
example, a sequence of DOG–CAT–HAMSTER–HORSE may tran-
sition from a local cue to a frequency cue following HAMSTER, and
thereby retrieve the high frequency HORSE, which is not semanti-
cally similar to HAMSTER. We first used the Troyer et al. (1997)
categorization scheme to determine where local-to-global transi-
tions occurred in our participants’ item sequences. On the basis of
these results, we introduced a second patch scheme that can be
extended to other environments without the use of hand coding.

Results

In this section we first check that the assumptions necessary to
test our models of patchy memory search hold, and then examine
three hypotheses predicted by a relationship between search in
space and search in semantic memory, culminating in an evalua-
tion of the marginal value theorem in semantic memory as a test of
optimal memory foraging.

As discussed in the introduction, the marginal value theorem
assumes that there is local structure in semantic memory analogous
to spatial allocation of resources. If search in semantic memory is
similar to search in space, retrieving an item from a specific
location in memory should increase the likelihood that nearby (i.e.,
semantically similar) items are retrieved on subsequent trials. A
recalled item should share the highest semantic similarity with the
item retrieved just prior to it and share lower similarity with items
retrieved further back in the sequence. Figure 1 demonstrates that
this assumption holds for our data. The figure shows the data

backwards—averaging over all words—and indicates that words
retrieved immediately preceding any word (“(1”) were signifi-
cantly more likely to be semantically similar to that word than
words further away (e.g., the word two items prior, “(2”). A
one-way analysis of variance predicting the similarity of words as
a function of their order relative to the most recent word reveals
that words are more similar to the most recent word the closer they
are produced to that word, F(4, 532) $ 19.54, p ) .001.

The importance of local structure is also evident in the static
model fits shown in the upper portion of Table 1. All models are
a significant improvement over the random model with equal
weightings (all participants had positive-adjusted Bayesian infor-
mation criteria), and both global (frequency) and local (previous
item) cues are supported as being relevant to the retrieval process.
However, the best static model combines the two retrieval struc-
tures—via the integrated cue framework proposed by previous
memory models (Anderson, 1993; Raaijmakers & Shiffrin, 1981).
Combining local and global cues fit 100% of the participants better
than either cue fit alone. This strongly supports the assumption of
local memory structure in our data.

Another assumption of a model of memory search through
patches in semantic space is that similarity between successively
produced items will be lowest at transition points between local
search and global search. Because local-to-global transition points
imply that a depleted patch is being left and a new patch is being
entered—with the local similarity cue being temporarily dropped
from the memory probe—it follows that the semantic similarity
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Figure 1. The BEAGLE similarity between a word and the words preceding it in the same categorical patch
produced by participants. For all figures, patch transitions are computed with the Troyer et al. (1997)
categorization. Words that are produced just prior to the most recent word in a patch (Position (1) are the most
similar to it, with decreasing similarity for words produced earlier. Error bars are standard error of the mean.
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between two successively produced items should be lowest where
local-to-global transitions occur. Figure 2 shows that this is the
case. Based on the Troyer et al. (1997) norms to classify transition
points, the semantic similarity between items that occur immedi-
ately before and after a transition point is substantially lower than
the pairwise semantic similarities before or after this point.

This observation suggests an additional memory search model
incorporating a new way of identifying local-to-global transitions,
which we call the similarity drop model. This model identifies
transitions by noting where similarities drop between words, in the
following way: If S(A, B) represents the similarity between re-
trieved words A and B, then a switch following B is identified in
a series of retrievals A, B, C, D if S(A, B) * S(B, C) and S(B,
C) ) S(C, D). The bottom of Table 1 shows that a dynamic model
employing these transitions performs as well as the model with
Troyer et al. category transitions. Moreover, approximately 65% of
similarity drop switches were also patch switches using the Troyer
et al. categories.

Hypothesis 1: A dynamic model that makes local–global
transitions will outperform a static model.

Appropriate search through patchy structures implies modulat-
ing adaptively between local patch exploitation and global explo-
ration in a dynamic fashion. The bottom portion of Table 1 shows
that a dynamic memory search model based on the transition
points defined by the Troyer et al. (1997) categorization—that is,
a model that makes the local-to-global switches where we find
Troyer-based subcategory switches in the data—accounts better
for participant behavior than a static model that does not make any
such transitions. This represents an improvement in 85 of the
participants (results of a sign test, p ) .01). Moreover, the simi-
larity drop model fits 131 of the participants better than the static
model (results of a sign test, p ) .001). We show next that these
transition points are appropriate and consistent with an underlying
dynamic search process that shares important aspects with spatial

foraging, including patch depletion and optimal patch-leaving pol-
icies.

Hypothesis 2: Transition points occur when local semantic
patches are depleted.

Semantic memory patch depletion occurs as words are retrieved,
leaving fewer remaining similar words in the same patch left to be
found. This implies that over time, retrieved items will have
reduced similarity to all other remaining (still unretrieved) items in
the semantic search space. At some point, a transition to a new
patch will occur when the local patch is depleted. We call a word’s
semantic nearness to all other words its residual proximity—this is
the word’s retrieval strength calculated as the mean similarity
(inverse distance) to all possible remaining (not yet produced)
words in the overarching category (here “animals”) in the
BEAGLE semantic search space. Residual proximity is thus an
indication of the richness of a word’s remaining local neighbor-
hood in semantic space, in terms of how distant the remaining
unretrieved words are, and thus roughly how long it could take on
average to continue to retrieve them.

Figure 3 displays the relationship between a word’s residual
proximity and its position relative to the beginning of a patch
defined by the Troyer et al. (1997) categorization scheme. Resid-
ual proximity was averaged across all words that appear in a
particular position with respect to any patch switch (e.g., over all
words that immediately follow a patch switch, in Position 1, or are
two positions before a patch switch, in Position (2). The figure
clearly shows that words produced just prior to a patch switch have
lower residual proximity to remaining items than items produced
immediately after a patch switch. Moreover, the items produced
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Figure 2. Mean ratio (and standard error of the mean) of pairwise
similarity between successive items produced by a participant to that
participant’s mean pairwise similarity over all item pairs, by patch entry
position. For example, the bar above “1” indicates the relative similarity
between the first item in a patch and the last item in the preceding patch.

Table 1
Bayesian Information Criterion (BIC) Comparisons (Median
Improvement Relative to a Random Model) of Static and
Dynamic Models Using a Combination of Frequency (Global)
and Previous Item Similarity (Local) Cues, Fit to Participant
Memory Retrieval Data

Model ' BIC improvement

One cue static models
Frequency (global) 8.47 (1.98) 75.5 (20.3)
Previous item (local) 4.34 (0.91) 70.1 (24.3)

Combined cue static model 98.6 (28.3)
Global cue 5.80 (2.09)
Local cue 3.29 (1.10)

Combined cue dynamic model
Troyer et al. (1997) categories 100.12 (28.29)
Global cue 7.22 (2.18)
Local cue 5.03 (1.67)
Similarity drop model 104.82 (29.45)
Global cue 6.64 (2.15)
Local cue 4.73 (1.36)

Note. One parameter (') was fit to each cue (global and/or local) for each
participant. Standard deviations are shown in parentheses.
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immediately following a patch switch have the highest residual
proximity, indicating that they mark the entry into a relatively
undepleted patch in semantic memory. This is consistent with the
prediction that transitions occur when local patches are depleted.

Hypothesis 3: Transitions occur at points predicted by the
marginal value theorem.

The results above provide evidence for a dynamic memory
search process that combines exploitation with exploration by
transitioning between use of local and global cues. The marginal
value theorem states that the optimal time for these switches
should be when the current intake rate in the patch falls to the
mean global intake rate for all patches (Equation 2). Does this
optimal foraging policy hold for search in semantic memory? Here
we take intake rate to be proportional to the inverse of the time
between producing word items—that is, the interitem response
times (IRTs)—and so evaluate this hypothesis in terms of the IRTs
at patch switches, relative to the mean IRT across all items.

Figure 4 shows mean ratios (across participants) of item IRTs to
each participant’s long-term average IRT, at different retrieval
positions defined relative to Troyer et al. (1997) category bound-
aries. The word immediately following a local-to-global transition
(i.e., patch switch) takes significantly longer to produce on average
than the mean IRT over the entire 3-min production interval
(results of a within-participant paired t test), t(140) $ 13.14, p )
.001. The second word in a patch, however, takes significantly less
time than the mean IRT, t(140) $ 11.92, p ) .001. Furthermore,
as apparent in Figure 4 and in line with the marginal value
theorem, word IRTs increase toward the patch transition point but
do not exceed the long-term average IRT until the first word after
the transition point (representing the first item in a new patch). The
idea here is that as soon as the IRT following some word exceeds
the overall mean IRT, search switches from local to global cues.
The IRT from last item in the previous patch to first item in the
new patch includes a longer-than-average within-patch search fol-

lowed by a global between-patch search. The same pattern of
results was found for similarity drop switches. With similarity
drop, the item immediately following a patch switch takes signif-
icantly longer to produce on average than the participant’s mean
IRT over the entire production interval (M $ 1.47 s longer),
t(140) $ (14.86, p ) .001, and the second item in a patch takes
significantly less time, t(140) $ 12.97, p ) .001. Moreover, as
with the Troyer et al. defined patches, as more items were pro-
duced within a given patch, the IRTs to produce those items grew
longer.

To examine the optimal foraging model further, we tested the
prediction from the marginal value theorem that each participant’s
preswitch IRTs should be at or below his or her long-term average
IRT. On a per-participant basis, we assessed whether the distribu-
tion of IRTs for the single word immediately preceding a switch
(Column (1 in Figure 4) was significantly different (using a
one-sample t test) from that participant’s own long-term average
IRT (the IRTs for the earlier words were shorter, so were not
checked individually). With the Troyer et al. (1997) defined
patches, for most participants (132 of 141) the two distributions
were not significantly different, and for the nine with a significant
difference, all their preswitch IRT distributions were less than their
long-term averages, again supporting optimal foraging in memory.
With similarity drop defined patches, 24 participants had preswitch
IRTs that were significantly different from their long-term average
IRT, and all these preswitch IRTs were less than their long-term
averages.

Finally, if the marginal value theorem is a plausible description
for optimal foraging in memory—as it is in space—then individ-

Figure 3. The residual proximity of an item in relation to an item’s
position before or after a patch transition. Only items not yet retrieved are
included in the computation of an item’s residual proximity value. Error
bars are standard error of the mean.

Figure 4. The mean ratio between the interitem retrieval time (IRT) for
an item and the participant’s mean IRT over the entire task, relative to the
order of entry for the item. For example, the bar above “1” indicates the
relative IRT between the first word in a patch (defined by Troyer et al.,
1997, subcategories) and the last word in the preceding patch. The dotted
line shows where item IRTs would be the same as the participant’s mean
IRT for the entire task (i.e., the inverse of the long-term average resource
intake over all patches). Error bars are standard error of the mean.
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uals who were more consistent with its patch departure policies
should have recovered more items from memory. One indication
of consistency with the theorem’s patch-leaving policy is whether
the last IRT in a patch (leading up to the last item) is close to the
mean global IRT over all items. If that last IRT is much smaller,
then it would indicate leaving the patch too soon, and if it is much
greater, then it means the individual stayed in the patch too long.
Using Troyer et al. (1997) defined patch boundaries, we computed
the absolute difference between the mean last-item IRT across
patches and the mean IRT over the entire task, and used this in a
linear regression model to predict the number of items produced by
each participant (see Figure 5). We found a significant negative
relationship between the two, B $ (5.35, t(139) $ (5.77, p )
.001. The same analysis with similarity drop defined patch bound-
aries found the same relationship, B $ (3.50, t(139) $ (6.04,
p ) .001. Greater deviation from the optimal departure time led to
fewer items produced. This supports the idea that individuals who
leave memory patches too early or too late will retrieve fewer
items from memory than those who follow a policy more consis-
tent with the marginal value theorem.

Discussion

Semantic memory search appears to be similar to search in
physical space, involving a dynamic process of mediating between
local exploitation and global exploration of clusters of information
in much the same way that animals forage among patches of food
in their environment. A dynamic process has been postulated
before for semantic memory search (Raaijmakers & Shiffrin, 1981;
Troyer et al., 1997), but had only been tested by predicting

interitem retrieval times via a synthetic “random” search environ-
ment. By predicting retrieval patterns of memory items searched
for over a structured representation of semantic space in patches,
the work presented here shows how the dynamic local-to-global
search process extends to patchy semantic space in a way that
parallels optimal foraging search in physical space. In particular,
we found evidence for local (i.e., patchy) structure in memory,
patch depletion preceding patch departures, and optimal timing of
patch departures—with participants who more closely adhered to
optimal foraging theory (i.e., the marginal value theorem) produc-
ing more items.

Two common underlying factors that motivated our comparison
between foraging in space and in memory were the shared patchy
structure in both types of search environments and the shared
mechanisms that may underlie search processes across environ-
ments. Shared patchy structure is seen in the clustering of animal-
and plant-based food resources (Bell, 1991; Taylor, Woiwod, &
Perry, 1978), in the clustering of items recalled from memory (e.g.,
Bousfield & Barclay, 1950) and in the small-world network struc-
ture of word co-occurrences in text (e.g., Ferrer i Cancho & Solé,
2001). Shared underlying processes are supported by shared neural
correlates of search (Hills, 2006) and the ability to prime search
from spatial to semantic domains (Hills et al., 2008), which has
given rise to the theoretical notion that executive cognition is a
domain-general search process (Hills, Todd, & Goldstone, 2010;
see also Rhodes & Turvey, 2007). Our results here, demonstrating
that memory search functions similarly to spatial search with
regard to the marginal value theorem, adds an important compo-
nent to this argument.
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Figure 5. The relationship between a participant’s deviation from the marginal value theorem policy for patch
departures (x-axis) and his or her total number of words produced, showing lower performance with less
consistency with the optimal foraging rule. Each circle corresponds to one participant; line is the best fitting
linear regression. IRT $ interitem retrieval time.
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Together, this evidence supports a theory of semantic memory
search in which individuals search locally through memory along
a meandering similarity-based path until the difficulty of finding a
new item nearby (as measured by the time it takes to retrieve it)
rises to the average difficulty of finding items over the entire
search domain, at which point local search is abandoned and a
global search is made for a new patch. Our results indicate that the
last item retrieved from a patch is relatively distant (as measured
by residual proximity) from what remains to be recovered in
long-term memory, and the subsequent transition to a global cue
removes this local constraint. Doing this at the optimal time
appears to improve memory production and may help explain why
individuals from different clinical populations produce different
numbers of items (e.g., Raoux et al., 2008).

Search environments run a wide gamut. They include visual
search (e.g., Najemnik & Geisler, 2005), finding optimal paths on
a map (Fu & Gray, 2006), searching for mathematical solutions
(Hills, 2010), searching for web pages (Fu & Pirolli, 2007), seek-
ing and recalling contacts in social networks (Adamic & Adar,
2005; Hills & Pachur, 2012), finding mates spread out over time
(Todd & Miller, 1999), and searching in literal space. Given the
generality of the search control problem—that is, mediating be-
tween exploration and exploitation of resources in patchy environ-
ments—the computational approaches invoked in these various
domains are likely to provide many future cross-disciplinary in-
sights into the nature of underlying search policies and mecha-
nisms (see, e.g., Todd, Hills, & Robbins, in press).
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